

I-495 & I-270 Managed Lanes Study

CA-5 (UNNAMED TRIBUTARY TO GREAT SENECA CREEK) STREAM RESTORATION MITIGATION

Semi-Final Design Report April 2022 FMIS No: AW073B12

U.S. Department of Transportation

Federal Highway Administration MARYLAND DEPARTMENT OF TRANSPORTATION

Prepared By:

Table of Contents

1.	Exe	cuti	ive Summary	.4
2.	Intr	odı	uction	.4
3.	Wa	ters	shed Context	.7
3	.1	Ph	ysiographic Region, Surface Geology, and Watershed Characteristics	.7
3	.2	His	storical/Modern Impacts and Potential Sources of Stream Instability	.8
3	.3	Bio	ological Site Data	11
4.	Site	Pro	otection Instrument	11
5.	Det	aile	d Site Assessments	12
5	.1	Re	each Description	12
5	.2	W	atershed Hydrology Study	17
5	.3	De	esign Discharge	19
5	.4	Ge	eomorphic Assessment Data	21
	5.4.	1	Channel Planform and Morphology	21
	5.4.	2	Bed Material Characterization	24
	5.4.	3	Hydraulic Variable Analysis	25
5	.5	Ва	nk Erosion Estimate	27
5	.6	Sit	e Constraints	28
5	.7	Na	atural Resource Inventories	28
	5.7.	1	Wetland Delineation	28
	5.7.	2	Forest Stand Determination	29
	5.7.	3	Existing Invasive Species	29
6.	Res	tora	ation and Uplift Opportunity Identification	30
6	.1	Hy	/drology	30
6	.2	Hy	/draulics	30
6	.3	Ge	eomorphology	31
6	.4	Ph	ysiochemical	31
6	.5	Bio	ological	31
7.	Des	ign	Approach	32
7	.1	Pro	oject Goals	32
7	.2	Str	ream Restoration Approach	32
	7.2.	1	Sediment Competency	34
7	.3	HE	C-RAS Modeling	36
	7.3.	1	HEC-RAS Methods	36

	7.3.2	HEC-RAS Results	37
	7.3.3	HEC-RAS Conclusions	40
7.	4 R	Rock Sizing	40
7.	5 li	nstream Structures	41
7.	6 L	andscaping Design	42
8.	Refer	rences	43

Tables

Table 2: Desinfall Denthe
Table 2: Rainfall Depths
Table 3: Regression Equation Characteristics: Mainstem 1
Table 4: Hydrologic Analysis Results: Mainstem 118
Table 5: Hydrologic Analysis Results: Mainstem 218
Table 6: Peak Discharges for Different Locations in the Stream Network19
Table 7: Design Discharge Comparison
Table 8: Sinuosity
Table 9: Radius of Curvature
Table 10: Reach Slopes22
Table 11: Summary of Riffle Lengths and Slopes
Table 12: Summary of Pool Lengths, Depths, Slopes, and Pool to Pool Spacing23
Table 13: Summary of Pebble Count Data25
Table 14: Summary of Bulk Sample Data25
Table 15: Hydraulic Variables and Bankfull Dimensions26
Table 16: BEHI Summary Table
Table 17: Function Based Scores and Ratings
Table 18: Function Based Restoration Goals
Table 19: CA-5 Stream Restoration Site Mainstem 1 & Mainstem 2 Proposed Riffle Dimensions
Table 20: Comparison of Required Bankfull Channel Dimensions
Table 21: Manning's 'n' Values used in HEC-RAS Modeling
Table 22: Permissible Shear and Velocity for Material Types
Table 23: HEC RAS 2D Timesteps
Table 24: HEC RAS Velocities for the Proposed Condition
Table 25: HEC RAS Shear Stress for Proposed Conditions
Table 26: Design Justification
Table 27: Maximum Shear Stress and Velocity along Alignment40
Table 28: Design Shear Stress and Velocity along Alignment

Figures

igure 1. Study Area Vicinity Map	6
igure 2. 1951 Historic Aerial of Montgomery County, MD (Montgomery County, Maryland Interactiv	
Лар)	8
igure 3. 1970 Historic Aerial of Montgomery County, MD (Montgomery County, Maryland Interactiv	e
Лар)	9
igure 4. 1979 Historic Aerial of Montgomery County, MD (Montgomery County, Maryland Interactiv	e
Лар)	9
igure 5. 1988 Historic Aerial of Montgomery County, MD (Montgomery County, Maryland Interactiv	e
Лар)1	0
igure 6. 2017 Historic Aerial of Montgomery County, MD (Montgomery County, Maryland Interactiv	e
Лар)1	0
igure 7. Reach Map1	6

Appendices

Appendix APhoto DocumentationAppendix BGeomorphic DataAppendix CNatural Resources InventoriesAppendix DHydrologic AnalysisAppendix EDesign Documents

1. Executive Summary

The Unnamed Tributary to Great Seneca Creek (referred to in this report as CA-5) stream restoration design project is located in Montgomery County, Maryland within Quince Orchard Valley Neighborhood Park. The Park is owned by Maryland National Capital Park and Planning Commission (M-NCPPC). In order to mitigate for impacts to waters of the U.S. associated with the I-495 & I-270 Managed Lanes Study under the I-495 & I-270 Public-Private Partnership (P3) Program, the P3 Program identified stream restoration as partial compensatory mitigation for the project at site CA-5. This includes the restoration of the CA-5 Mainstem 1 (WC7), Mainstem 2 (WC6) and two tributaries (WC9 and WC2) to Mainstem 1. The overall stream restoration of this site is 3,868 LF. To assist in the assessment of erosion causes and potential restoration strategies, background information was collected on land use, geology, soils, and future development in the contributing watershed. According to GISHydro, 35%, approximately 56.5 acres, of the total watershed is impervious.

2. Introduction

Approximately 2,799 linear feet (LF) of CA-5, a first order stream, was evaluated, as well as 1,128 LF of tributaries to CA-5. The Project Area Vicinity/Location is shown in Figure 1 below. The purpose of the project will restore approximately 3,568 LF of CA-5, 3,079 LF of which will be used as partial compensatory mitigation for the I-495 & I-270 Managed Lanes Study. Credit will not be sought for the 179 LF of stream restoration within the PEPCO easement.

The CA-5 stream restoration site is located in the Seneca Creek 8-digit watershed (Maryland Department of the Environment (MDE) 8-Digit: 02140208). The CA-5 stream restoration site is also identified as a tributary of Great Seneca Creek under the Maryland Department of Natural Resources (MDNR) 12 Digit Watershed 021402080857. CA-5 is classified as use I-P (Water Contact Recreation, Protection of Aquatic Life, and Public Water Supply) by COMAR 26.08.02.02. Instream construction in use I streams is prohibited between March 1 and June 15, inclusive, during any year.

The data collection and assessment efforts were completed by Coastal Resources Inc. and included geologic and historic data collection, hydrologic analysis, visual site investigations, a stream bank sediment and soil study, geomorphic surveys and analysis, a channel stability assessment, wetland and forest delineations, and specimen tree surveys. These efforts have been performed to develop an understanding of the existing impacts within the stream corridor, current geomorphic processes, and causes of instability in order to develop potential restoration recommendations.

Specific objectives were satisfied in order to make appropriate recommendations including:

- 1. Determining the existing conditions of the watershed and stream system
- 2. Determining potential causes and impacts to the current state of the stream
- 3. Determining sediment sources, morphological conditions, and existing hydraulic parameters of the channel
- 4. Recommending a design option that promotes long-term stability and environmental benefits within the project reaches

These objectives were achieved through the following tasks:

- 1. Determining historic and more modern anthropogenic influences on the current system
- 2. Obtaining and evaluating available geomorphic and hydrologic/hydraulic information
- 3. Obtaining and analyzing site specific geomorphic data to characterize bankfull conditions, hydraulic parameters, bedload composition, stream type, and sediment competence
- 4. Developing a conceptual design approach based on conditions specific to the sediment supply and current state of the stream

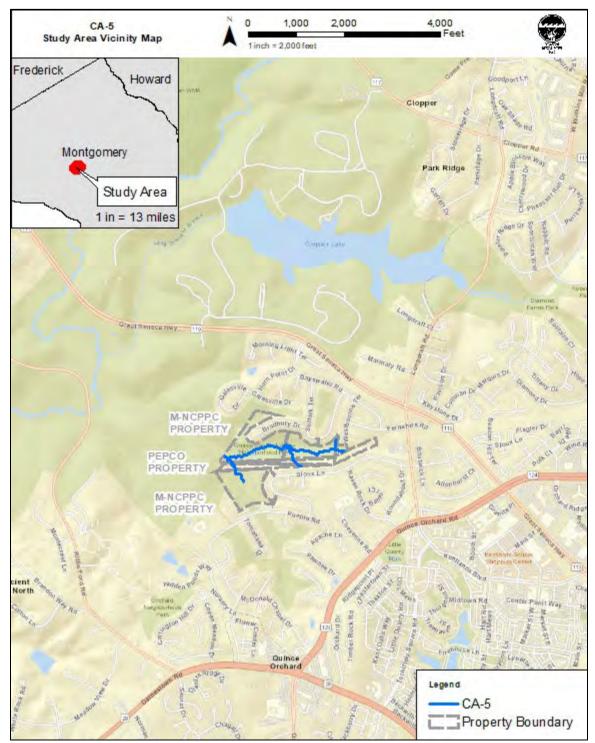


Figure 1. Study Area Vicinity Map

3. Watershed Context

In order to accurately understand the functions and uplift opportunities possible at the CA-5 stream restoration site a review of historical information and current conditions of the watershed and site were completed. To assist in the assessment of erosion causes and potential channel stability and ecological uplift, background information was collected on land use, geology, soils, and future development in the contributing watershed. Historical mapping and aerial photography were evaluated to determine the extents and duration of the major development seen within the watershed, which is the major cause of the serious erosion seen onsite.

3.1 Physiographic Region, Surface Geology, and Watershed Characteristics

The CA-5 stream restoration site is a tributary to Great Seneca Creek within the Seneca Creek Watershed which outlets to the Potomac River and eventually to the Chesapeake Bay. Great Seneca Creek is 21.5 miles long and travels through Montgomery County, Maryland. Great Seneca Creek begins in Damascus, roughly 40 miles west of Baltimore City. The river flows southwest through Germantown, Gaithersburg, and Seneca Creek State Park before converging with Little Seneca Creek to form Seneca Creek. The CA-5 stream restoration site joins Great Seneca Creek approximately 1,500 LF downstream of the study area, in Gaithersburg. The CA-5 stream restoration site is classified as use I-P (Water Contact Recreation, Protection of Aquatic Life, and Public Water Supply) by COMAR 26.08.02.02. Instream construction in use I streams is prohibited between March 1 and June 15, inclusive, during any year. The CA-5 stream restoration site watershed has approved TMDLs for Phosphorus (2010) and Total Suspended Solids (TSS; 2010 and 2011). In 2010 there was an approved Category 5 impairment for Chloride in the CA-5 stream restoration site watershed (2018 IR). The total drainage area to the downstream end of the CA-5 stream restoration site is 0.25 square miles (160 acres). The land use throughout the watershed varies, but the majority is mixed forest, medium-density residential, and institutional. Based on the 2010 Maryland Department of Planning (MDP) Land Use data (MDP, 2010) most common land use in the watershed is medium-density residential, which accounts for 76% of the total area. Forest land cover accounts for approximately 13% of the watershed, with industrial covering 9% and high-density residential the remaining 2%. Impervious area accounts for 35% of the watershed (GISHydro, 2010), which is much higher than the 15% threshold required for classification as an impaired urban watershed (Maryland Hydrology Panel, 2016).

The study reach is located in Quince Orchard Valley Neighborhood Park in Gaithersburg, MD between Suffolk Terrace and Sioux Lane. The watershed is characterized by runoff and sediment deposition from historical land clearing for agricultural production and current residential communities. With increased runoff due to land clearing and development the study reach receives increased flashier flows events. These events over time have caused severe erosion in portions of the site. Additionally, the runoff from the surrounding residential area brings nutrients and other pollution that ultimately decrease water quality and harm the aquatic species. The surrounding neighborhoods were constructed in the 1970's and 1980's prior to the adaptation of SWM requirements in Maryland.

The study reach is located within the Piedmont physiographic province of middle Montgomery County. The Piedmont physiographic province is comprised of mostly clay covered by a thin layer of rocky surface soil (MDP, 2010). The overall drainage area to the site is characterized predominately by Glenelg and Gaila silt loams, both well drained soils, and Travilah silt loam, a somewhat poorly drained soil. The study watershed is composed of B, C, and C/D soils (USDA, 2017).

3.2 Historical/Modern Impacts and Potential Sources of Stream Instability

In order to develop the proper restoration design for the CA-5 stream restoration site, the causes of current instabilities were assessed. Because no two streams or rivers are alike and each project site presents a unique set of circumstances, an understanding of past and modern-day impacts and influences on a stream or river from a combination of field observations, historical documentation, and multidisciplinary review and analysis is integral to a stable solution. A historical perspective is a particularly important design element as many rivers today are still adjusting to the events of the past (Rosgen, 1996).

The study area is located on the western border of Gaithersburg. The City of Gaithersburg started as a small agriculture settlement in 1850 known as Log Town, officially becoming Gaithersburg in 1878. Due to the Baltimore and Ohio Railroad coming to Gaithersburg in 1873 the agriculture business was able to expand, and a large summer community came to the area causing a swift increase in development. The earliest available aerial imagery of the study area from 1951 shows most of the surrounding land as still being used for agricultural purposes (Figure 2). Starting around the 1970s, urban sprawl began and the rapid development of the agricultural lands into residential communities can be seen (Figure 3 and 4). By 1988, major roads such as MD 119 and MD 124 were constructed (Figure 5). Since 1988, the immediate area around the study reach has remained mostly unchanged (Figure 6).

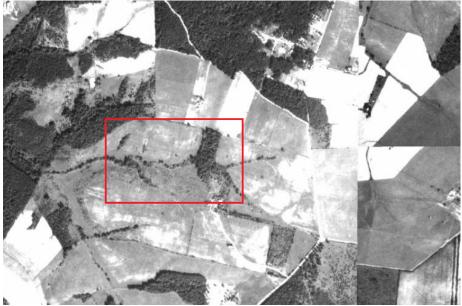


Figure 2. 1951 Historic Aerial of Montgomery County, MD (Montgomery County, Maryland Interactive Map)

Figure 3. 1970 Historic Aerial of Montgomery County, MD (Montgomery County, Maryland Interactive Map)

Figure 4. 1979 Historic Aerial of Montgomery County, MD (Montgomery County, Maryland Interactive Map)

Figure 5. 1988 Historic Aerial of Montgomery County, MD (Montgomery County, Maryland Interactive Map)

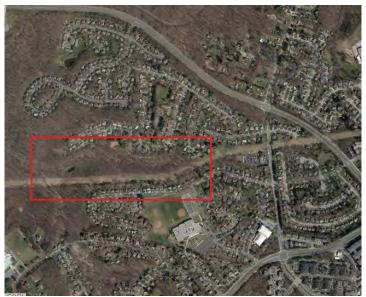


Figure 6. 2017 Historic Aerial of Montgomery County, MD (Montgomery County, Maryland Interactive Map)

3.3 Biological Site Data

Maryland Stream Waders is a statewide volunteer stream monitoring program that was started in 2000 and is managed by Maryland Department of Natural Resources (DNR). This program is the volunteer component of the Maryland Biological Stream Survey (MBSS) and is meant to fill the gaps left in the watershed areas not sampled by MBSS. Stream Waders site 857-5-2001 is located 0.31 miles downstream of the confluence of the CA-5 stream restoration site within a tributary to Great Seneca Creek. In 2001, this site received a Benthic Index of Biotic Integrity (BIBI) Rating of Poor (1.57). Twelve different taxa of macroinvertebrates were found at this site, including three EPT taxa. EPT are the generally intolerant insect orders of Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). This value summarizes taxa richness with macroinvertebrates that are considered to be sensitive to pollution and therefore, a lower number of taxa within the sample suggests poor water quality conditions (Stribling, *et al.* 1998).

There are three MBSS monitoring sites along different tributaries within approximately a two mile radius from the CA-5 stream restoration site. In order to report biological data that could closely compare to what may be found in the study reach, a site with a similar watershed size, land use, and soils was selected.

MBSS site SENE-101-R-2001 is located along an unnamed tributary to Great Seneca Creek, about two miles northwest of CA-5 stream restoration site. The drainage area for this site is 0.15 square miles. Site SENE-101-R-2001 received a Fish Index of Biotic Integrity (FIBI) score of Poor (1.3). The sample included 68 Eastern Blacknose Daces (*Rhinichthys atratulus*), a species tolerant to pollution. No other fish species was collected. SENE-101-R-2001 also received a Poor BIBI rating (2.0).

Physical habitat was assessed at this site during the 2001 study using MBSS protocols, which included visual assessments of various parameters. Aquatic habitat assessment methods are based on the Environmental Protection Agency's Rapid Bioassessment Protocol (RBP) (Barbour *et al.* 1999) and modified for use in Maryland streams. This protocol assigns a value out of 20 to each parameter. At site SENE-101-R-2001 instream habitat received a score of 9 (marginal), epifaunal substrate was scored at 14 (suboptimal), velocity/depth diversity a 6 (marginal), pool quality a 4 (poor), and riffle run quality a 7 (marginal). Shading for this site was 92% with an embeddedness of 10%.

4. Site Protection Instrument

Pursuant to the Maryland Nontidal Wetlands Protection Act Rules (COMAR 26.23.04), and the Federal Clean Water Act, plus its implementing regulations at 33 CFR Part 332.7(a), the CA-5 stream restoration site will be protected to ensure conservation in perpetuity. The majority of the property for CA-5 stream restoration site is owned by M-NCPPC. M-NCPPC and MDOT SHA will develop a long-term agreement that will allow MDOT SHA future access to monitor and maintain the restored stream segment. The process of ensuring protection of the site is underway and described below. A small portion of the project area is on property owned by Potomac Electric Power Company (PEPCO), under a current utility easement. Further coordination between MDOT SHA and PEPCO will determine the details of how specific protection and access will occur for that portion of the restoration site, within the current easements.

M-NCPPC

Montgomery County M-NCPPC mitigation sites are already considered protected by park policies and M-NCPPC does not encumber properties with deed restrictions on parkland mitigation sites. M-NCPPC mitigation sites will be protected in accordance with M-NCPPC Montgomery County's integrated natural resource management plan, Natural Resource Management Plan for Natural Areas in M-NCPPC Parkland in Montgomery County, Maryland. This plan published in February 2013 requires preservation and conservation of natural areas and wetlands like the proposed mitigation sites. This protection has been successfully used and accepted by USACE and MDE to preserve M-NCPPC mitigation sites on past projects.

The proposed mitigation sites would be considered environmentally sensitive areas in Natural Resource Management Plan for Natural Areas in M-NCPPC Parkland in Montgomery County, Maryland and are protected park resources. The following goals, visions and legal protection are identified in the plan.

- 1. M-NCPPC Montgomery County Mission: Protect and interpret our valuable natural and cultural resources; balance the demand for recreation with the need for conservation; offer a variety of enjoyable recreational activities that encourage healthy lifestyles; and provide clean, safe, and accessible places for leisure-time activities.
- 2. Goal 11 of the Vision 2030 Strategic Plan: Inventory, conserve, and enhance ecologically healthy and biologically diverse natural areas with a focus on Park Best Natural Areas, Biodiversity Areas, and Environmentally Sensitive Areas as defined in the Land Preservation, Parks, and Recreation Plan (M-NCPPC, 2005)
- 3. Environmental Guidelines for Management and Development in Montgomery County Parks: "...the Montgomery County General Plan and local area master plans articulate County-wide and planning area-wide goals, objectives, principles, and policies to protect sensitive areas from the adverse effects of development, as required by the Annotated Code of Maryland Article 66B

5. Detailed Site Assessments

As part of the site assessments, the streams were traversed from upstream to downstream under lowflow conditions. CA-5 stream restoration site is classified use I-P waters. Significant stream and valley features are described below. The site assessments included geomorphic assessment, and a bank erosion analysis. The geomorphic assessment of the study reach was used to determine existing hydraulic parameters and included a detailed longitudinal profile and cross section survey, pebble counts, and a subpavement sample. The bank erosion analysis was performed, and the results are in **Appendix B**.

5.1 Reach Description

The study area on the CA-5 stream restoration site extends from where stream enters the eastern edge of M-NCPPC property in Quince Orchard Terrace Neighborhood Park to the confluence of the CA-5 stream restoration site and includes another unnamed tributary to Great Seneca Creek, near the western edge of M-NCPPC property. A map of the study area is in Figure 7 below. Photo documentation of the study area can be found in **Appendix A**.

The CA-5 stream restoration site, a perennial tributary Mainstem 1 (WC7) to Great Seneca Creek, was split into Reaches 1, 2, 3, and 4. Two tributaries were also evaluated in addition to a larger unnamed tributary at the bottom of the study area that we refer to as Mainstem 2/Reach 5. Reach 1 extends from the M-NCPPC property line downstream to the confluence with the first tributary. Reach 2 extends from the first tributary to a significant change in valley slope where the valley gets steeper, and the stream drops over a bedrock control and gets significantly more incised. Reach 3 extends from the bedrock control to just upstream of the confluence with the second tributary, where the channel sinuosity increases significantly, and the slope decreases significantly. Reach 4 extends to the end of the study reach at the confluence with the Mainstem 2. The first tributary begins at the outlet of a 36" RCP and extends to the confluence Reach 1/2. The second tributary begins at the southern boundary of M-NCPPC property and extends to the confluence with Reach 4. The Mainstem 2/Reach 5 tributary begins approximately 50 linear feet downstream of an existing stormwater facility where previous stream restoration efforts have left off. The work extends to the confluence of Reach 4 of the tributary to Great Seneca Creek.

The overall slope of the channel is 2.1% however, the existing longitudinal profile is concave. There are steep slopes in reach 1 that slowly get less and less steep as you go downstream. The varying slopes appear to be the result of historic downcutting that has reached an equilibrium in the upper reaches when the stream has cut down to boulder and bedrock. The three upstream reaches have higher slopes and are able to effectively move sediment from the eroding banks through the reaches. The bank heights are lowest in the upper reaches, and highest in Reach 3 where the greatest downcutting has occurred. The slope flattens out significantly at the top of Reach 4, where addition excess sediment from Tributary 2 is also added to the stream. The change in slope along with the additional bedload has caused significant instability within this area.

Reach 1 is characterized by bedrock control. A large bedrock outcrop is exposed for the majority of the reach with the channel flowing over and between the bedrock. Large boulders and chunks of bedrock have also washed into the channel. The reach is fairly stable due to the bedrock control, with small patches of erosion on some banks where bare soil is exposed. There are mature trees on both banks. The slope of Reach 1 is 4.9%, with a moderate width/depth ratio and moderate sinuosity that led to a Rosgen stream classification of a B4a channel. Due to the bedrock control and stability of this reach, it will likely not be included in the restoration extents.

Reach 2 begins downstream of the first tributary and is characterized by low, eroded banks with a few tortuous meanders. The reach has grade controls throughout of exposed bedrock and exposed sewer casings. It is unclear whether any or all of the sewer casings contain active pipes. Due to these grade controls, there are multiple long backwatered pools throughout the reach. The upstream end of the reach contains large boulders washed out from the bedrock of Reach 1, as well as riprap placed across a pedestrian bridge that crosses the reach just downstream of the tributary. The rest of the reach is mostly gravel and sand with some larger cobbles. A significant headcut from a wetland seep on the right floodplain has created an eroded channel that joins Reach 2 near the downstream end. Just downstream of where the eroded channel joins Reach 2, there is a 24" RCP outfall on the right bank. Reach 2 ends at a significant change in valley slope. At the grade break in valley slope, there is a bedrock outcrop in the channel as well as sewer casing and placed riprap protecting the sewer casing. The channel drops approximately 3 feet over the exposed bedrock and sewer protection. The slope of Reach 2 is 2.6%, with moderate entrenchment, moderate width/depth ratio, and moderate sinuosity that led to a Rosgen stream classification of a B4 channel.

Reach 3 begins downstream of the exposed bedrock and sewer protection and is characterized by higher, more severely eroded banks. The slope and sinuosity remain fairly consistent from Reach 2 to Reach 3, but the entrenchment increases significantly in Reach 3. There is less bedrock control through Reach 3 and no exposed sewer crossings, leading to a more consistent riffle/pool sequence through this reach. Reach 3 contains mostly gravel and sand, with some larger cobble deposits that appear to be coming from a lens of loose material exposed in the eroded banks. Due to the high eroded banks, there is an increased presence of down trees and woody debris in the channel through this reach. Reach 3 ends where the valley slope flattens out again, the banks get slightly lower, and the channel sinuosity increase. The slope of Reach 3 is 2.3%, with a high entrenchment ratio and moderate to high width/depth ratio that led to an F4b Rosgen stream classification.

Reach 4 begins just upstream of the second tributary, where the valley and channel slopes flatten out and the channel increases in sinuosity. The reach has several tortuous meander bends with highly eroded banks and large deposits of sediment on the inner meander bend. It appears that the majority of sediment from the wetland headcut at Reach 2, the loose bank material in Reach 3, and the erosion and headcutting in the second tributary are settling out in Reach 4. There does not appear to be a significant source of sediment supply upstream of the study area, so most of the sediment load appears to be coming from within the site. Reach 4 also has down trees and woody debris throughout the reach due to the eroded outer meander bends. The reach is mostly sand and gravel with some cobble and bedrock outcrops. There is one sewer crossing at the upstream end of Reach 4, but no casing is exposed. A 15" RCP outlets on the right bank of Reach 4 approximately halfway down the reach. On the left floodplain near the 15" RCP there is an old man-made pond. No records could be found of the pond as a stormwater facility, so it may be an old farm pond. The pond outlets to the channel through a rock weir. Reach 4 ends where CA-5 joins with the Mainstem 2, another unnamed tributary to Great Seneca Creek. The slope of Reach 4 is 1.7%, with a moderate entrenchment ratio, moderate width/depth ratio, and moderate sinuosity that led to a B4c Rosgen stream classification.

Tributary 1 (Trib 1-WC2), an ephemeral and perennial tributary to the tributary to Great Seneca Creek, begins at the outfall of a 36" RCP and extends to the confluence with CA-5. There is a hillside seep approximately halfway down the tributary that drains into the tributary channel and results in a constant flow in the downstream end of the tributary. A pedestrian bridge crosses the downstream end of the tributary. and the channel is piped through a 36" RCP. The bed of the tributary is mostly sand, gravel, and cobble. The slope of Trib 1 is 3.5%.

Tributary 2 (Trib 2- WC9), an ephemeral and intermittent tributary to the tributary to Great Seneca Creek, begins at the southern boundary of M-NCPPC property and extends to the confluence with CA-5. The upstream end of the tributary flows over exposed bedrock before transitioning to sand, gravel, and cobble. Approximately halfway down the channel there is a large headcut over the roots of a tree where the channel bed drops approximately 4 feet. Downstream of the headcut the banks are eroded and there is an exposed sewer pipe. A pedestrian footpath crosses the channel at the upstream side. The slope of Trib 2 is 6.6%. Evaluation of the tributary did not extend into the adjacent Pepco property; however, an access easement was requested in order to evaluate the need for continuing any restoration further upstream.

The Mainstem 2 /Reach 5 (WC6) is an additional unnamed perennial tributary to Mainstem 1 (WC7) that contains a drainage area of approximately 0.43 square miles and contains perennial flow. This section contains approximately 766 linear feet of existing stream. A stormwater management (SWM) facility is located upstream of the proposed work area. Tight meanders are noted throughout the reach with undercut banks and active erosion along the outer meander banks. Localized bank erosion appears to be the main source of fine sediments that are minimal throughout the reach. Significant sediment deposition is noted upstream of the SWM facility that is preventing the transport of sediment downstream. Additionally, the SWM facility significantly reduces the storm discharges in the tributary. The tributary begins in a forested area before traversing through a cleared Right of Way owned by Potomac Electric Power Company (PEPCO.) The tributary enters a wooded corridor before joining Reach 4 of Mainstem 1 tributary. Woody material is present in the channel, particularly through the PEPCO ROW where existing brush along the streambanks is extending into the channel creating debris jams. Mainstem 2 tributary contains short steep riffles that average a length of 11.4 linear feet and a slope of 4.3%. The overall channel slope is 0.97%. The Mainstem 2 has a moderate entrenchment ratio, a low width to depth ratio, and moderate sinuosity that led to a B4c Rosgen stream classification.

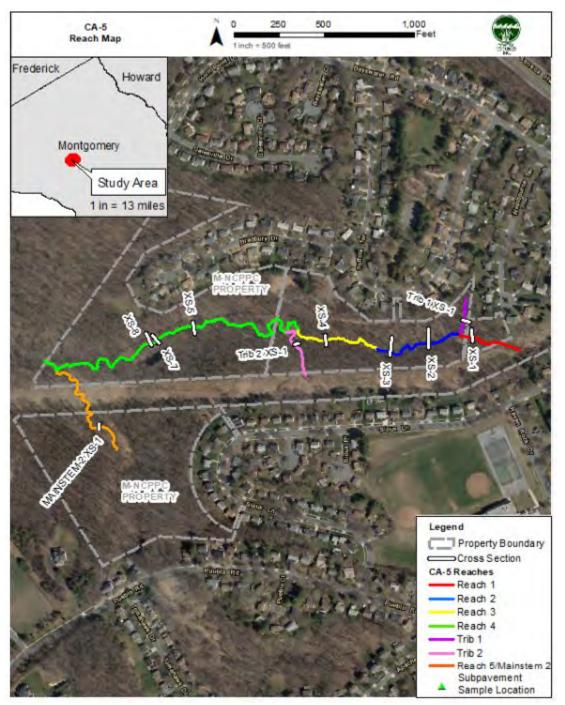


Figure 7. Reach Map

5.2 Watershed Hydrology Study

The CA-5 watershed is located within the Piedmont Physiographic province (MGS, 2008). Of the total 161.5-acre watershed, 35% is impervious surfaces (GISHydro, 2010) and 13.9% is covered in deciduous forest based on the 2010 Maryland Department of Planning (MDP) Land Use data (MDP, 2010) in GISHydro. The rest of the watershed is mostly medium density residential with some high density residential and institutional. The stream bisects two medium density residential neighborhoods, one of which includes a middle school campus.

The soils in the watershed are mostly Hydrologic Soil Group (HSG) 'B' (69%), then 'C' (27%), then 'D' (4%) with no HSG 'A' (USDA, 2017).

The basic inputs required to model the peak runoff hydrograph to the outlet of the watershed include drainage area, runoff curve number, and time of concentration. The drainage area was roughly delineated using StreamStats and then manually edited using Montgomery County 2-foot topographic data and field verifications. The time of concentration was calculated using the velocity method in Win TR-55 version 1.00.10 for Small Watershed Hydrology. The runoff curve number (RCN) was calculated using the USDA NRCS soil data (USDA, 2017) and the land use from aerial data in TR-55. Watershed characteristics are presented in **Table 1** below.

Study Area	Drainage Area, acres	Runoff Curve Number	Time of concentration,
			hr.
Upper Mainstem 1	66.1	79	0.15
Tributary 1	17.9	77	0.375
Tributary 2	23.0	80	0.374
Storm Drain 1	18	75	0.282
Storm Drain 2	3.65	75	0.15
Pond on Main Stem 1	1.81	69	0.1
Residual	32.9	75	0.285
Mainstem 1 @ below SD 2	161.5	79	0.298
Mainstem 2 to SWM Pond	225.1	77	0.369
Mainstem 2 Below Pond	37.3	70	0.230
Mainstem 2 @ Mainstem 1	262.4	70	0.425

The National Oceanic and Atmospheric Administration (NOAA) Atlas-14 was used to obtain the rainfall amounts (Bonnin, et al., 2006). The rainfall depths and distributions were obtained from GISHydro. **Table 2** shows the rainfall depths that were used for each return period and rainfall distribution. The TR-55 outputs and watershed maps are included in **Appendix D**.

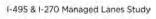
Return period (years)	Rainfall Distribution (hr)	Rainfall Depth (in.)
1	6	1.81
2	6	2.19
10	12	3.97
100	24	8.88 (90%)

Table 2: Rainfall Depths

Table 3 shows the characteristics for the two mainstem reaches of the CA-5 stream restoration site that were used to determine the Fixed Region Regression (FRR) equation discharges (Thomas, 2019).

Reach	Drainage Area, sq.mi. (acres)	Impervious Area, %
Mainstem 1	0.252 (161.5)	35
Mainstem 2	0.41 (262.4)	33.8

Table 3: Regression Equation Characteristics: Mainstem 1


TR20 was used to calibrate the watershed. Mainstem 1 was treated as a single watershed in TR20. Mainstem 2 was also treated as a single watershed and the stormwater facility was not incorporated for calibration purposes and in accordance with the Application of Hydrologic Methods in Maryland (2020, Hydrology Panel). Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) was used to model the watershed to create flow hydrographs for HEC-RAS 2D. A comparison is shown here to show that the modeling methods produce similar results. The FRR estimates, the TR20 flows and the HEC-HMS flows for Mainstem 1 watershed are presented in **Table 4**, and the results for Mainstem 2 are presented in 4. See **Appendix D** for the program outputs.

Recurrence Interval (years)	1	1.25	1.5	2	10	100
Fixed region Regression Equation Q, cfs	-	68 (104)	89 (132)	120 (173)	341 (448)	914 (1216)
(+1 Stand. Dev.) TR-20 Q, cfs	89			143	354	916
HEC-HMS Q, cfs	90			144	355	920

Table 4: Hydrologic Analysis Results: Mainstem 1

Table 5: Hydrologic Analysis Results: Mainstem 2

Recurrence Interval (years)	1	1.25	1.5	2	10	100
Fixed region Regression		94	121	164	455	1207
Equation Q, cfs (+1 Stand. Dev.)	-	(144)	(180)	(235)	(599)	(1605)
TR-20 Q Without SWM Pond, cfs	97			164	451	1226
HEC-HMS without SWM Pond Q, cfs	98			166	455	1239

OP-LANES

The TR-20 and HEC-HMS flows for Mainstem 1 are very close in values and within the Fixed Region Regression Equation calibration envelope of between the estimate and plus one standard prediction interval. The TR-20 and HEC-HMS flows for Mainstem 2 are slightly lower than the calibration envelope for the 10-year storm, but within the calibration envelope for the 2- and 100-year storms. In order to calibrate the 100-year storm for both mainstems, the 90% confidence interval for the 100-year storm rainfall depth was used and the TR-20 built-in NOAA C rainfall distribution was used rather than the GISHydro derived rainfall distribution.

After calibrating the overall watershed model, a hydrologic model using the same curve numbers and rainfall durations was developed in HEC-HMS. This model incorporated the stormwater management pond in Mainstem 2 and delineated watersheds at different outfall points for Mainstem 1. The Mainstem 1 watershed was split into six subwatersheds and the Mainstem 2 was split into two watersheds. See **Appendix D** for the drainage area maps of each watershed. Mainstem 2 was routed through an existing stormwater facility that has a weir outlet. As-builts were obtained to develop the stage storage discharge for the facility. A rainfall depth of 2.65 inches was used for the 2-year 6-hour duration return period. This differs from the calibration rainfall depth of 2.19 inches but can be considered conservative in the evaluation of the stream shears and velocities. See **Table 6** for the 2-year return peak flows at different input points. See **Appendix D** for the program output.

Study Area	2-year Return Period Peak Discharge, cfs
Upper Mainstem 1	115
Tributary 1	19.1
Tributary 2	30.0
Storm Drain 1	18.9
Storm Drain 2	4.9
Pond on Main Stem 1	1.63
Residual	34.2
Mainstem 1 @ below SD 2	198.1
Mainstem 2 to SWM Pond	241.4
Mainstem 2 Below Pond	28.3
Mainstem 2 @ Mainstem 1	85.4

Table 6: Peak Discharges for Different Locations in the Stream Network

5.3 Design Discharge

The proposed design discharge for the site is based on the field-measured bankfull dimensions of the representative design riffle (Cross Section 2) of Mainstem 1 and bankfull indicators observed throughout the reach in the longitudinal profile. Cross section 2 was chosen as the representative cross section because it was observed to be the most stable riffle throughout the project area, had relatively low banks, and was classified as a Rosgen type B channel which is the designed stream type. The field determined bankfull discharge fits within the TR-55 and FRR estimates; however, as seen in **Table 6** the TR-55 estimates, and the field observed bankfull discharge are higher than the estimates from U.S. Fish & Wildlife Service (USFWS) Regional curve for the Piedmont (McCandless, 2002). It is assumed that this is because the reaches used to create this regional curve generally had much larger drainage areas, and of the sites that had a drainage area less than 10 square miles only one site had a comparable percent

forested in the drainage area. A summary of the discharges is shown in **Table 7.** A design discharge slightly lower than the field observed bankfull discharge for the representative riffle cross section was chosen in order to ensure that storm flows regularly access the floodplain.

Location	Field Observed Bankfull Q (cfs)	USFWS Piedmont Regional Curve Q	HEC- HMS Q 1-year return period	Fixed Region Regression Equation Q, 1.25-year return period	Urban Piedmont curve, Gemmill	Design Discharge, Q
		(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
Mainstem 1	64.3	29.66	63.6*	57.97	76.74	60
Mainstem 2	47.3	44.52	9.3**	94	N/A	45

Table 7: Design Discharge Comparison

*Flow observed below Trib 2 which more accurately reflects the in-stream flow

**Flow below SWM Pond; 2-year return period flow is 85 cfs

Proposed Mainstem 2 is designed to a smaller discharge to more accurately reflect the flows downstream of the SWM Pond.

5.4 Geomorphic Assessment Data

5.4.1 Channel Planform and Morphology

Channel Planform and Morphology

An analysis of channel planform included sinuosity and radius of curvature measurements. Sinuosity was calculated by dividing stream length by valley length. Stream length was measured using the longitudinal profile stationing while the valley length was measured using Environmental Systems Research Institute (ESRI)'s ArcMap version 10.5 (ESRI, 2016). Sinuosity is summarized in **Table 8**. Reach 1 has a sinuosity of 1.26, Reach 2 has a sinuosity of 1.17, Reach 3 has a sinuosity of 1.04 and Reach 4 has a sinuosity of 1.33. Mainstem 2 tributary has a sinuosity of 1.23.

		Mainstem 2			
	Reach 1	Reach 2	Reach 3	Reach 4	Reach 5
Channel Length (ft)	297.5	556.2	488	1829	747
Valley Length (ft)	236	476	470	1353	604
Reach Slope (%)	4.9	2.6	2.3	1.7	1.0
Sinuosity	1.26	1.17	1.04	1.33	1.23

Table 8: Sinuosity

Radius of curvature was measured for several bends on the study reaches using ESRI's ArcMap version 10.5 (ESRI, 2016). The mean radius of curvature measurements for Reach 1, 2, 3, and 4 were 80 feet, 55 feet, 83 feet, and 47 feet, respectively. The mean radius of curvature for the mainstem 2 is 13.8. Radius of curvature can be expressed as a dimensionless ratio by dividing the radius measurement by bankfull width. A summary of the ratio of radius of curvature to the bankfull width by reach is summarized in T**able 9**.

Deach	Number	Rc/Wbkf			
Reach	of Bends	Mean	Minimum	Maximum	
Mainstem 1/Reach 1	3	5.87	2.51	9.12	
Mainstem 1/Reach 2	8	3.60	1.41	8.58	
Mainstem 1/Reach 3	5	5.11	1.65	9.60	
Mainstem 1/Reach 4	23	2.20	0.75	4.99	
Mainstem 2/Reach 5	17	1.23	0.89	1.90	

Table 9: Radius of Curvature

Reach Slopes

Water surface slopes for the study reaches were calculated from head of riffle to head of riffle. The data is summarized in **Table 10**. The overall water surface slope of the site was 2.1%. In existing conditions, the stream has a concave slope, with steeper slopes at the top of the reach and shallower slopes near the confluence. This appears to be due to downcutting that occurred from downstream to upstream but was hindered by the occurrence of large boulders and bedrock in the middle and upper sections of the reach.

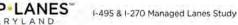
The Mainstem 2 maintains an overall slope of 0.97 %. The tributary is slightly steeper at the beginning and loses slope just before the confluence.

Reach	Slope (%)
Overall	2.1
Mainstem 1/Reach 1	4.5
Mainstem 1/Reach 2	2.4
Mainstem 1/Reach 3	2.3
Mainstem 1/Reach 4	1.5
Mainstem 2/Reach 5	1.0

Table 10: Reach Slop	pes
----------------------	-----

Riffle Lengths and Slopes

A summary of the riffle lengths and slopes is shown in **Table 11**. Of the surveyed longitudinal profile of mainstem 1, (3,144 LF), approximately 31% was riffle. The average riffle length was 12.5 feet, and the average riffle slope was 6.3%. The mainstem 2 tributary (747 LF) contains approximately 20% riffles. The average riffle length was 11.4 feet, and the average slope was 4.3%.


Table 11: Summary of Riffle Lengths and Slopes

Mainstem 1/Reach 1	Length (ft)	Ratio	Slope (%)
Mean	10.5	0.73	9.4
Minimum	2.0	0.14	2.2
Maximum	21.7	1.52	32.0

Mainstem 1/Reach 2	Length (ft)	Ratio	Slope (%)
Mean	11.0	0.75	4.6
Minimum	1.0	0.07	0.85
Maximum	29.7	2.03	10.5

Mainstem 1/Reach 3	Length (ft)	Ratio	Slope (%)
Mean	14.8	0.92	6.1
Minimum	2.0	0.12	1.3
Maximum	55.0	3.42	15.3

Mainstem 1/Reach 4	Length (ft)	Ratio	Slope (%)
Mean	13.8	0.64	5.1
Minimum	1.0	0.05	1.5
Maximum	62.3	2.87	24.0

Mainstem 2/Reach 5	Length (ft)	Ratio	Slope (%)
Mean	11.4	0.8	4.3
Minimum	3.0	0.3	1.5
Maximum	41.0	3.0	16.0

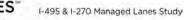
Pool Lengths, Depths, Slopes, and Spacing

A summary of the pool lengths, depths, slopes, and pool-to-pool spacing is shown in 12. Of the surveyed longitudinal profile for mainstem 1 (3,144 LF), approximately 50% was pool. The average pool length was 9.1 feet, the average maximum depth was 0.8 feet, and the average slope was 0.2%. Of the surveyed longitudinal profile (747 LF), approximately 76% were pools. The average pool length was 44.1 feet, the average depth was 2.1 feet, and the average slope was 0.42%. Pool-to-pool spacing was measured between the same locations in each pool starting at the maximum depth of pool. Compound pools, two pools that do not have a riffle in between, were treated as one pool for spacing measurements.

Mainstem 1/Reach 1	Length (ft)	Ratio	Maximum Depth (ft)	Slope (%)	Pool-to-Pool Spacing (ft)
Mean	7.0	0.49	0.7	0.0	20.4
Minimum	4.0	0.28	0.4	0.0	6.2
Maximum	13.2	0.93	1.1	4.8	80.0
Mainstem 1/Reach 2	Length (ft)	Ratio	Maximum Depth (ft)	Slope (%)	Pool-to-Pool Spacing (ft)
Mean	10.8	0.74	0.7	0.6	17.5
Minimum	1.0	0.07	0.3	0.0	5.3
Maximum	28.0	1.92	1.9	4.6	49
Mainstem 1/Reach 3	Length (ft)	Ratio	Maximum Depth (ft)	Slope (%)	Pool-to-Pool Spacing (ft)
Mean	11.5	0.71	0.6	0.0	25.2
Minimum	4.0	0.25	0.3	0.0	5.1
Maximum	25	1.55	1.78	1.4	79.6

Table 12: Summary of Pool Lengths, Depths, Slopes, and Pool to Pool Spacing

Mainstem 1/Reach 4	Length (ft)	Ratio	Maximum Depth (ft)	Slope (%)	Pool-to-Pool Spacing (ft)
Mean	17.2	0.79	1.0	0.0	33.6
Minimum	3.0	0.14	0.2	0.0	7.5
Maximum	39.5	1.82	2.5	1.0	91


Mainstem 2/Reach 5	Length (ft)	Ratio	Maximum Depth (ft)	Slope (%)	Pool-to-Pool Spacing (ft)
Mean	44.1	3.2	1.0	0.42	52.2
Minimum	19.0	1.4	2.1	0.0	1.7
Maximum	80.5	5.9	3.3	2.4	6.6

5.4.2 Bed Material Characterization

Pebble counts and a subpavement sample were collected to determine the particle size distribution of the reaches. Pebble counts were performed at each riffle cross section. Two subpavement samples were collected from the channel at cross section 2 and cross section 6 and wet sieved. Subpavement samples were collected instead of bar samples because there were not any representative point bars found at the site. The pebble count and sieve analysis results are summarized in **Table 13** and **Table 14**.

Cross sections 1-6 were riffles, while cross section 7 was a pool. Other than cross section 1, All the riffle cross sections had similar D50s of medium to coarse gravel (ranging from 14 mm-20 mm) and consisted almost entirely of gravel and sand, with some cobble present. Cross section 1 was located in Reach 1 where there was much larger material due to a bedrock outcrop that spanned most of Reach 1.

The Mainstem 2 cross section was taken through a riffle. The D50 of the Mainstem 2 cross section was 29. This was higher than Mainstem 1 apart from cross section 1 due to the absence of sediment within the tributary because of the upstream stormwater facility. No silt, clay, or sand was selected during the pebble count.

O	OP-LANES
C	MARTLAND

				R	iffle Pebl	ble Coun	ts	
		XS-1	XS-2	XS-3	XS-4	XS-5	XS-6	Mainstem 2 XS-1
	D16	10	1.2	1.2	1.3	1.2	1.2	17
Ê	D35	23	2	8.5	1.9	2	2	22
Ū.	D50	40	16	18	20	14	14	29
Particle Size (mm)	D65	66	28	37	34	25	25	41
icle	D84	110	55	65	72	48	48	60
Part	D95	220	98	90	120	74	74	97
	Silt Clay (0 - 0.062 mm)	0	1	1	0	1	1	0
	Sand (0.062 - 2mm)	0	35	31	37	35	35	0
(%	Gravel (2 - 64 mm)	63	51	51	46	56	56	87
ype (;	Cobble (64 - 256 mm)	35	13	17	17	8	8	13
Substrate Type (%)	Boulder (256 - 4096 mm)	2	0	0	0	0	0	0
Subs	Bedrock	0	0	0	0	0	0	0

Table 13: Summary of Pebble Count Data

The subpavement sample locations were chosen based on methodology from Rosgen (Rosgen, 2008). The D50 of both subpavement samples was 1.2 mm, which falls into the category of very coarse sand. No subpavement sample was taken in the Mainstem 2 tributary due to the upstream SWM facility restricting the transport of sediment downstream.

	Bulk Sample 1	Bulk Sample 2
	Particle Size (mm)	Particle Size (mm)
D16		
D35		
D50	1.2	1.2
D65	3.1	3.6
D84	16	31
D95	41	68

5.4.3 Hydraulic Variable Analysis

The representative riffle cross sections were evaluated using The Reference Reach Spreadsheet Version 4.3L (Mecklenburg, 2006) for the bankfull discharge identified by regional curve data, fixed region

regression, stream gage data, and field indicators (see Section 4.2, Watershed Hydrology for more information). All pertinent hydraulic variables were computed using flow continuity, incipient motion, and flow resistance relationships. Channel characteristics for bankfull discharge are summarized in **Table 15**. Cross section graphs are included in **Appendix B**.

		Main	stem 1		Mainstem 2
	Reach 1	Reach 2	Reach 3	Reach 4	
	XS-1	XS-2	XS-4	XS-5	Reach 5
	Riffle	Riffle	Riffle	Riffle	XS-1 Riffle
Slope (%)	4.9	2.6	2.3	1.7	0.97
Cross Sectional Area (ft ²)	11.4	13.5	16.9	17.8	12.3
Width (ft)	13.7	15.4	16.3	21.5	11.3
Max Depth (ft)	1.2	1.4	1.4	1.3	1.6
Mean Depth (ft)	0.8	0.9	1	0.8	1.1
Width/Depth Ratio	16.4	17.5	15.8	25.9	10.3
Velocity (ft/s)	5.9	5.9	5.6	4.8	3.8
Discharge (cfs)	67.3	79.7	94.1	85.7	47.3
Froude Number	1.15	1.15	1.01	0.95	0.71
Entrenchment Ratio	1.3	1.4	1	2	2.0
Width of Flood Prone Area (ft)	18.1	22	16.9	43.6	22.3
D50 (mm)	40	15	20	14	29
D84 (mm)	110	55	72	48	60
Threshold Grain Size (mm)	122	65	67	41	27
Shear Velocity (ft/s)	1.13	0.83	0.84	0.66	0.53
Shear Stress (lbs/ft ²)	2.47	1.33	1.36	0.84	0.55
Unit Stream Power (lb/ft/s)	15	8.4	8.3	4.2	2.5
Manning's Roughness Coefficient	0.049	0.036	0.039	0.035	0.036
Rosgen Channel Classification	B4a	B4	F4b	B4c	B4c

Table 15: Hydraulic Variables and Bankfull Dimensions

Based on the variables in **Table 15** and the sinuosity (Table 8), Reach 1 classifies as a B4a channel due to the moderate width/depth ratio and moderate sinuosity. Reach 2 is less steep, with similar sinuosity, entrenchment, and width depth to Reach 1, and therefore it classifies as a B4 channel. Reach 3 has a similar slope and width depth ratio to Reach 2 but is less sinuous and more entrenched, and therefore classifies as a F4b channel. Reach 4 has a flatter slope than Reaches 1-3 and is less entrenched, with a higher width/depth ratio and higher sinuosity and classifies as a B4c channel. Mainstem 2 classifies as a B4c due to a moderate entrenchment ratio and moderate sinuosity. This tributary has the lowest width to depth ratio that may be due to the undercut banks and its high max depth.

5.5 Bank Erosion Estimate

To estimate erosion rates in the project area, the Bank Assessment for Non-Point Source Consequences of Sediment (BANCS) model was used (Rosgen, 2001; Rosgen, 2006). The BANCS model consists of two commonly used bank erodibility estimation tools to predict stream bank erosion for discrete sections of streambank: the Bank Erosion Hazard Index (BEHI) and the Near Bank Stress (NBS) methods. BEHI and NBS analyses were performed on all eroding stream banks within the project reach. The BEHI methodology uses field data to determine expected erosion rates at a specific stream bank. The BEHI is computed by analyzing the following characteristics: the ratio of bank height to bankfull height, the ratio of root depth to bank height, root density, surface protection, and bank angle. NBS predicts the amount of energy distributed to a streambank, which can accelerate erosion. NBS method #1, which is based on channel pattern and depositional features, was used for this study. BEHI and NBS methods are described in the *Watershed Assessment of River Stability and Sediment Supply (WARSSS)* manual (Rosgen, 2006). Estimated bank erosion rates and the resultant pollutant removal rates will be used to estimate potential nutrient removal using the State Highway Administration worksheet that averages the results of three bank erosion rating curves.

The BEHI and NBS analysis of CA-5 returned ratings of Low to Extreme for each scored bank. These ratings were translated into estimated bank erosion rates using the erosion rating curves developed by the USFWS for Hickey Run in Washington, DC (Berg et al., 2014), USDA Forest Service for Colorado (Rosgen, 2006), and North Carolina State University for Piedmont streams (NC State Stream Restoration Program, 1989). These predictions provided a rate of expected mass wasting or surface erosion from the analyzed stream bank in feet per year. These rates are then multiplied by the area of the eroding bank to obtain an annual erosion rate, which will serve as a prediction for bank erosion rates at the study reach.

BEHI and NBS data and mapping and BANCS calculations are shown in **Appendix B**. BEHI results are summarized in **Table 16**. Approximately 80% of Reach 1 had stable banks with no quantifiable erosion. Approximately 50% of the banks in Reach 2 were eroded, 75% of the banks in Reach 3 were eroded, and 40% of the banks in Reach 4 were eroded. Approximately 43% of the banks in Mainstem 2 were eroded. The banks that were eroded mostly received BEHI ratings of Moderate, High, or Very High. The results in **Table 14**, below, shows the BEHI results for each reach. Based on the BANCS data provided in **Appendix B**, the erosion rate within the project area of the Tributary to Seneca Creek is 2,705,113.6pounds per year.

		Mainstem 1								
	Rea	ach 1	Reach 2		Reach 3		Reach 4		Reach 5	
BEHI Rating	Length of Bank (ft)	Percent of Reach (%)	Length of Bank (ft)	Percent of Reach (%)	Length of Bank (ft)	Percent of Reach (%)	Length of Bank (ft)	Percent of Reach (%)	Length of Bank (ft)	Percent of Bank (%)
Very Low	0	0%	0	0%	0	0%	0	0%	0	0%
Low	0	0%	0	0%	0	0%	37	1%	25	2%
Moderate	0	0%	75	7%	133	14%	90	2%	156	10%
High	80	13%	272	24%	144	15%	635	17%	350	23%
Very High	50	8%	171	15%	324	33%	467	13%	117	8%
Extreme	0	0%	0	0%	106	11%	126	3%	0	0%

Table 16: BEHI Summary Table

5.6 Site Constraints

The primary vertical site constraints for the project area are utility crossings and pipe outlets, and the primary horizontal constraints are sewer manholes, as well as the mature forest and valley walls. Bedrock throughout the site and pedestrian bridges and footpaths throughout the park present another constraint both vertically and horizontally. The abandoned farm pond on the left bank of the site is an additional constraint. Continued efforts will be made with the design to minimize impacts to mature trees. The majority of the proposed restoration work is within M-NCPPC property. The parcel is bordered to the south by a PEPCO parcel. CRI received access to perform geomorphic assessments through the PEPCO parcel. The survey was conducted on October 27, 2020. Upon evaluation it was determined that proposed design work would occur from the outfall of the Stormwater Management facility downstream to the confluence with Mainstem. Upon evaluation it was determined that no work could be conducted to extend Tributary 2.

5.7 Natural Resource Inventories

CRI conducted wetland and waterway delineations as well as forest stand delineations within the CA-5 study area. The complete memos for the two assessments are provided in **Appendix C**, and a summary of the existing environmental features on site is below.

5.7.1 Wetland Delineation

CRI performed the wetland delineation between March 24, March 27, and November 10, 2020. The study area consists of a buffer along the proposed restoration reach, which ranges in width from 50 to 200 feet along the stream channel and includes approximately 3,667 linear feet of an unnamed tributary to Great Seneca Creek and two tributaries. The field identified stream and wetland boundaries were flagged and labeled by CRI staff and then surveyed during the detailed topographic survey. During the field investigations, 18 waters of the U.S., including wetlands, were identified within the study area. Ten watercourses and eight wetlands were identified, two PEM wetlands and six PFO wetlands. The wetlands were clustered at the upper and lower ends of the site. The impact to these wetlands will be minimized. Grading on the floodplains where there are existing wetlands will be minimized to maintain the hydrology

and habitat provided in the floodplains. The stream design will aim to reconnect the center portion of the stream with the floodplain, creating additional floodplain wetlands in the process.

5.7.2 Forest Stand Determination

A forest stand characterization and tree survey were conducted in the study area on March 27, April 9, and November 10, 2020, in accordance with the MDNR *State Forest Conservation Technical Manual* (MDNR, 1997). The study area consists of a buffer along the proposed restoration reach, which ranges in width from 50 to 200 feet along the stream channel and includes approximately 3,667 linear feet of an unnamed tributary to Great Seneca Creek and two tributaries. All trees were measured using a diameter at breast height (DBH) tape at 4.5 feet above the ground. The species, size, and condition of all identified trees were recorded. Specimen trees, which are trees with a 30-inch DBH or greater, were tagged and numbered for future field location. A total of four forest stands (A, B, C and D) were identified within the study area. A total of 49 specimen trees were GPS'd in the field and the locations will be compared with the topographic survey to ensure the locations of the specimen trees are accurately shown on the plans.

5.7.3 Existing Invasive Species

Existing invasive species were present throughout the site. The most prevalent invasive species was Japanese Stiltgrass (*Microstegium vimineum*). It makes up a large proportion of the overall herbaceous species throughout the site. Other herbaceous invasive species that were also present within the study area included; Garlic Mustard (*Alliaria petiolate*), Wild Garlic (*Allium vineale*), and Speedwell species (*Veronica sp.*). A few species of invasive vines and shrubs were also present on site such as: Japanese Barberry (*Berberis thunbergii*), Autumn Olive (*Elaeagnus umbellate*), Wineberry (*Rubus phoenicolasius*), Japanese Honeysuckle (*Lonicera japonica*), and Multiflora Rose (*Rosa multiflora*). During construction, any invasive species with the LOD will be removed and native vegetation will be established. The Japanese Stiltgrass is prevalent throughout the valley just beyond the limits of the work and would be virtually impossible to completely eradicate on site. Native vegetation will be planted and established with the MDOT SHA standard a one-year warranty on establishment (seed) and plantings which includes treatment with in the LOD for invasive species.

6. Restoration and Uplift Opportunity Identification

The CA-5 stream restoration site was examined to identify the impaired functions of the stream and the degree of impairment. Based on the identified impaired functions, ecological uplift opportunities were evaluated in the context of the site conditions and the design constraints at the Site. Tributaries 1 & 2 are excluded from the function-based scoring because they are ephemeral channels. A comparison of existing stream functions with potential functions based on the stream functions pyramid established the quantitative uplift goals and measurable performance standards for this project. The stream functions pyramid includes five hierarchical stream functions: hydrology, hydraulics, geomorphology, physicochemical, and biology. Functions are evaluated as functioning, functioning-at-risk, and not-functioning.

At the Semi-final 65% level, the analysis includes a discussion of the existing condition for each parameter and how the potential uplift differs for the design options. After selection of the design approach, the report will be updated to include a functional uplift table clearly showing the uplift and performance standard for each project reach.

Reach	Hydrology		Hydraulics		Geomorphology		Physicochemical		Biological	
	Ex	Prop	Ex	Prop	Ex	Prop	Ex	Prop	Ex	Prop
Mainstem 1	4	7	18	35	28	66	11	14	13	20
Mainstem 2	9	9	22	36	42	64	16	16	13	21

Table 17: Function Based Scores and Ra	atings
--	--------

6.1 Hydrology

The Site's hydrology is Not-functioning or Functioning-at risk based on the Function Based Assessment. This rating is based on the high impervious cover (over 15%) in the contributing drainage area and concentrated flow paths reaching the stream. The project will not result in significant land use change, or any stormwater management practices; therefore, hydrology is to remain as Not-functioning or Functioning-at risk for the proposed condition.

6.2 Hydraulics

The bank height ratio ranges from reach to reach, however it is Not Functioning. The designs propose reducing the low bank height to improve the bank height ratio in all restored reaches. A bank height ratio below 1.2 (Functioning) is proposed in all design options.

The entrenchment ratio ranges from Functioning to Functioning-at-risk, and this ratio will be improved with the design. The width of the flood prone area will be increased to the maximum extent feasible while still preserving the adjacent forest as much as possible.

The design provides the most opportunity for uplift since the proposed bank height ratio will be between 1.0 and 1.2 and the entrenchment ratio will be approximately 1.5 or greater. In all designs the proposed uplift potential was estimated to be Functioning upon restoration.

Geomorphology is based on BEHI and NBS data, lateral stability, for Mainstem 1 was determined to be Not Functioning for the left and right banks. The lateral stability for Mainstem 2 was determined to Functioning-at-risk for the left and right banks.

Bedform diversity based on the pre-construction assessment bedform diversity is considered Functioningat-Risk for Mainstem 2 Mainstem 2 is considered Not Functioning. The data from the BANCS model indicates there is widespread lateral instability. Reducing instability is one of the primary goals, and design aims to stabilize the streambanks throughout the site. Improving bedform diversity will be achieved by increasing the percent stable riffles and adding stable substrate.

6.4 Physiochemical

Physicochemical functional uplift is not proposed in this restoration site based on the limitations of the watershed, which include a high percentage of impervious cover. The existing and proposed conditions are rated at Functioning-at risk.

6.5 Biological

Biological functional uplift is not proposed in this restoration based on the limitations of the watershed, which include a high percentage of impervious cover and the fact that the reaches begin at pipe outfalls. The existing and proposed conditions are rated as Functioning-at risk. Some increases in score will be obtained through the addition of in-channel substrate (gravels, logs, etc.). However, biology was not a goal of the design.

Streams Functional Pyramid Category: Hydraulic							
Goal	Parameter	Performance Standard	Measurement Method				
Floodplain reconnection	Floodplain connectivity	Entrenchment Ratio, Bank Height Ratio	Cross-Section				
	Streams Functional Pyramid Category: Geomorphology						
Goal	Parameter	Performance Standard	Measurement Method				
Channel stability	Vertical/Lateral migration	Stream bed/bank stability	Longitudinal Profile/BANCS				
Stabilize stream bed	Bedform Diversity	Increase in percent stable riffles from pre- to post- restoration	Quantify percent of stable riffles				

Table 18: Function Based Restoration Goals

7. Design Approach

7.1 Project Goals

The CA-5 stream restoration efforts consist of the CA-5 Mainstem 1, CA-5 Mainstem 2, and two ephemeral tributaries. The goals of the stream restoration include the following:

- Provide 3,079 LF of stream mitigation, providing 721 functional feet of mitigation credit
- Increase floodplain connection
- Provide a stable channel design
- Increase bank stability
- Stabilize groundwater seep and tributary headcut channels
- Minimize the impact to adjacent trees and other natural resources
- Provide consistent unit stream power to convey sediment through the stream reach
- Stabilize the existing pond outlet and lower the overall pond elevation to create a functioning wetland habitat.
- Provide diverse habitat for wildlife and other aquatic species

7.2 Stream Restoration Approach

The restoration of the CA-5 stream restoration site begins just upstream of the pedestrian bridge, at the beginning of evaluation Reach 2, and continues downstream just over 2400 LF to the confluence at the end of the site. Restoration of Tributary 2 extends to the M-NCPPC property line and multiple smaller headcuts along the left and right banks is also proposed. The outlet from the farm pond along the left bank near the end of the site will be lowered, dropping the surface elevation of the water in the pond, reducing the overall hazard.

The Mainstem 1 channel is designed with stable dimension, pattern, and profile in order to tie-in to existing stable channel bed features at the upstream and downstream ends of the restoration. The proposed channel design is based on a Rosgen type B channel. The intent of the design is to reduce shear stresses within the channel and access the limited floodplain surface during high flow events to keep shear stress below the critical shear stress threshold of the substrate. The overall size of the floodplain will be limited to avoid major earthwork and minimize impacts to existing trees and natural resources. Proposed channel bed features such as Riffle, Run, Pool and Glide will provide stable epifaunal substrate and create diverse in-stream habitat. The riffle and run features will be stabilized using rock and log structures. Energy dissipation will be achieved mainly through drops and hardened structures within the channel due to the confined floodplain. The existing conditions in the stable reaches of the channel suggest that this channel is transporting the majority of the fine sediments to the downstream reaches. Areas of instability are occurring where sinuosity has increased, and fine sediments are being deposited within the channel. The proposed design will establish a more consistent slope throughout the channel. The riffle slopes vary from 3.8-4.5%. This will stabilize the stream unit power and provide consistent sediment transport capacity throughout the channel. The existing overall profile shows a concave slope with Reaches 2 and 3 having higher slopes and Reach 4 having a relatively flat slope. The consistent slope will also raise the channel in Reaches 2, 3, and the upstream section of reach 4. This will provide additional protection to sanitary sewer crossings and help reconnect the channel to the existing floodplain at higher flows. The existing utilities are shown with the approximate elevations and locations. Utility test pits will be performed prior to the

next design phase to verify the elevations and locations of the sewer and water crossings. By raising the channel extensive floodplain grading will be minimized while keeping bank heights low. **Appendix E** includes design documentation used to support the proposed stream designs. Proposed Riffle Grade Control structures and other log and rock in-stream structures are proposed in the transitions between meanders will provide grade control and protect the designed channel from vertical degradation.

At the downstream end of the site, the outlet of the farm pond will be lowered by about 1.5' and a stable weir/step pool is proposed to stabilize the outlet. A laser level survey of the existing conditions of the pond showed that the pond depth was consistently 2.0' deep. Therefore, in order to reduce the hazard and create a more sustainable wetland habitat, the outlet of the pond will be lowered by 1.5' and the area will be planted with native wetland vegetation. Once the outlet is lowered, the hazard of a deep pool in the park will be minimized and the property owner request to make the pond more of a functioning wetland/vernal pool will be achieved.

Tributary 1 at the upstream end of the site will be stabilized downstream of the pedestrian crossing. A rock cascade structure is proposed to provide a stable transition to the main channel. The upstream section of the channel is lined with riprap and does not require much stabilization. A plunge pool is proposed to stabilize the pipe outfall at the top of the reach.

Tributary 2 will also be stabilized. The tributary will be realigned at the downstream end to access an abandoned channel meander, and to provide a more stable tie in angle to the mainstem. The realigned channel will cross the now exposed sewer line approximately perpendicular and will tie into the main channel within a pool feature. The channel has been raised and rock features are proposed in the channel downstream of the footpath crossing to protect the existing sewer. Upstream of the crossing there is exposed bedrock and lower banks. Since this area is somewhat stable and unlikely to show significant uplift from any major disturbance, it will remain as-is. The Tributary 2 channel is designed to convey the predicted 2-year storm from TR-55.

The Mainstem 2 channel design approach is similar to Mainstem 1. A large existing stormwater management structure is located at the upstream end of Mainstem 2 that attenuates storm flows, therefore the proposed channel was sized to the 2-year discharge from the structure rather than the 2year discharge from the stream hydrology. The Mainstem 2 proposed channel is designed with stable dimension, pattern, and profile in order to tie-in to existing stable channel bed features at the upstream end of the restoration and the proposed Mainstem 1 channel at the downstream end of the restoration. The proposed channel design is based on a Rosgen type B channel. The intent of the design is to reduce shear stresses within the channel and access the limited floodplain surface during high flow events to keep shear stress below the critical shear stress threshold of the substrate. The overall size of the floodplain will be limited to avoid major earthwork and minimize impacts to existing trees and natural resources. Proposed channel bed features such as Riffle, Run, Pool and Glide will provide stable epifaunal substrate and create diverse in-stream habitat. The riffle and run features will be stabilized using rock and log structures. Energy dissipation will be achieved mainly through drops and hardened structures within the channel due to the confined floodplain. A stream crossing will be provided where the channel flows through the PEPCO ROW, and potential for increased floodplain wetland development in the PEPCO ROW will be minimized. Areas of instability are occurring where sinuosity has increased due to the increase in slope from the hardened upstream elevation of the stormwater structure. The proposed design will raise the channel to provide floodplain access and provide stable drop structures to meet the downstream

elevation of Mainstem 1. The riffle slopes vary from 1.2%-2.75%. Shallow riffles are proposed at the upstream end of the channel to raise the channel bed. Steeper riffles with rock drop structures are proposed at the downstream end of the channel to stably drop the channel to meet the Mainstem 1 elevation at the confluence. Due to the stormwater management structure at the upstream end of the channel, sediment transport and fish passage are not a major design consideration. Stone toe will be used to protect adjacent utilities. The existing utilities are shown with the approximate elevations and locations. Utility test pits will be performed prior to the next design phase to verify the elevations and locations of the sewer and water lines in the work area. By raising the channel extensive floodplain grading will be minimized while keeping bank heights low. **Appendix E** includes design documentation used to support the proposed stream designs. Proposed Riffle Grade Control structures and other rock in-stream structures are proposed in the transitions between meanders will provide grade control and protect the designed channel from vertical degradation.

The channel alignments were developed by examining valley slope and width, existing land constraints, and expected flood flow pattern. A longitudinal profile was created along the proposed alignment with riffles along straight portions of the planform and pools at the bends. The channel profiles are designed to have an alternating riffle-pool sequence to create varying instream habitats. Nearly all of the water surface elevation drop in the relocated stream channels occurs in riffle reaches, rather than in pools, which were designed to be nearly flat. The proposed thalweg elevations of the longitudinal profile at the upstream and downstream tie-in locations matches the existing grades. The proposed channel cross section design is based on the existing bankfull dimensions of the representative cross sections. **Table 19** provides a summary of the proposed typical riffle cross section dimensions.

Design Parameter	Mainstem 1	Mainstem 2
Drainage Area (Mi ²)	0.25	0.43
Discharge (cfs)	59	45.4
Cross-Sectional Area (ft ²)	12.0	14.01
Width (ft)	14.7	15.0
Mean Depth (ft)	0.82	0.94
Max. Depth (ft)	1.10	1.22
Width/Depth Ratio	18.0	16.0
Hydraulic Radius (ft)	0.78	1.03
Proposed Riffle Slopes (%)	3.8-4.5	1.2-2.75

Table 19: CA-5 Stream Restoration Site Mainstem 1 & Mainstem 2 Proposed Riffle Dimensions

7.2.1 Sediment Competency

Sediment competency is the ability of a stream to mobilize bed sediments, specifically the largest particle made available from the immediate upstream sediment supply. Competency is an important factor for proposed channel design as it helps determine channel dimensions necessary to maintain sediment transport conditions and prevent excessive aggradation.

Sediment competence was calculated using the methodology outlined by Part 654, Chapter 11, of the Stream Restoration Design National Engineering Handbook (NEH, 2007). First, the average Bankfull Shear Stress (τ_c , lb/ft²) was calculated for the estimated hydraulic dimensions of the proposed channels where:

$\tau_c = gRS$

The median diameter of the riffle bed, D_{50} , was set to the proposed D50 from the Riffle Grade Control material (See Section 5.9). The ratios for D_{50}/D_{50}^{2} and D_{max}/D_{50} were calculated where:

 D_{50}^{*} = the median diameter from the bar sample

D_{max} = largest particle from the bar sample (or the subpavement sample)

 D_{50} = median diameter of the riffle bed (from 100 count in the riffle or the pavement sample)

Dimensional Shear Stress, or the average Bankfull Shear Stress, was used in the following equations to determine the stable channel slope and bankfull depth:

$$d = \tau/\gamma S$$
$$S = \tau/\gamma d$$

Where, d= bankfull depth, S= bankfull slope, and γ = specific weight of water (62.4).

The results of the required depth and slope based on the maximum shear stress were compared to the design hydraulic conditions. Both the calculated hydraulic conditions and the proposed channel dimensions were adjusted and solved iteratively until the channel dimensions and slope were deemed to be stable, that is, where the calculated bankfull depth and bankfull slope were within at least 5 percent of the proposed bankfull depth and slope. The completed competence worksheet can be found in **Appendix D**. **Table 20**, below, shows a comparison of the required bankfull slope and depth calculated using the critical dimensionless shear stress and the proposed conditions.

Entrainment calculations were not completed for Mainstem 2 tributary due to the upstream SWM facility. No point bars or channel bars were noted below in the tributary. The proposed substrate material in the Mainstem 2 tributary will be sized accordingly to prevent the substrate from moving since it is not receiving a stable source of material from upstream. Additionally, entrainment calculations are based on the bankfull discharge. Entrainment calculations would not be suitable to evaluate the Mainstem 2 tributary due to the undersized design discharge of 45.3 cfs being used to size the channel.

Table 20: Comparison of Required Bankfull Channel Dimensions

from Entrainment Calculations vs Proposed Channel Dimensions

	Required Bankfull Conditions	Proposed Bankfull Conditions	Percent Difference (%)
Slope (ft/ft)	0.0204	0.0209	2.45
Depth (ft)	0.80	0.82	2.5

Below are some of the benefits of the restoration/relocation:

- Improves stream stability of the designed sections by reducing bank erosion and bed degradation
- Realignment addresses unstable geometry observed in Reach 4 and provides stable connection to the existing channel to support the unobstructed and efficient conveyance of the flow
- Increase access to the existing floodplain by raising the channel in parts of the reach.
- Improves water quality by reducing bank erosion and increasing the potential for de-nitrification to occur throughout the floodplain.
- Stabilize headcuts and wetland seep channels
- Stabilize and protect existing utilities that cross and/or run adjacent to the stream.
- Lower the surface water level in the existing pond and provide a stable outlet into the stream.
- Improves aquatic and terrestrial riparian habitat
- Reduce non-point source pollution, including sediment, nutrient, and thermal pollution.

7.3 HEC-RAS Modeling

7.3.1 HEC-RAS Methods

Hydraulic analysis was performed using the US Army Corps of Engineers HEC-RAS (Hydraulic Engineering Center River Analysis System) computer program, version 6.1.0 (USACE, 2021). HEC RAS 2D was used with a surveyed digital terrain model (DTM) for the existing terrain and a drafted DTM for the proposed terrain. Montgomery County land use data was used to define the base Manning's n coefficient. Additional Manning's 'n' regions were added to the model to define the existing and proposed conditions more accurately. **Table 21** shows Manning's 'n' values that were used in the model. The storm hydrographs from HEC-HMS for the two-, ten-year and 100-year recurrence intervals were used as the upstream boundary conditions in four locations and normal depth was used for the downstream boundary condition. The four locations were Upper Mainstem 1, Tributary 1, Tributary 2, and Mainstem 2. There were two additional hydrographs added into the model for Mainstem 1: Stormdrain 1 and Stormdrain 2. These hydrographs are introduced as internal boundaries at the outlet of the storm drains. Please see Appendix D for a schematic.

Existing and proposed models were developed. The model was calibrated by comparing the HEC-HMS flows with the sampled flows in the HEC-RAS model at the downstream end. For example, the 2-year flow is towards the downstream end of the HEC-RAS model is 158 cfs for Mainstem 1. The 2-year flow in the HEC HMS model at this point is 143 cfs. The 2-year flow in the regression equation at this point is 120 cfs. These values are close enough to consider the HEC-RAS model to be a relatively good model of what is occurring in the real world.

The Manning roughness coefficient is an estimate of resistance to flow in a channel. The selection of a reasonable value is significant to the accuracy of the computed water surface profiles. Factors that can affect roughness include bed material, vegetation, channel irregularities, obstructions, and channel alignment. The model was run in the unsteady flow regime.

	-
Land use	Manning's n
Existing stream channel	0.036
Proposed stream channel	0.045
Forested	0.13
Residential	0.07

Table 21: Manning's 'n' Values used in HEC-RAS Modeling

7.3.2 HEC-RAS Results

HEC-RAS model outputs were examined to determine any changes in velocity and shear stress at the 2and 10- year discharges from existing to proposed conditions. The 100-year inundation boundary for the existing and proposed conditions were also compared. The highest shear stress and velocity values were determined for the proposed condition. The stations where the shear or velocity was greater than the permissible velocity for the material proposed were considered "hot" spots. These spots will be treated with larger rock to stabilize the stream. The table below shows the permissible shear and velocity ranges for different types of material (Fischenich, 2001).

Table 22: Permissible Shear and Velocity for Material Types

Lining Material	Shear, psf	Velocity, fps
Natural Channel	2	4.5
Vegetated Coir Mat	4-8	9.5
Rock 9 in d50 (Class I)	3.8	7-11
Rock 18 in. d50 (Class II)	7.6	12-16
Rock 24 in. d50 (Class III)	10.1	14-18

The shear stresses and velocities were evaluated at the time step that showed the highest shear stress and velocity. **Table 23** below shows the time steps used for each storm.

Table 23: HEC RAS 2D Timesteps

Storm	Timestep
2-yr	3:20
10-yr	6:20

The proposed stream network alignment is drastically different than the existing stream network. This makes a side-by-side comparison difficult. Where the stream may have been a pool in the existing condition it could be a riffle in the proposed. Where it was once was on the inside of a meander now it may be on the outside of a meander. It is proposed to raise up the channel bed and tie into the existing condition on the upstream and downstream ends to remove the concave shape of the existing profile. This will also affect the ability to compare the existing and proposed conditions.

Velocity

A visual assessment of the model results was used to determine the "hot" spots. Profile lines drawn along the proposed alignment and the tops of banks were used to approximate the station of the higher velocity values. The higher velocity values are located on the proposed alignment.

The proposed condition model only showed ten stations over 7 fps for the 10-year recurrence interval on Mainstem 1. For Mainstem 2 there was no stations that had velocities over 7 fps. See the maps in Appendix D to compare the velocity in the existing condition and the proposed condition. **Table 24** shows stations on mainstem 1 where the velocity is above 7 ft/s for the 10-year recurrence interval.

Tributary	River Station	10-year Velocity, fps
Mainstem 1	140	7.21
	653	7.08
	708	7.04
	878	7.06
	928	7.17
	1426	7.10
	1631	7.92
	1661	7.09
	2606	8.35
	2606 left	7.34

Table 24: HEC RAS Velocities for the Proposed Condition

The greatest proposed velocity from the observed cross sections is the 10-yr storm at station 26+06 with a velocity of 8.35 fps. This cross section is at the outlet of the site and the existing velocity is higher at 8.89 fps. All other stations listed above will have rock riprap protection of at least class I with a permissible velocity of 7 to 11 fps. Refer to maps in Appendix D.

Shear Stress

Shear stress values were determined similarly to velocity values: visual assessment and profiles along the alignment and tops of banks. The higher shear stress values are located on the tops of the banks. The profiles can be found in Appendix D. The proposed condition model shows one station on the left bank and two on the right bank for the 10-year storm with a shear stress over 8 lb/sf. The permissible shear stress for vegetated coir mat is 4-8 lb/sf. **Table 25** shows stations where the shear stress is above the permissible shear stress for vegetated coir matting for the 10-year storm unless indicated otherwise. NOTE: Stations are approximate because they are taken from the top of bank profile line. They may not match the alignment stationing.

Tributary	River Station	10-year Storm Shear Stress (lb/sf)
Mainstem 1	68 left	12.83
	1426 right	8.42
	1675 right	10.68

Table 25: HEC RAS Shear Stress for Proposed Conditions

The highest proposed shear stress observed was 12.83 lb/sf for the 10-yr storm at station 0+68 on the left bank of Mainstem 1. This cross section is located on the inside curve of a meander just above the pedestrian bridge. The second highest shear is at station 16+75 on the right bank. This shear is on a riffle grade control and will be protected with rock riprap. Refer to maps in Appendix D.

Table 26 summarizes the HEC-RAS cross sections where shear stress is above 8 psf in the proposed condition and explains how the design will withstand that shear pressure. All stations are Mainstem 1 unless indicated.

River Station	Variable of Concern	Design Justification
68 left	Shear Stress is above 8 psf	The high shear area is located upstream of the existing pedestrian bridge. There is existing riprap here that is Class II or larger. The left bank will be the location of the boulder arm of a rock j-hook. The boulder arm will be comprised of imbricated rock which can withstand the increase in shear.
1426 right	Shear Stress is above 8 psf	The high shear area is located on the right bank of a riffle and the bank will be treated with stone toe to withstand the shear stress.
1675 right	Shear Stress is above 8 psf	The high shear area is located on the right bank of a riffle which will be treated with stone toe to withstand the shear stress.

Table 26: Design Justification

Channel Stability

In addition to the evaluations discussed above, 2D HEC-RAS was used to model the highest shear stresses and velocities that may be experienced in the proposed channel in order to evaluate the stability of the designed channel bed. To determine the highest shear stress and velocities in the channel a profile along the proposed alignment was evaluated. The plan view showing the profile along the proposed alignment, as well as corresponding graphs showing the shear stresses and velocities for the 2- and 10-year return intervals, are shown in **Appendix D**.

The profile along the proposed alignment for Mainstem 1 and 2 was evaluated to find the maximum shear stresses and velocities occurring during the 2- and 10-year storm event. Two outliers on both ends of the

Mainstem 1 and 2 alignments have been excluded. The following table shows the maximum shear stress and velocity for the 2-year and the 10-year storm events.

Tributary	River Station	2-year Storm Shear Stress (lb/sf)	10-year Storm Shear Stress (lb/sf)	2-year Storm Velocity (ft/s)	10-year Storm Velocity (ft/s)
Mainstem 1	1636	1.82 (708)	2.52	6.24	7.92 (1631)
Mainstem 2	515	0.91	1.73	3.81	6.87

Table 27: Maximum Shear Stress and Velocity along Alignment

The maximum shear stress for the 2-year storm event was used to determine the D_{50} for the riffle grade control mix, as described in **Section 7.4** below. Since the stream is being relocated and is directly adjacent to infrastructure, the D_{50} of the riffle mix was designed to not mobilize during a 2-year storm event. Additionally, the maximum shear stress and velocity for the 10-year storm event was used to evaluate the proposed riffle grade control material for long-term stability, as described in **Section 7.4**.

100 Year Water Surface Elevation

A comparison was made between the existing and proposed 100-year water surface elevation. The map can be found in **Appendix D**. For Mainstem 1 the proposed condition is slightly higher in some locations in elevation than the existing condition, but all increased flooding is within M-NCPPC property. For Mainstem 2, the proposed 100-year water surface is slightly lower than the existing 100-year water surface except for at the upstream end.

7.3.3 HEC-RAS Conclusions

The stream restoration effort is designed to reduce bank erosion and in-stream sedimentation throughout the project and provide improved storm relief within the floodplain. The hydrologic and hydraulic analyses completed for the project reach describes the hydraulic effects that occur from the proposed design. The resultant hydraulic variables computed within the proposed model show that the proposed design will manage changes to velocity and shear stresses within the design reach to provide a stable stream reach, while remaining within permissible design ranges.

7.4 Rock Sizing

As described in **Section 7.3**, the 2D HEC-RAS model was used to determine the maximum shear stress and velocity along the alignments of the proposed channel for the 2- and 10-year storm event. The maximum shear stress and velocity was evaluated at the thalweg because that is where the rock is being placed. Rock sizing was designed for the 2-year recurrence interval. The 10-year storm was evaluated.

Since the stream is being relocated and is directly adjacent to infrastructure, a safety factor was applied to the maximum shear stress from the 2-year storm event and used to determine the maximum designed shear stress, or the critical shear stress. A safety factor of 1.5 was applied to the 2-year maximum shear stress and velocity from the HEC RAS 2D model to obtain the maximum design shear stress and velocity as shown in the table below. The 10-year storm maximum shear stress for mainstem 1 (2.52) is within the

range of the 2-year maximum shear stress (1.82) and the 2-year shear stress times the safety factor (2.73). The rock will be sized for Mainstem 1 which has larger values for shear and velocity than Mainstem 2. All of the 10-year storm values fall within the safety factor envelope.

	2-year Storm Shear Stress (Ib/sf)	Design Shear Stress (Ib/sf)	Permissible Shear Stress	2-year Storm Velocity (ft/s)	Design Storm Velocity (ft/s)	Permissible Velocity
Mainstem 1	1.82	2.73	3.8	6.24	9.36	7-11
Mainstem 2	0.91	1.37	3.8	3.85	5.72	7-11

Table 28: Design Shear Stress and Velocity along Alignment

A standard MDOT SHA Riprap size will be washed in with salvaged or furnished natural channel material to create a well-mixed matrix within the Riffle Grade Controls. The riprap size is designed to withstand the maximum design shear stress and velocities predicted by the HEC RAS 2D model. The maximum design shear stress was compared to the Permissible Shear and Velocity for Selected Lining Materials (Fischenich, 2001). MDOT SHA Class I riprap (with approximately a 9" d50) has a maximum permissible shear stress of 3.8 psf, and a maximum permissible velocity of 7-11 fps. The Riffle Grade Control Mix will resist the forces acting on the surface by the water for the 2-year storm with a factor of safety.

All other rock structures are over-designed with rock/boulder sizes that will withstand the maximum shear/velocity in the channel up to the 10-year storm. The channel is designed for flows above the 10-year storm to access the floodplain. Therefore, flows above the 10-year storm shear and velocity are no longer an issue in the channel.

7.5 Instream Structures

A few in-stream structures are proposed which will be used to achieve the design goals. Wherever possible, the structures will be made of, or incorporate, riprap that was previously placed within the channel, and rootwads and/or logs from the site. There are multiple locations along the stream channel where riprap had been placed throughout the years in an attempt to stabilize the banks near sanitary sewer assets and other park assets such as bridges or walking paths. When work is being completed in areas where riprap has been placed, every effort will be taken to reuse the existing material. Along the same lines, the stream is located within a forested area, and grading outside of the existing stream channel will result in the removal of trees. Wherever possible, trees being removed on site will be used in structures.

Instream structures such as Log Rollers, Rock J-hooks, Rock Sills, and Boulder Cascades will be utilized to provide grade control to prevent any potential downcutting. The wood introduces carbon to the stream for nutrient retention and processing. These will create permanent grade controls that will withstand large storms.

Stone toe and Log Toe structures will be added along outside meander bends to provide additional bank protection in areas of high velocity and shear stress. The stone/logs will serve as bank protection to ensure bank stability and reduce erosion.

Riffle Grade Controls are proposed to provide permanent grade control at riffle bed features, increase flow diversity and withstand large storms. Since the stream is confined with no wide floodplain to deposit excess sediment onto, the system will be designed to continue to move some sediment through the narrow valley. In many instances, Riffle Grade Control structures will be coupled with drop structures to make up grade and provide flow diversity.

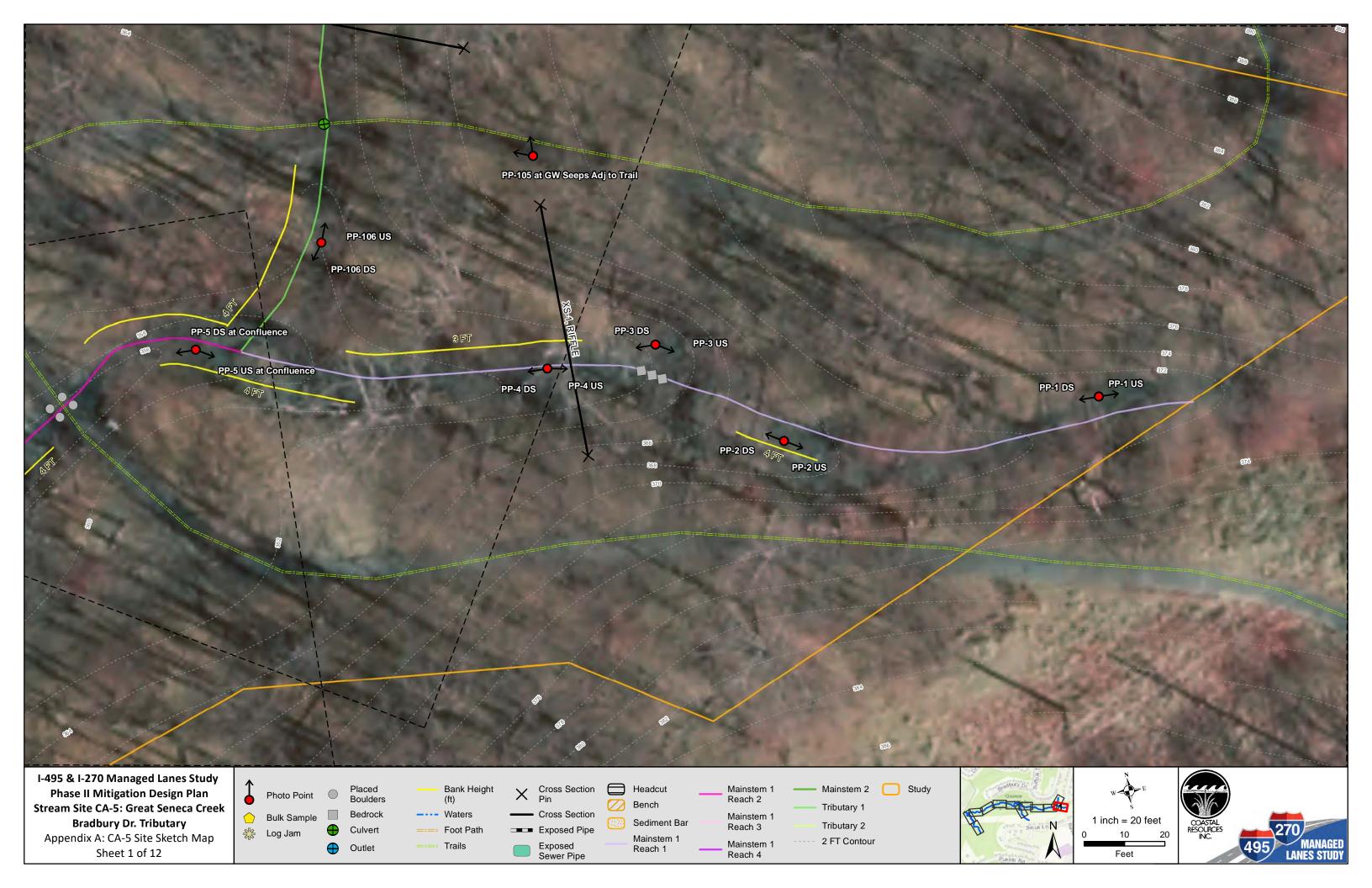
Oxbow wetlands are proposed in some areas where the existing channel is abandoned. The wetlands will have large woody debris (LWD) installed to provide additional habitat.

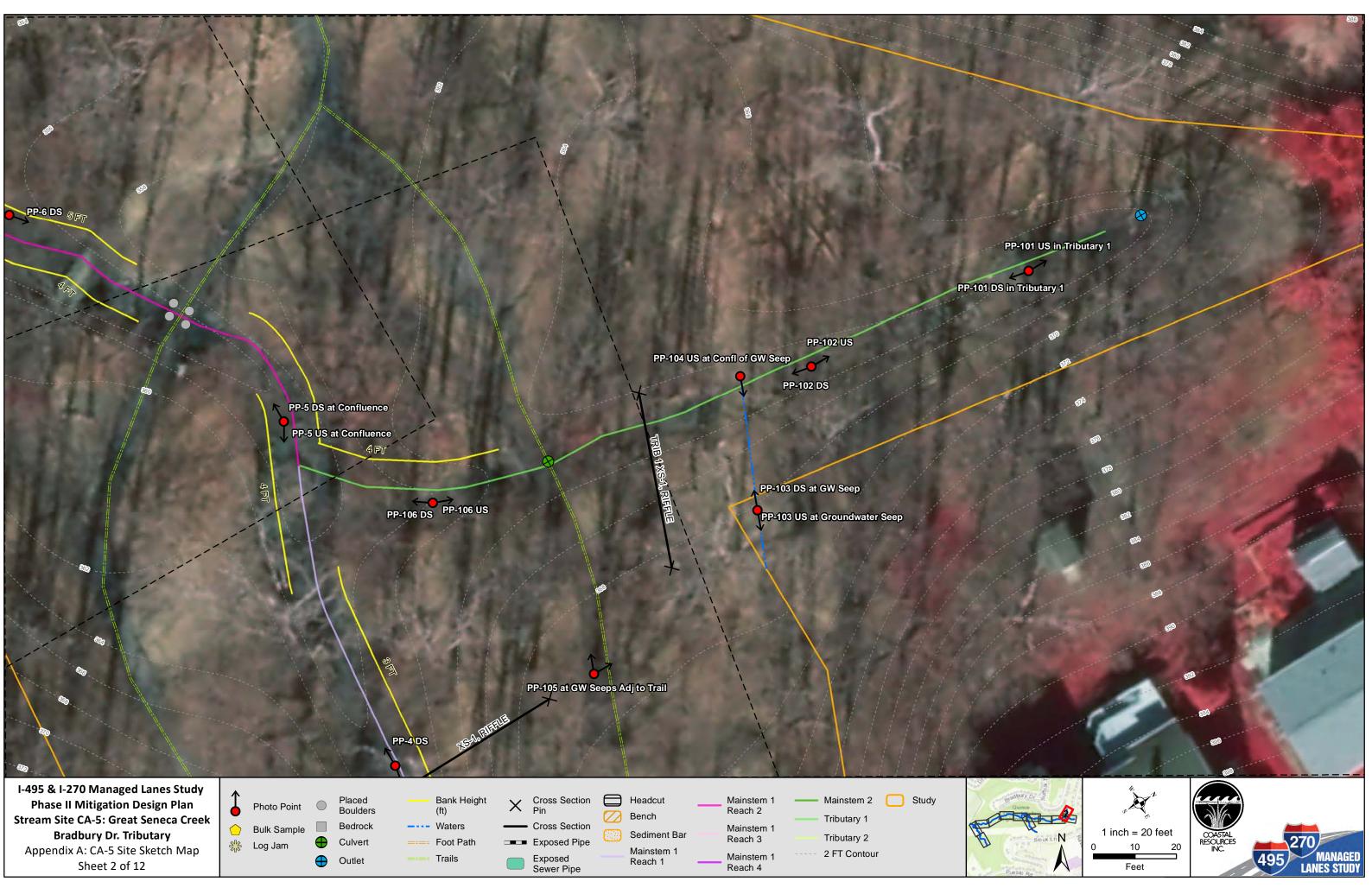
7.6 Landscaping Design

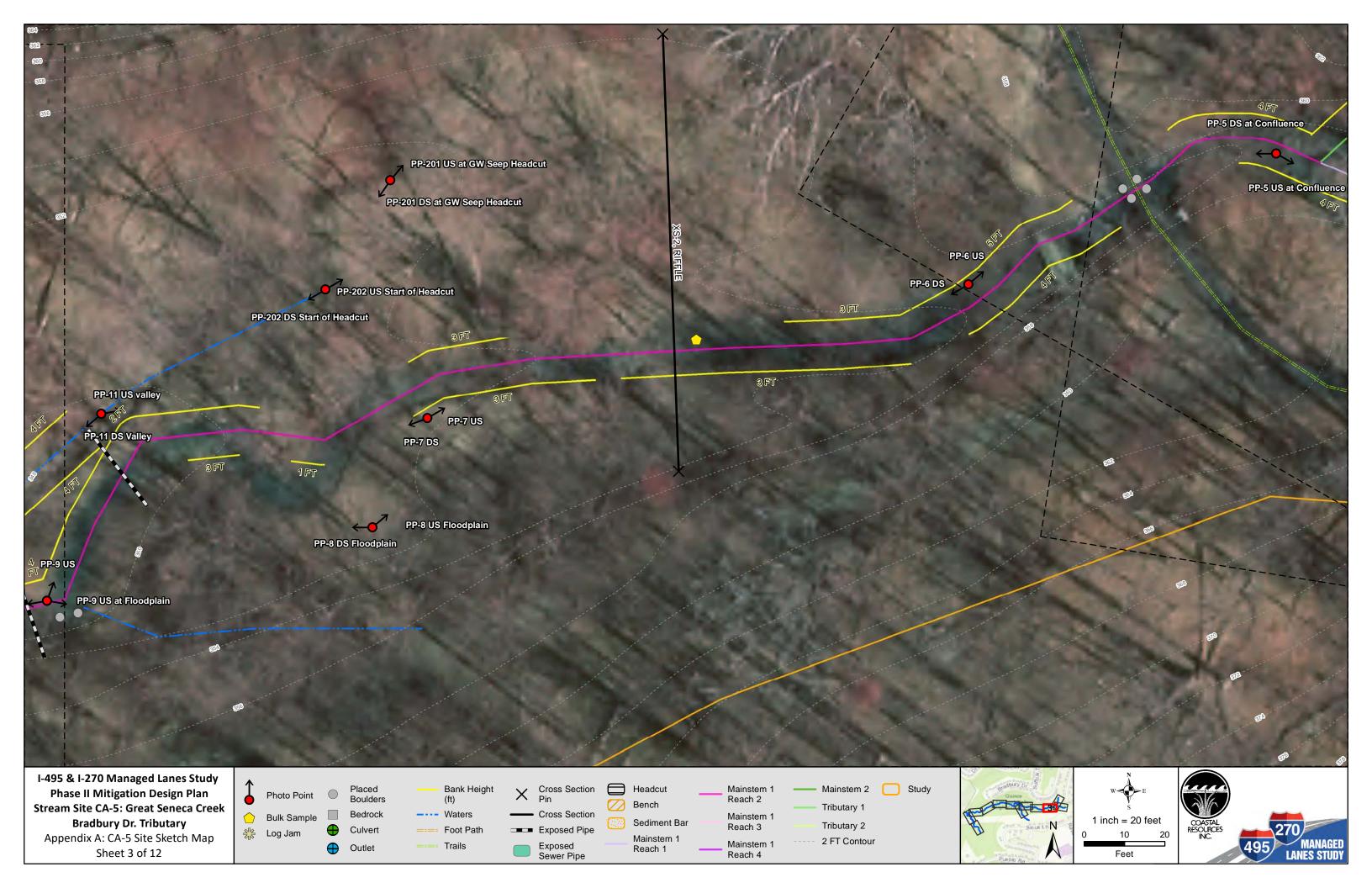
The stream restoration landscaping plans are included in the design plans. The proposed landscaping plans include six separate landscaping zones; Riparian Planting (lowland meadow establishment), Riparian shrub planting (lowland meadow establishment), Live Stake Planting (lowland meadow establishment), Oxbow wetland (wet meadow establishment), Disturbed PFO (riparian plantings and wet meadow establishment), and Turfgrass Establishment. Live stakes will be installed on the outside meanders and adjacent to straight sections along the slope of the stream bank, from bankfull to just above normal base flow. Riparian plantings will be installed adjacent to the stream channel in areas that are void of natural vegetation or have been impacted by restoration activities. Every effort will be made to save as many large trees as possible which should keep some of the original canopy cover. Trees to be removed are indicated with "X's" on the landscaping plans. The plant species are listed in the planting schedules and included in the design plans; the planting is designed in accordance with the Forest Conservation Act (FCA) Section 5-1601(II) (2). Forest impacts were avoided and minimized, and the Landscape Plan proposes to plant an equivalent number of trees to the number removed by the project on-site. Lowland meadow establishment seed mix will be applied to the areas where lives stakes, or riparian reforestation have been installed. Wet meadow establishment seed mix and herbaceous wetland plantings will be applied in the proposed floodplain depression areas, as shown on the plans. Turfgrass will be established in the areas of existing grass needed for access and stockpile.

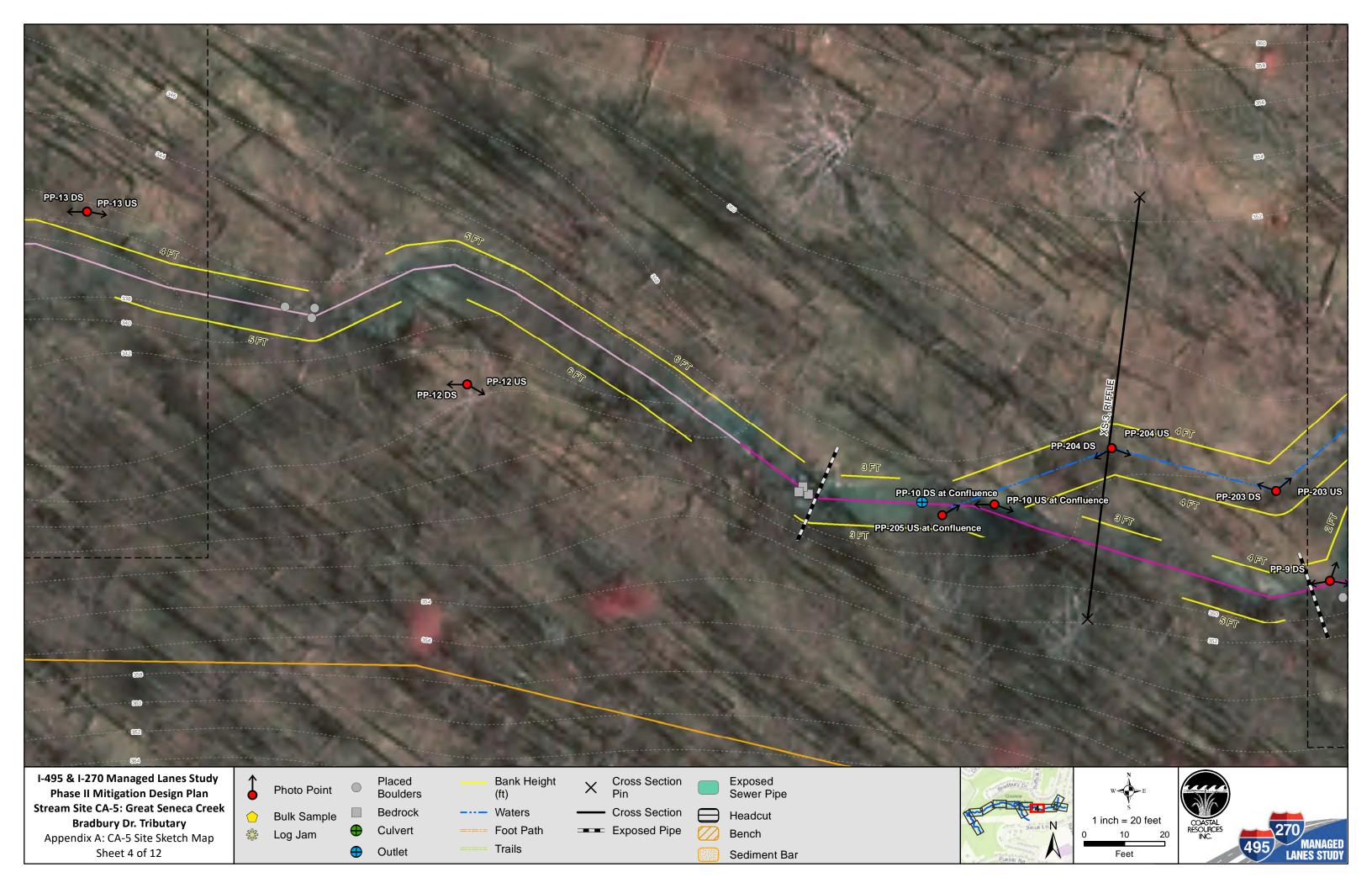
8. References

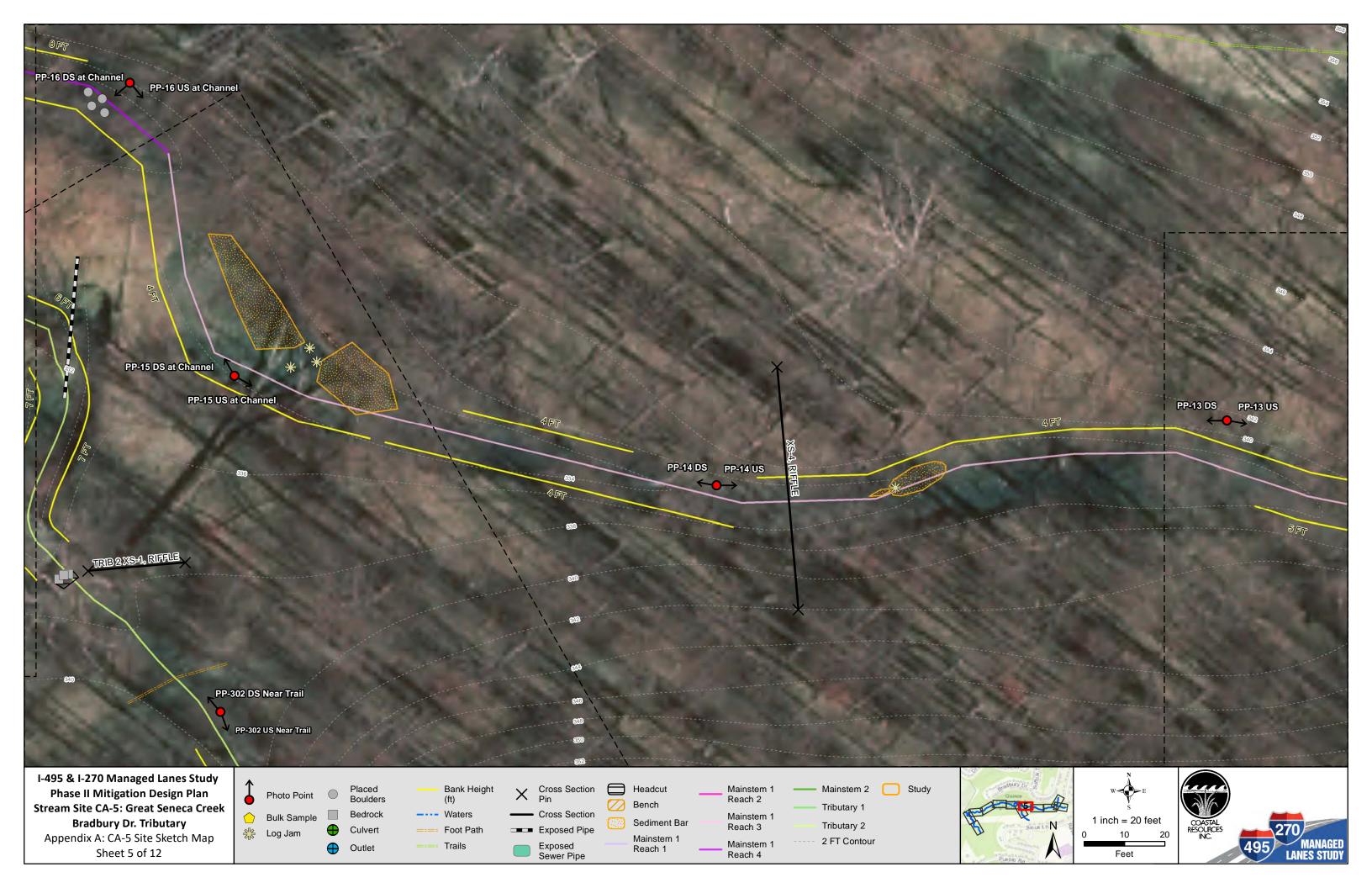
- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C. 339 pp.
- City History, Gaithersburg, About Us. Available Online at: <u>https://www.gaithersburgmd.gov/about-us/city-history</u>
- ESRI. 2016. ArcGIS Desktop Release 10.5. Redlands, CA.
- Fischenich, Craig. 2001. Stability Thresholds for Stream Restoration Materials. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-29). U.S. Army Engineer Research and Development. Vicksburg, MS.
- GISHydro2000, 2010. University of Maryland Department of Civil and Environmental Engineering and the Maryland State Highway Administration.

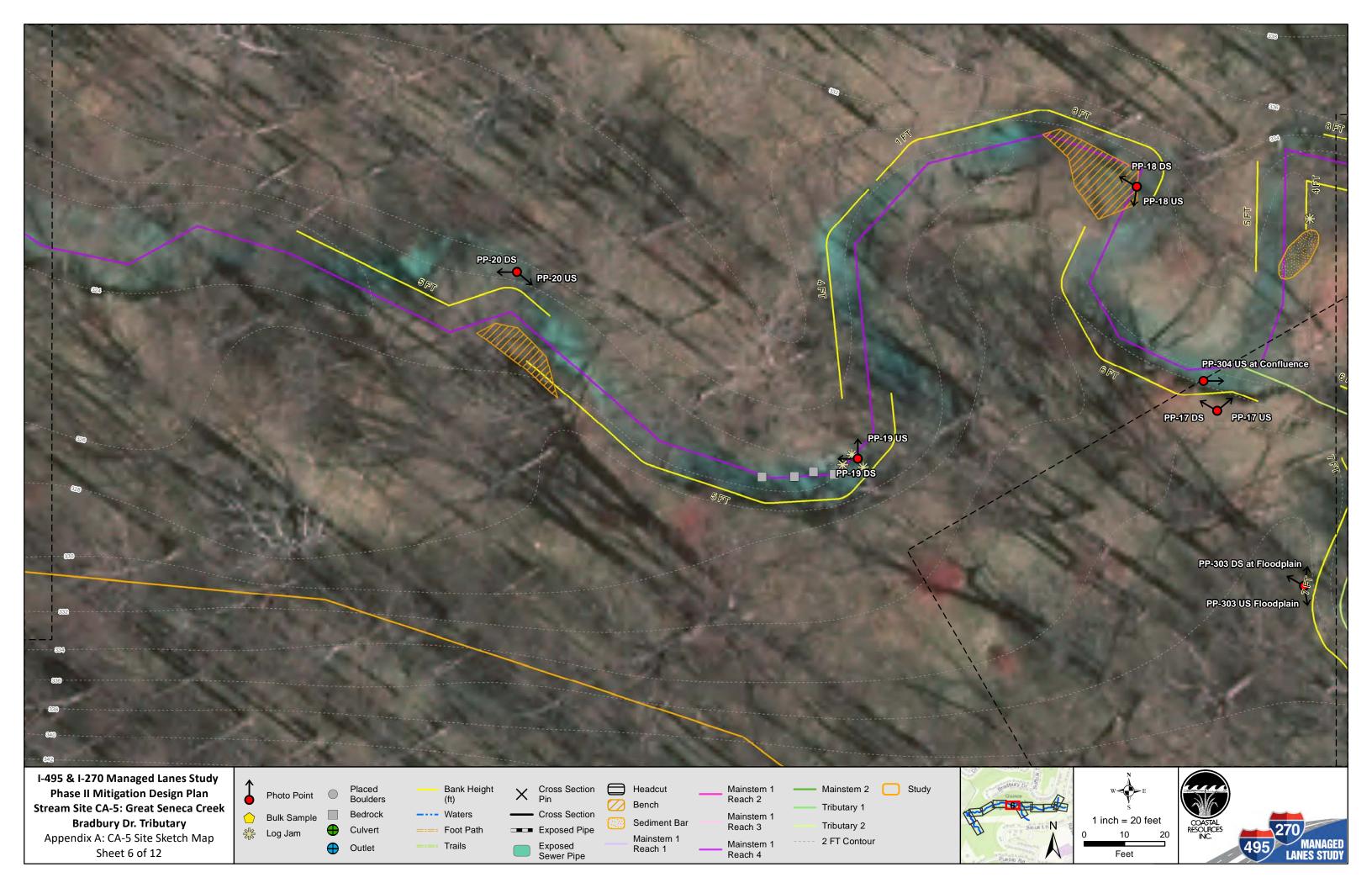

Google Maps. 2018. Gaithersburg, Maryland. Available Online at https://www.google.com/maps/

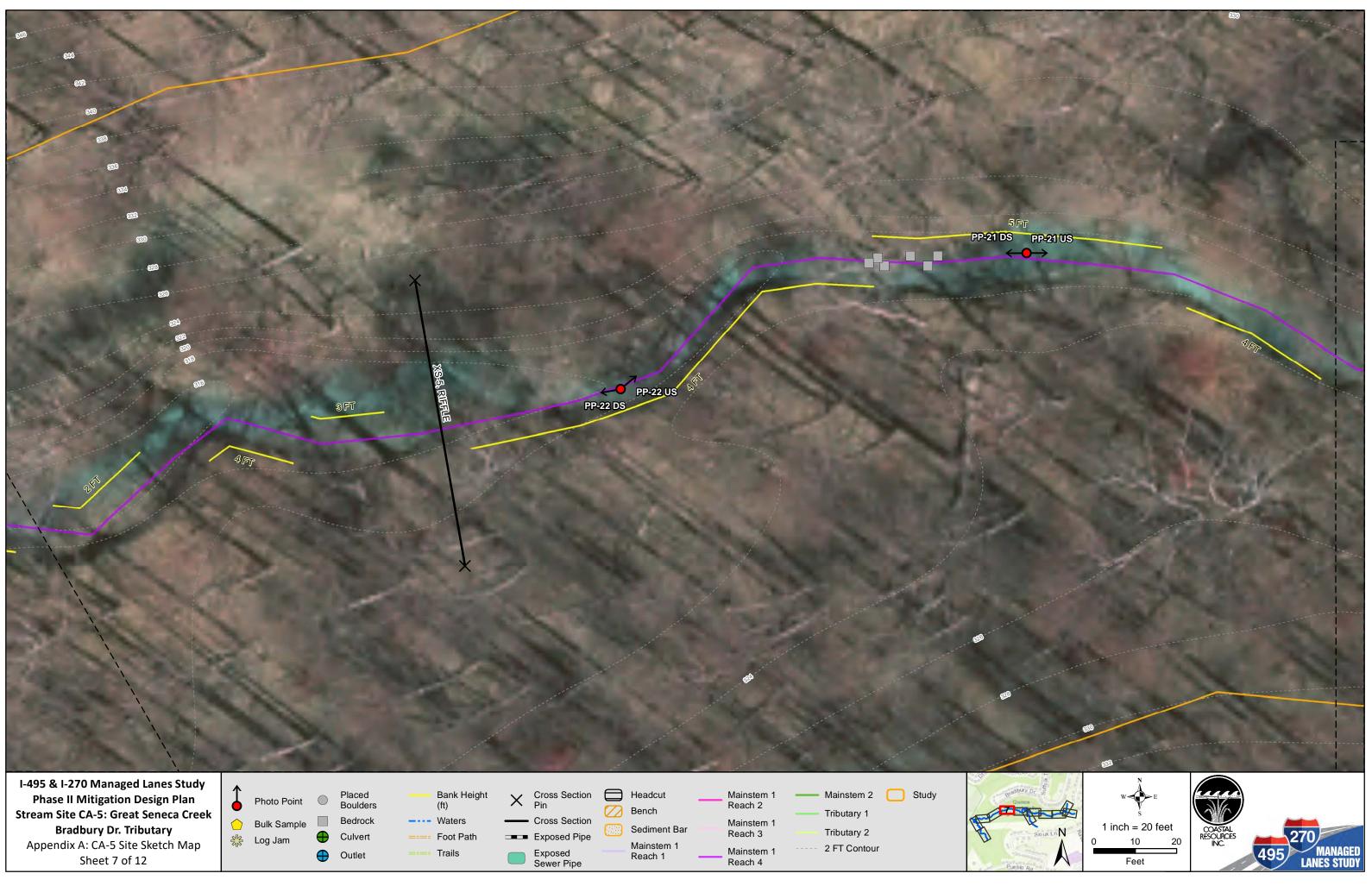

- Harman, W. R. Starr, M. Carter, K. Tweedy, M. Clemmons, K. Suggs, C. Miller. 2012, A Function-Based Framework for Stream Assessment and Restoration Projects. U.S. Environmental Protection Agency, Office of Wetlands, Oceans, and Watersheds, Washington, D.C. EPA 843-K-12-006.
- Maryland Hydrology Panel. 2016. *Application of Hydrologic Methods in Maryland: Forth Edition, July 2016.* The Maryland State Highway Administration and the Maryland Department of the Environment. Baltimore, Maryland.
- Montgomery County, Maryland Interactive Map. Montgomery County, MD. Available Online at http://gis3.montgomerycountymd.gov/historical_images/
- MBSS. 2001a. Maryland Stream Waders Benthic Macro Invertebrate Data: Middle Patuxent River Site. Site ID: 857-5-2001.Accessed from: <u>https://geodata.md.gov/streamhealth/</u> or <u>http://eyesonthebay.dnr.maryland.gov/mbss/v_site.cfm?site=857-5-2001</u>
- McCandless, T.L. 2002. Maryland Stream Survey: Bankfull Discharge and Channel Characteristics of Streams in the Piedmont Hydrologic Region. USFWS Chesapeake Bay Field Office. CBFO-S02-01.
- MDE. 2018. Maryland's Draft 2018 Integrated Report of Surface Water Quality. MDE. Baltimore, MD. Available Online at: https://mde.maryland.gov/programs/Water/TMDL/Integrated303dReports/Pages/2018IR.aspx
- MGS. 2008. Physiographic Map of Maryland. Available Online at https://www.mgs.gov/

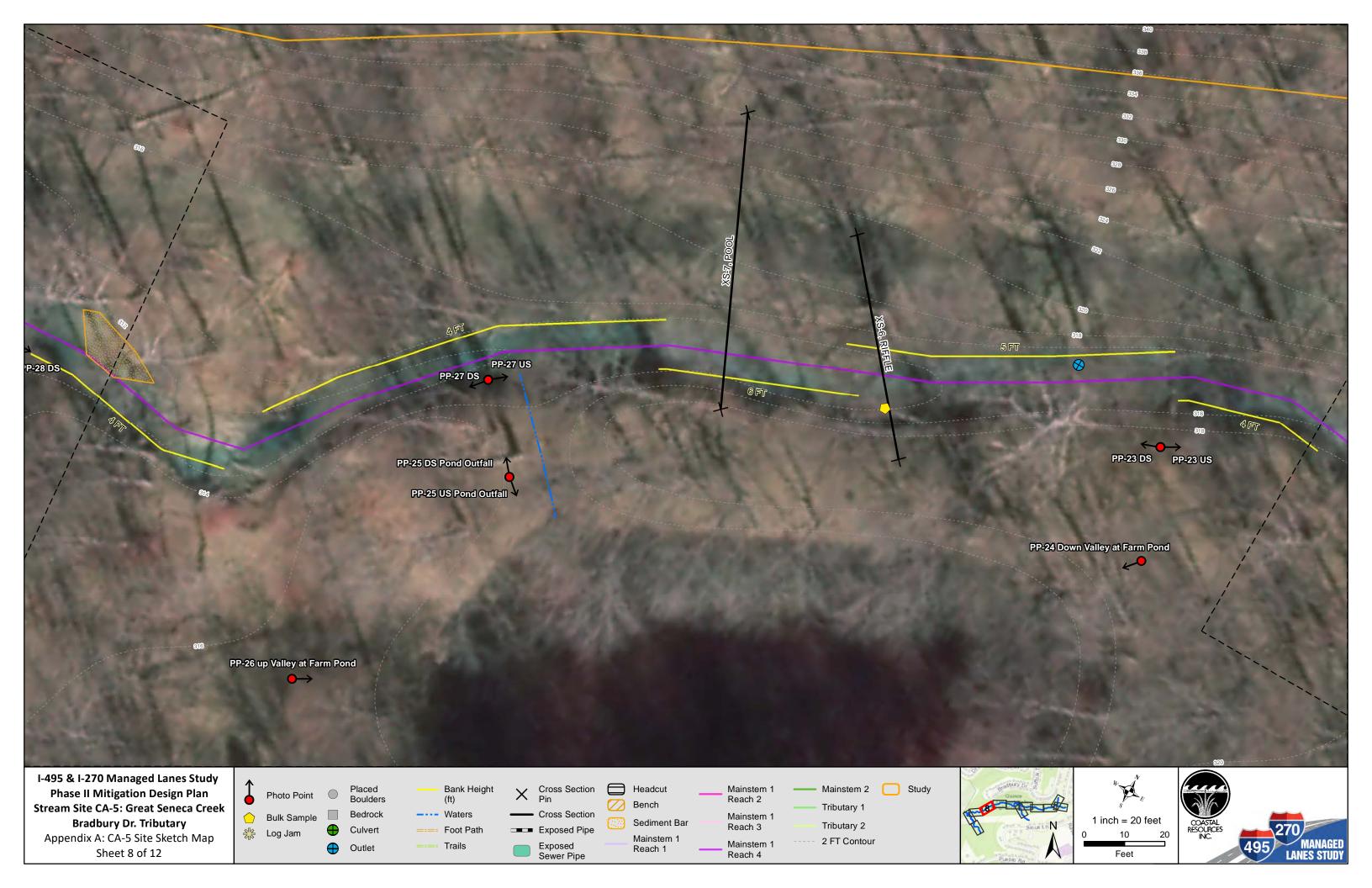


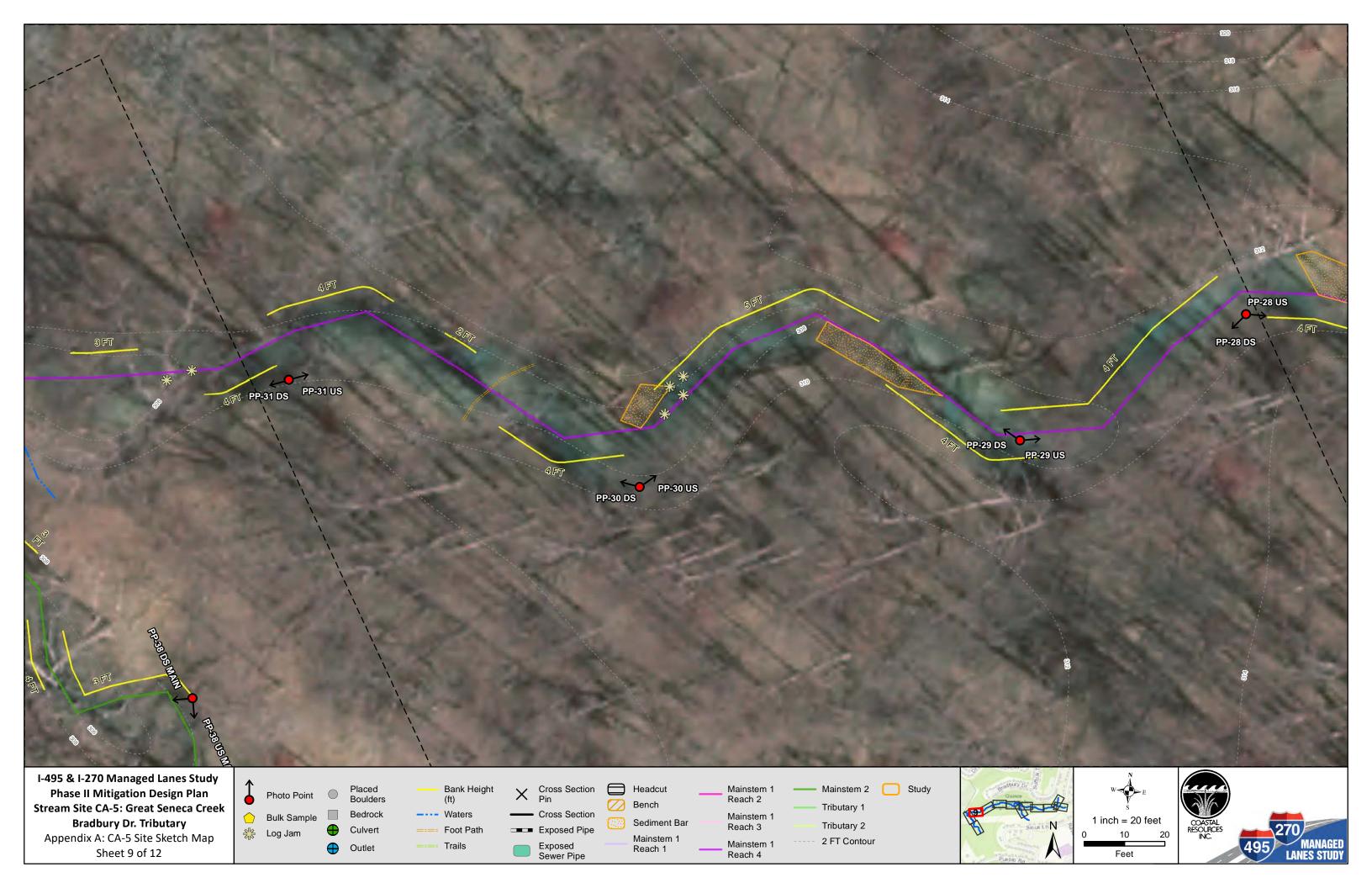

- Mecklenburg, D. 2006. The Reference Reach Spreadsheet for Channel Survey Data Management, version 4.3L. A STREAM Module: Spreadsheet Tools for River Evaluation, Assessment and Monitoring. Ohio Department of Natural Resources.
- North Carolina State University Stream Restoration Program. 1989. North Carolina Piedmont Region Bank Erosion Prediction Curve.
- Paul, M. J, J. B. Stribling, R. J. Klauda, P. F. Kazyak, M. T. Southerland, and N.E. Roth. 2002. A Physical Habitat Index for Freshwater Wadeable Streams in Maryland. CBWP-MANTA-EA-03-4, Maryland Department of Natural Resources, Monitoring and Non-Tidal
- Roth, N. E., Southerland, M. T., Chaillou, J. C., Kazyak, P. F., and S. A. Stranko. 2000. *Refinement and* validation of a fish Index of Biotic Integrity for Maryland streams. Versar, Inc., Columbia, MD, with Maryland Department of Natural Resources, Monitoring and Non- Tidal Assessment Division. CBWP-MANTA-EA-00-2.
- Rosgen, D.L., 1996. Applied River Morphology. Wildland Hydrology: Fort Collins, CO.
- Rosgen, D. 2001. A Practical Method of Computing Streambank Erosion Rate. Proceedings of the Seventh Federal Interagency Sedimentation Conference, March 25-29, 2001. Reno, NV.
- Rosgen, D. 2006. Watershed Assessment of River Stability and Sediment Supply (WARSSS). Wildland Hydrology, Fort Collins, CO.
- Rosgen, D. 2008. River Stability Field Guide. Wildland Hydrology: Fort Collins, CO.
- Stribling, J. B., B. K. Jessup, J. S. White, D. Boward, and M. Hurd. 1998. *Development of a Benthic Index of Biotic Integrity for Maryland Streams.* Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment, Annapolis, MD.
- USDA, 2017. Soil Survey Geographic Database for Montgomery County, Maryland. Available Online at http://websoilsurvey.nrcs.usda.gov/

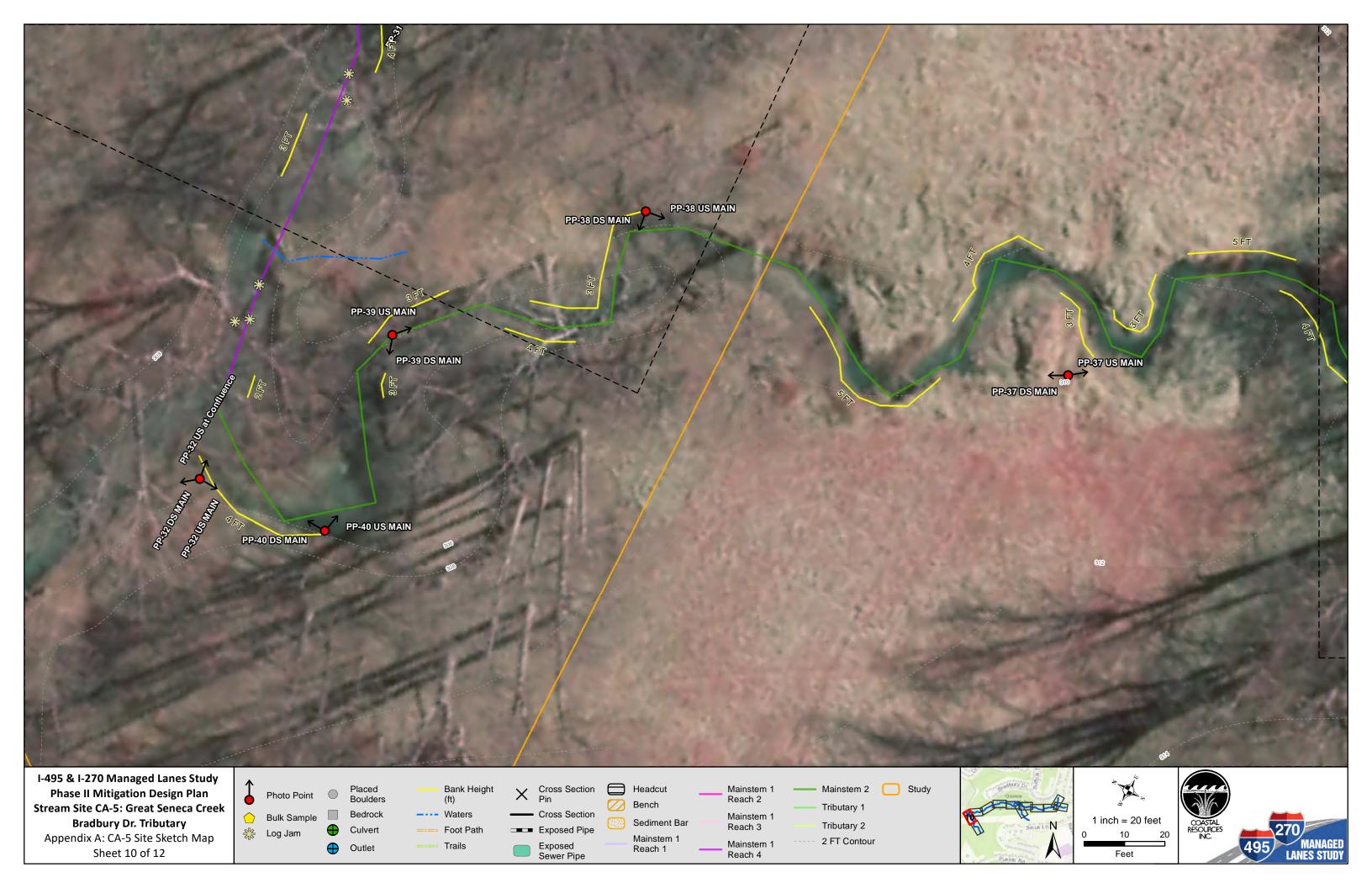

APPENDIX A. PHOTODOCUMENTATION

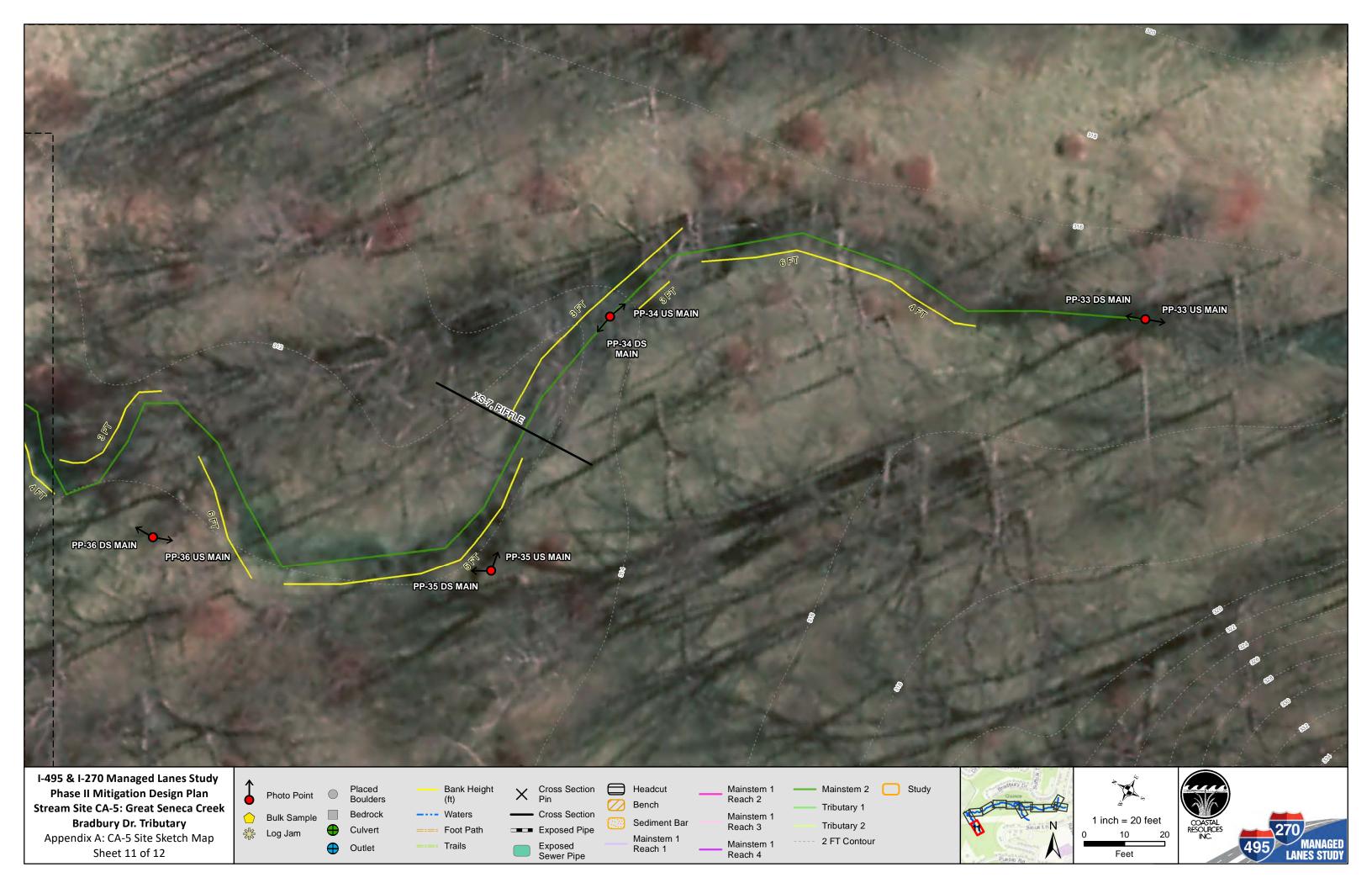


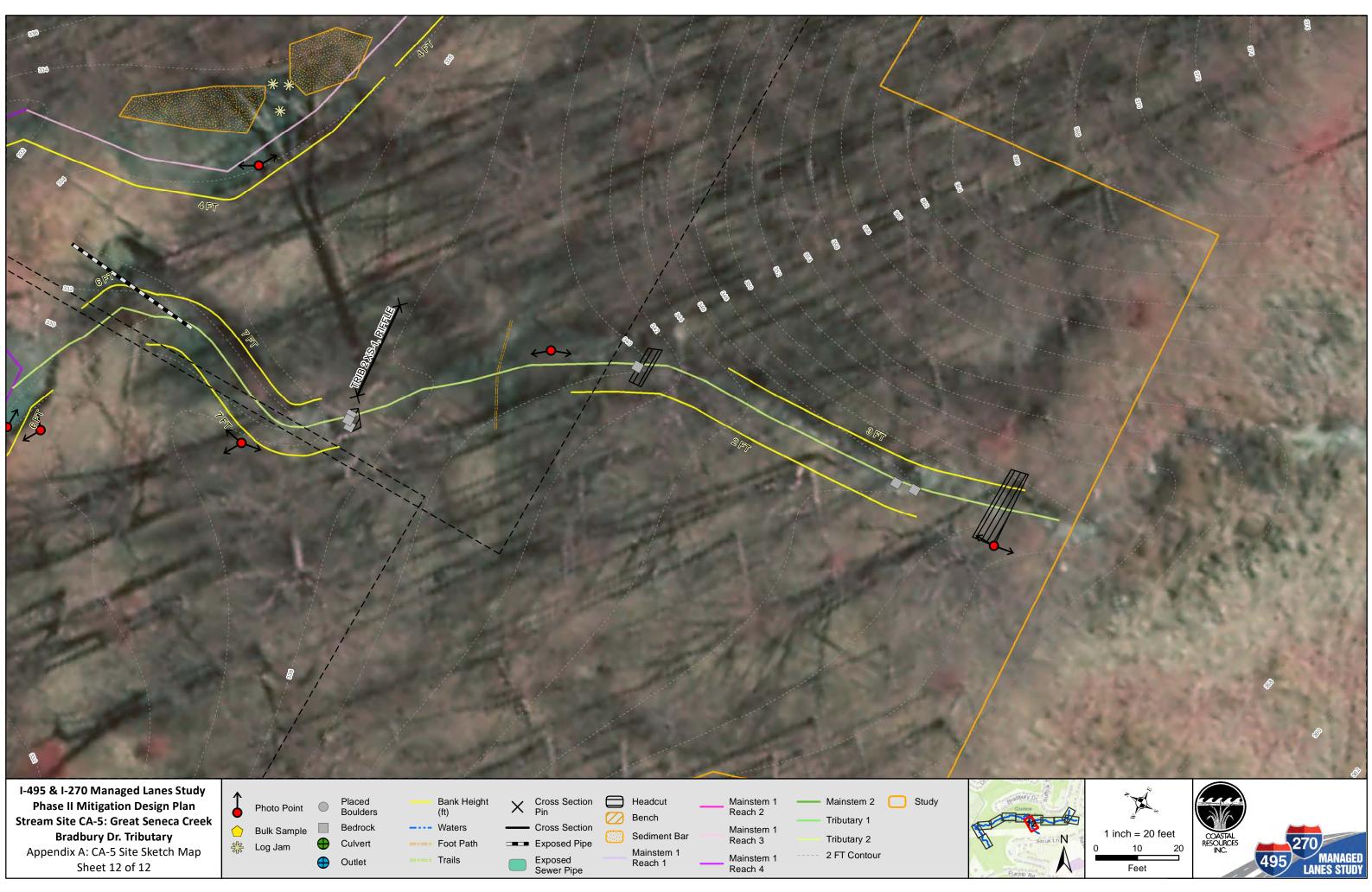











1-495 & 1-270 Managed Lanes Study		
Phase II Mitigation Design Plan		
Stream Site CA-5: Great Seneca Creek		
Bradbury Dr. Tributary		
Appendix A: CA-5 Site Sketch Map		
Sheet 7 of 12		

I-495 & I-270 Managed Lanes Study	
Phase II Mitigation Design Plan	
Stream Site CA-5: Great Seneca Creek	
Bradbury Dr. Tributary	
Diddbary Di. mbatary	
Appendix A: CA-5 Site Sketch Map	

	Bank H (ft)
	Waters
=:=:	Foot Pa
	Trails

lainstem 1 each 2	— N
each 2	т
lainstem 1	-
each 3	
lainstem 1	2

Study	

CA-5 Photo Point 1 Upstream; Long Pro Start

CA-5 Photo Point 2 Upstream

CA-5 Photo Point 1 Downstream

CA-5 Photo Point 2 Downstream

CA-5 Photo Point 3 Upstream

CA-5 Photo Point 3 Downstream

CA-5 Photo Point 4 Upstream

CA-5 Photo Point 4 Downstream

CA-5 Photo Point 5 Upstream at Confluence

CA-5 Photo Point 6 Upstream

CA-5 Photo Point 5 Downstream at Confluence

CA-5 Photo Point 6 Downstream

April 2020

CA-5 Photo Point 7 Upstream

CA-5 Photo Point 8 Upstream at Floodplain

CA-5 Photo Point 7 Downstream

CA-5 Photo Point 8 Downstream at Floodplain

April 2020

CA-5 Photo Point 9 Upstream

CA-5 Photo Point 9 Downstream

CA-5 Photo Point 9 Upstream at Floodplain Seep

CA-5 Photo Point 10 Upstream at Confluence with Headcut Trib

CA-5 Photo Point 11 Upstream at Valley

CA-5 Photo Point 10 Downstream at Confluence with Headcut Trib

CA-5 Photo Point 11 Downstream at Valley

CA-5 Photo Point 12 Upstream

CA-5 Photo Point 12 Downstream

CA-5 Photo Point 13 Upstream

CA-5 Photo Point 13 Downstream

CA-5 Photo Point 14 Upstream

CA-5 Photo Point 14 Downstream

CA-5 Photo Point 15 Upstream

CA-5 Photo Point 15 Downstream

April 2020

CA-5 Photo Point 16 Upstream

CA-5 Photo Point 16 Downstream

CA-5 Photo Point 17 Upstream

CA-5 Photo Point 17 Downstream

CA-5 Photo Point 18 Upstream

CA-5 Photo Point 18 Downstream

CA-5 Photo Point 19 Upstream

CA-5 Photo Point 19 Downstream

CA-5 Photo Point 20 Upstream

CA-5 Photo Point 20 Downstream

CA-5 Photo Point 21 Upstream

CA-5 Photo Point 21 Downstream

CA-5 Photo Point 22 Upstream

CA-5 Photo Point 22 Downstream

CA-5 Photo Point 23 Upstream

CA-5 Photo Point 23 Downstream

CA-5 Photo Point 24 Down Valley at Farm Pond

CA-5 Photo Point 25 Downstream Pond Outfall

CA-5 Photo Point 25 Upstream Pond Outfall

CA-5 Photo Point 26 Up Valley at Farm Pond

April 2020

CA-5 Photo Point 27 Upstream

CA-5 Photo Point 27 Downstream

CA-5 Photo Point 28 Upstream

CA-5 Photo Point 28 Downstream

CA-5 Photo Point 29 Upstream

CA-5 Photo Point 29 Downstream

CA-5 Photo Point 30 Upstream

CA-5 Photo Point 30 Downstream

Appendix A

CA-5 Photo Point 31 Upstream

CA-5 Photo Point 31 Downstream

CA-5 Photo Point 32 Upstream at Confluence with Mainstem 2

CA-5 Photo Point 32 Downstream Mainstem 2

CA-5 Photo Point 32 Upstream Mainstem 2

• CA-5 Photo Point 33 Upstream Main Channel

• CA-5 Photo Point 34 Upstream Main Channel

CA-5 Photo Point 33 Downstream Main Channel

CA-5 Photo Point 34 Downstream Main Channel

CA-5 Photo Point 35 Upstream Main Channel

CA-5 Photo Point 36 Upstream Main Channel

CA-5 Photo Point 35 Downstream Main Channel

CA-5 Photo Point 36 Downstream Main Channel

CA-5 Photo Point 37 Upstream Main Channel

• CA-5 Photo Point 38 Upstream Main Channel

CA-5 Photo Point 37 Downstream Main Channel

CA-5 Photo Point 38 Downstream Main Channel

• CA-5 Photo Point 39 Upstream Main Channel

• CA-5 Photo Point 40 Upstream Main Channel

CA-5 Photo Point 39 Downstream Main Channel

CA-5 Photo Point 40 Downstream Main Channel

CA-5 Photo Point 101 Upstream in Tributary 1

CA-5 Photo Point 101 Downstream in Tributary 1

CA-5 Photo Point 101 36" Reinforced Concrete Pipe with Energy Dissipation into Tributary 1

CA-5 Photo Point 102 Upstream

CA-5 Photo Point 103 Upstream at Groundwater Seep

CA-5 Photo Point 102 Downstream

CA-5 Photo Point 103 Downstream at Groundwater Seep

CA-5 Photo Point 104 Upstream at Groundwater Seep from Confluence

CA-5 Photo Point 105 at Groundwater seep adjacent to Trail

CA-5 Photo Point 104 Downstream from Confluence

CA-5 Photo Point 105 at Groundwater seep adjacent to Trail

CA-5 Photo Point 106 Upstream

CA-5 Photo Point 201 Upstream at Groundwater Seep Headcut

CA-5 Photo Point 106 Downstream

CA-5 Photo Point 201 Downstream at Groundwater Seep Headcut

CA-5 Photo Point 202 Upstream Start of Headcut

CA-5 Photo Point 203 Upstream

CA-5 Photo Point 202 Downstream Start of Headcut

CA-5 Photo Point 203 Downstream

CA-5 Photo Point 204 Upstream

CA-5 Photo Point 204 Downstream

CA-5 Photo Point 205 Upstream at Confluence

CA-5 Photo Point 301 Upstream at Top of Tributary 2

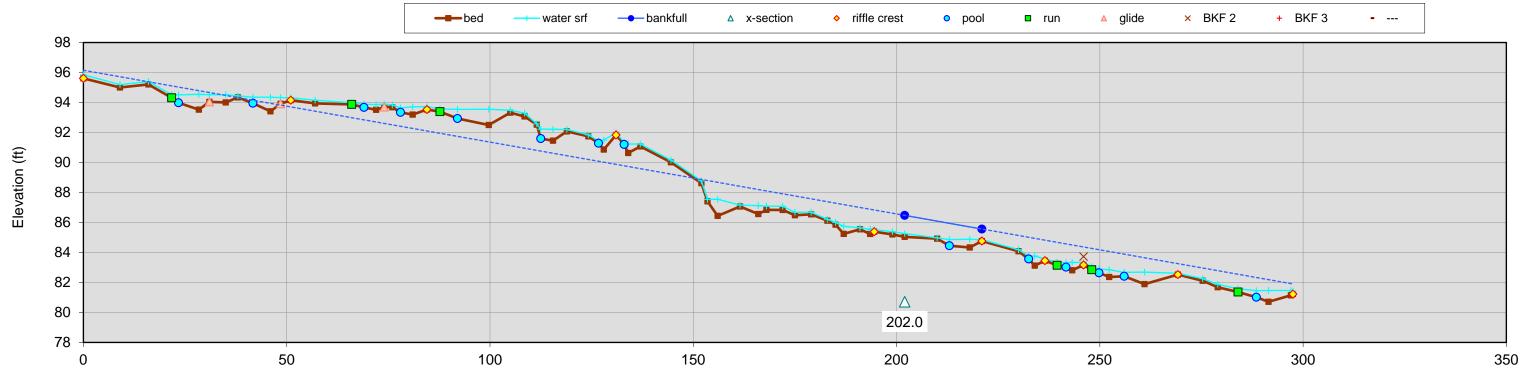
CA-5 Photo Point 302 Upstream Near Trail

CA-5 Photo Point 301 Downstream at Top of Tributary 2

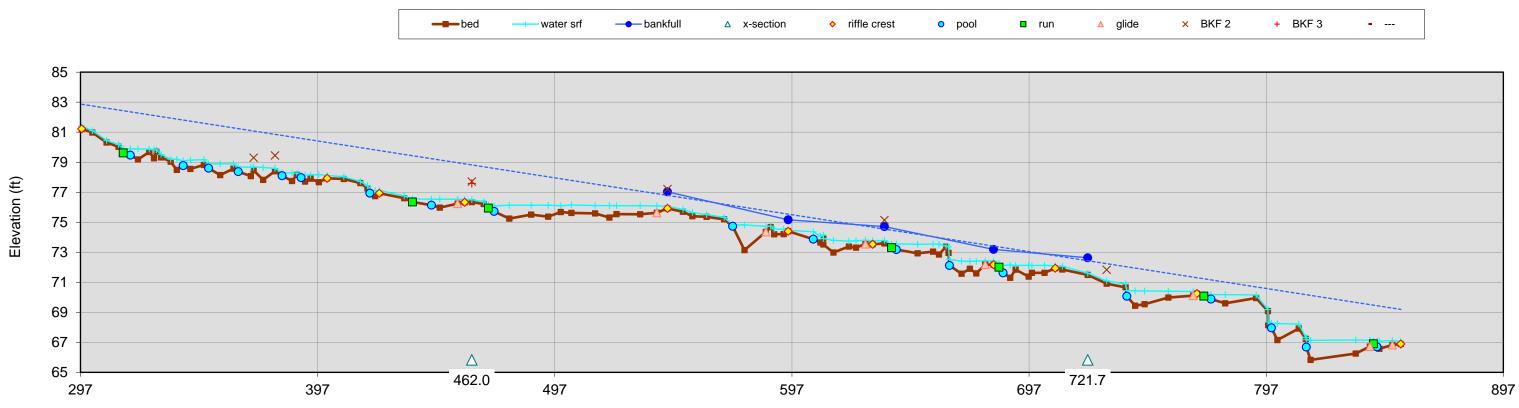
CA-5 Photo Point 302 Downstream Near Trail

CA-5 Photo Point 303 Upstream at Headcut

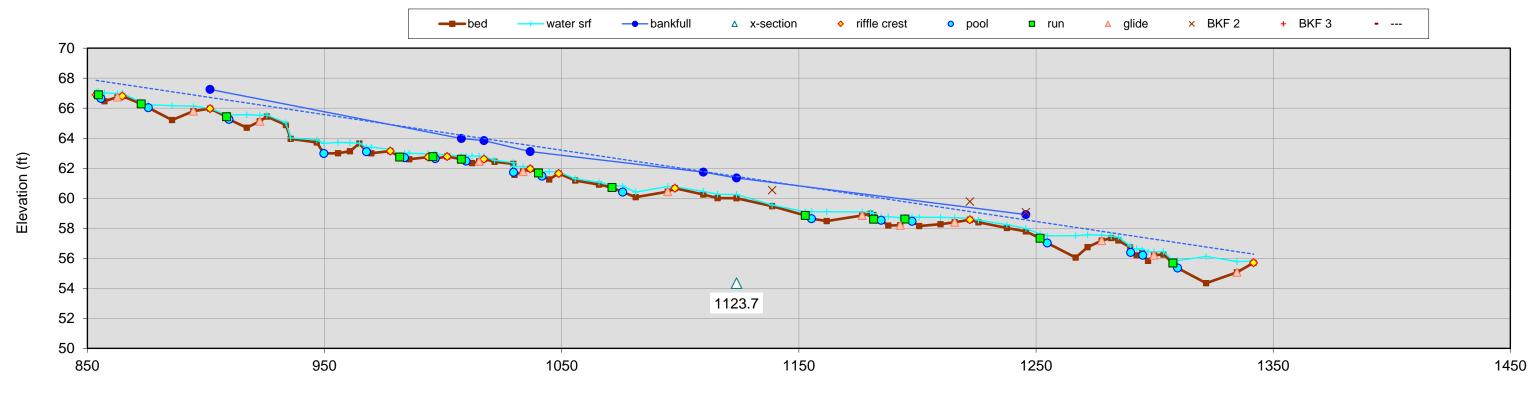
CA-5 Photo Point 303 at Abandoned Tributary



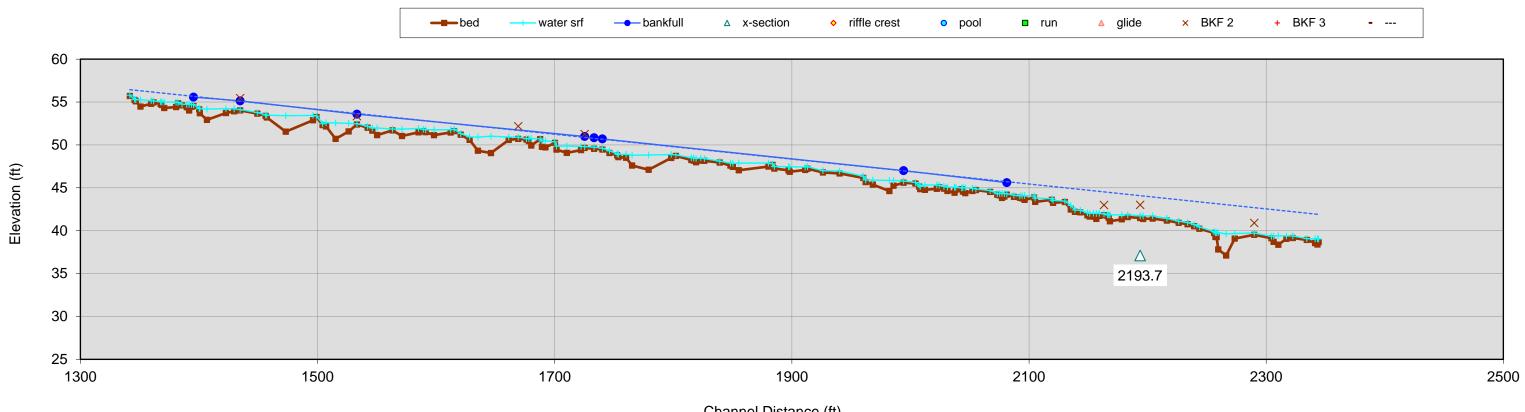
CA-5 Photo Point 303 Downstream


CA-5 Photo Point 304 Upstream at Confluence

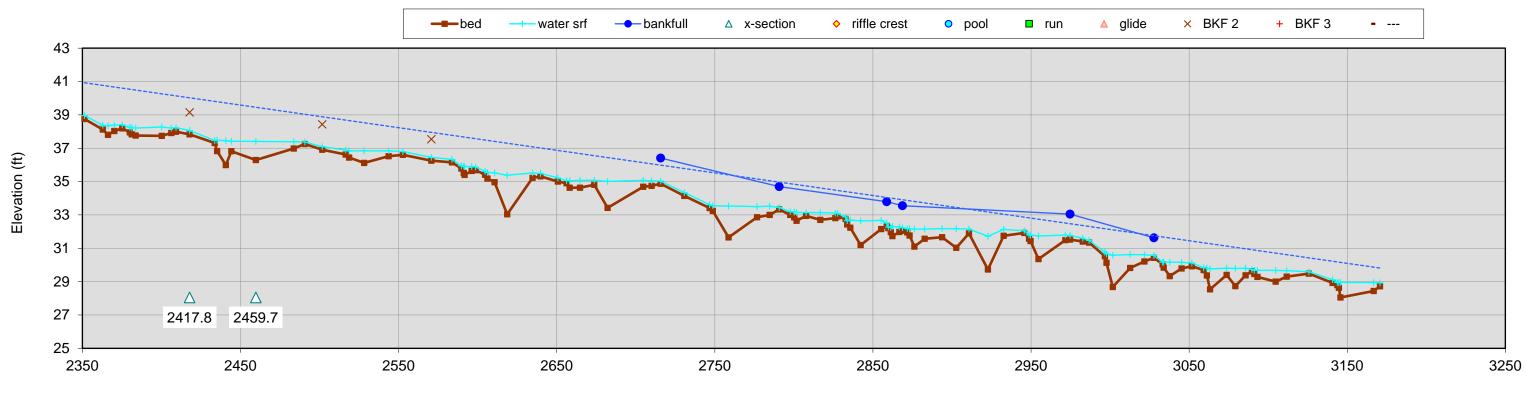
APPENDIX B. GEOMORPHIC DATA



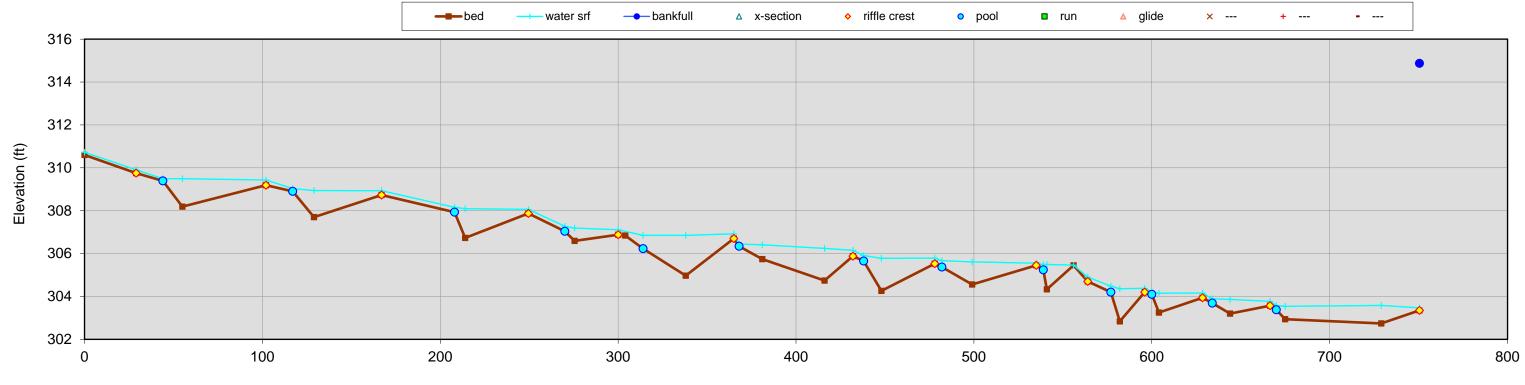
Channel Distance (ft)


CA-5 (Unnamed Tributary to Great Seneca Creek) Mainstem 1 Reach 2

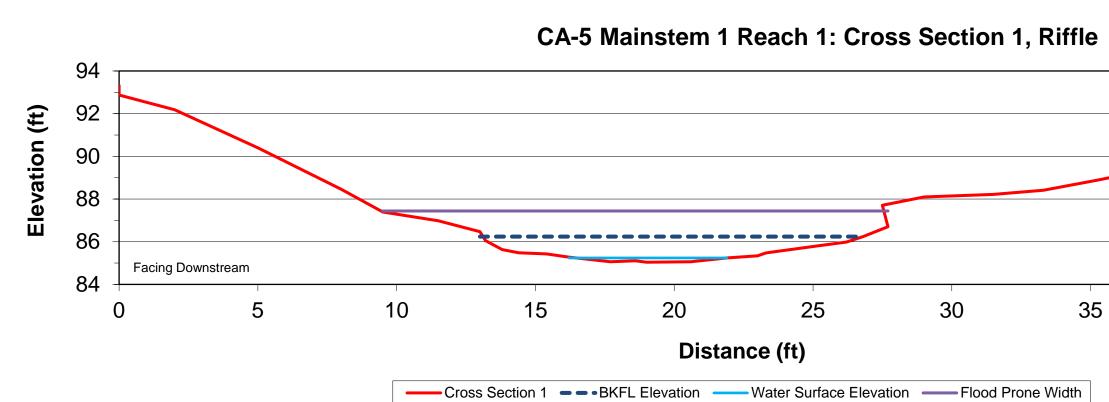
Channel Distance (ft)



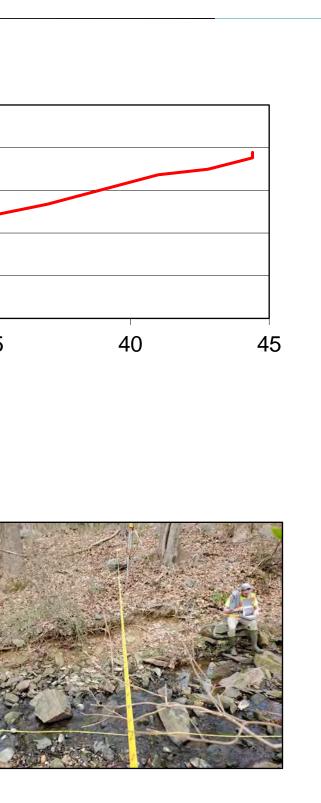
Channel Distance (ft)

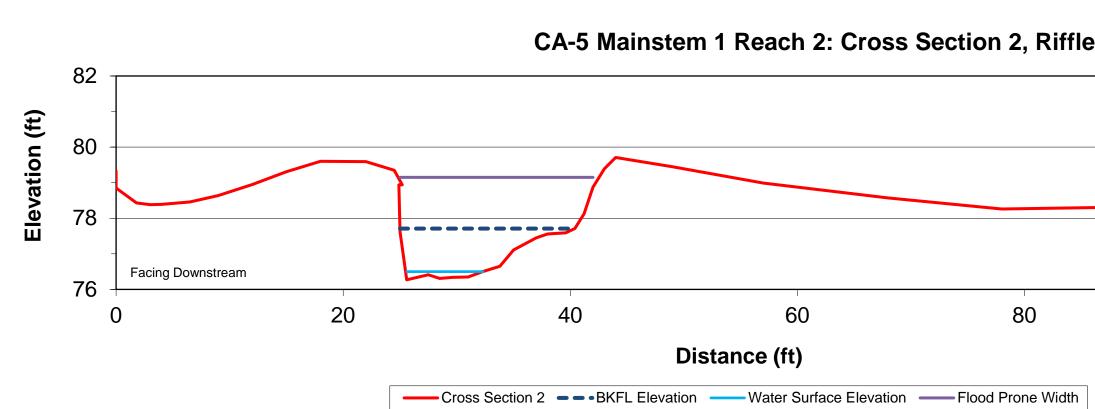


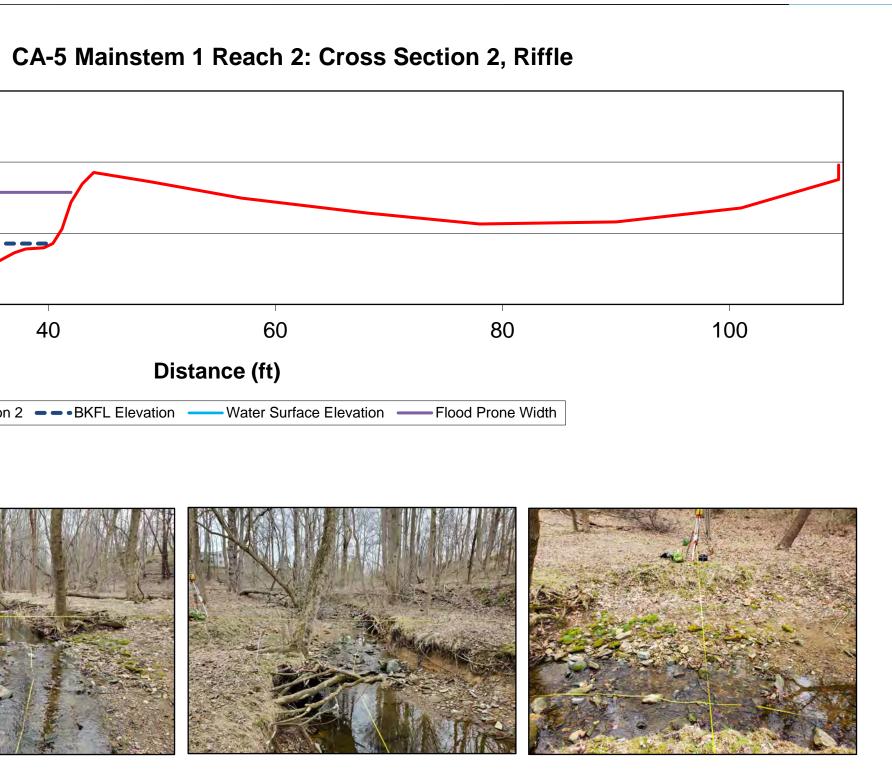
Channel Distance (ft)


CA-5 (Unnamed Tributary to Great Seneca Creek) Mainstem 1 Reach 4 (cont'd)

Channel Distance (ft)

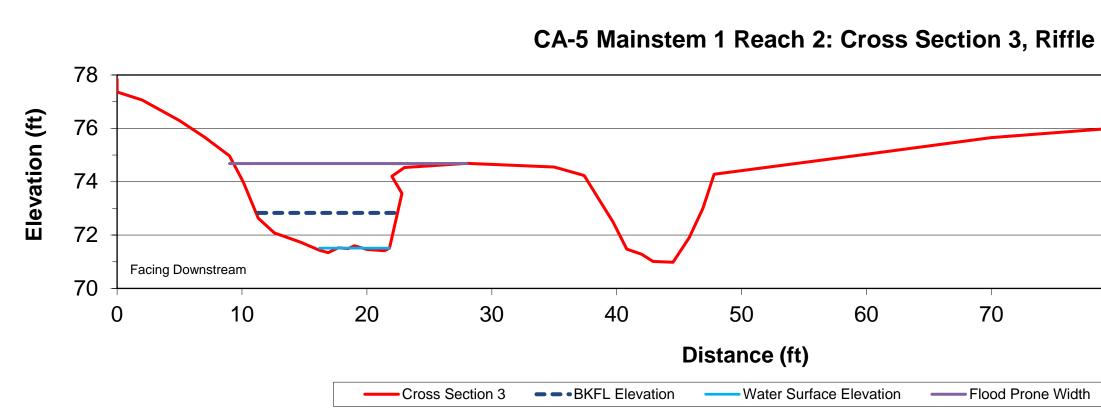

Channel Distance (ft)



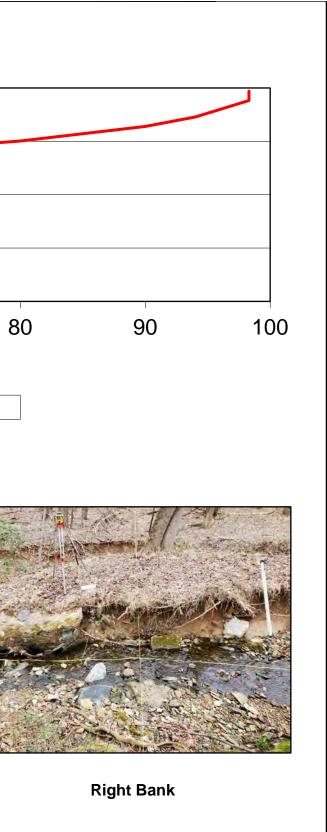


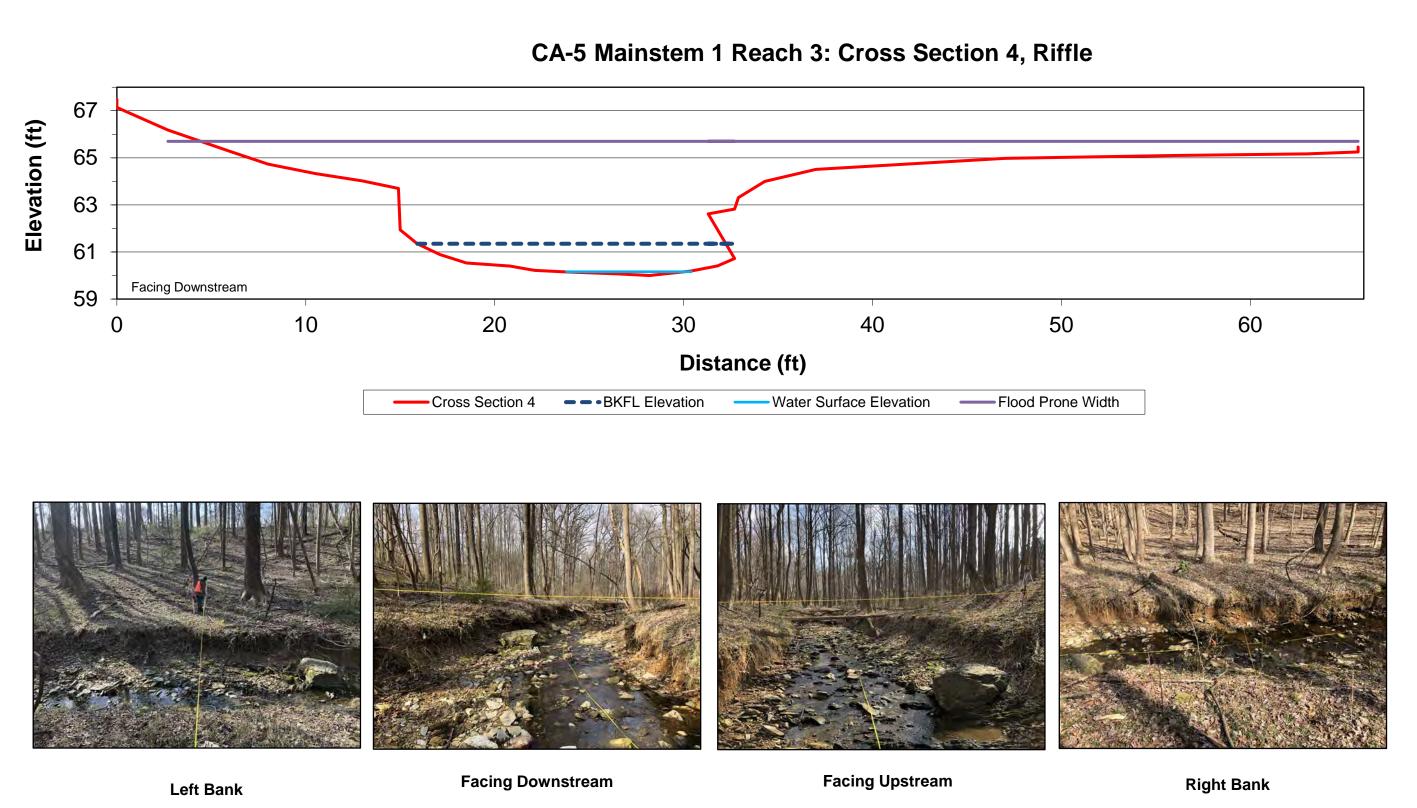
Facing Downstream

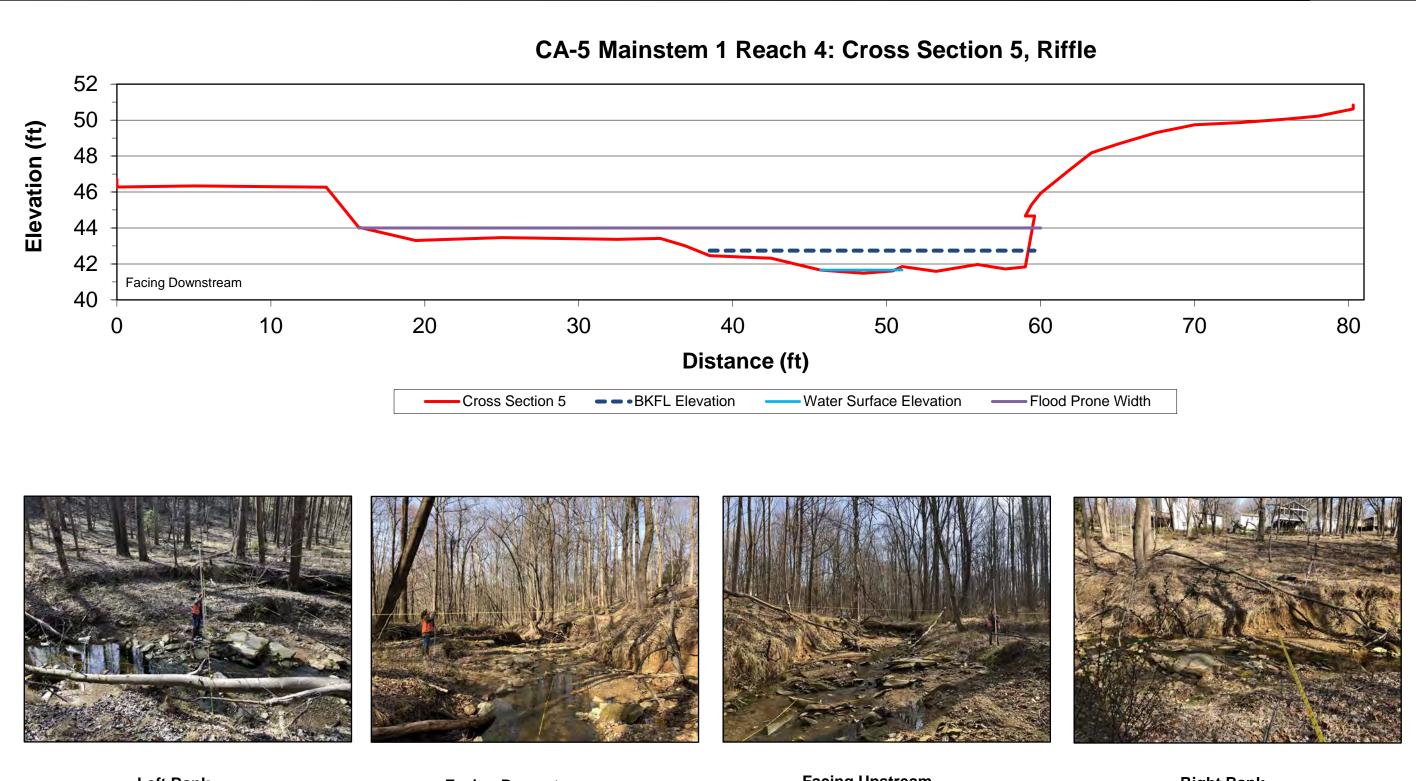
Facing Upstream



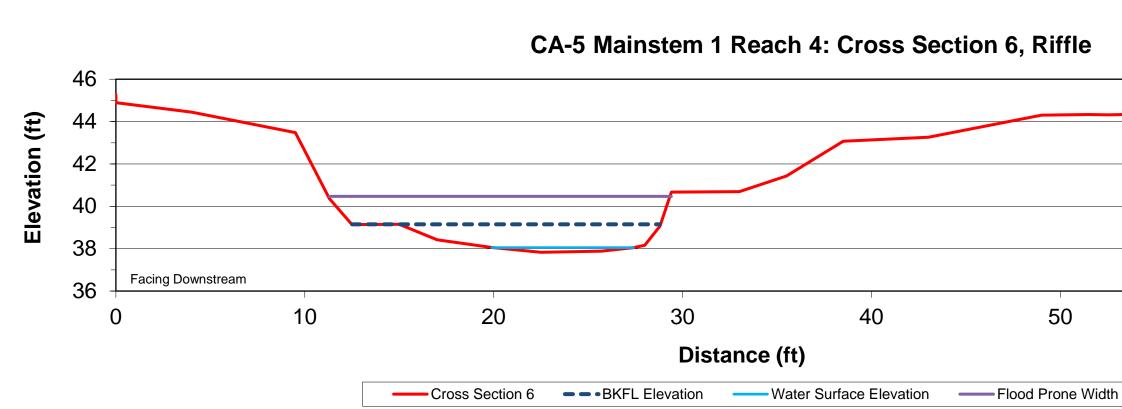
Facing Downstream


Facing Upstream

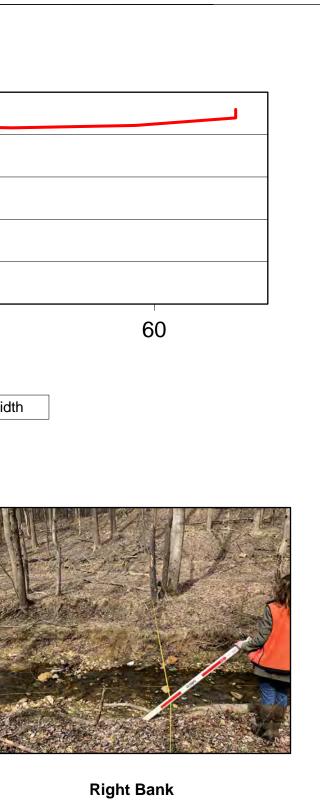


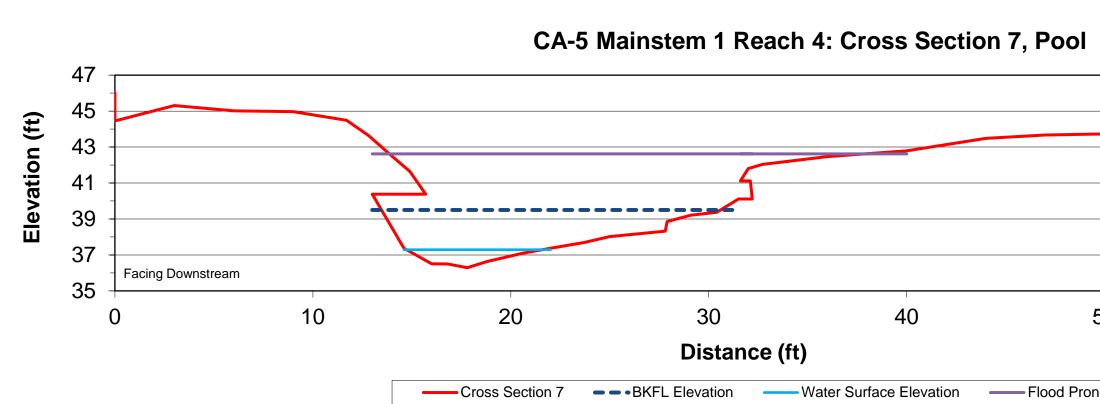

Facing Downstream

Facing Upstream



Facing Downstream

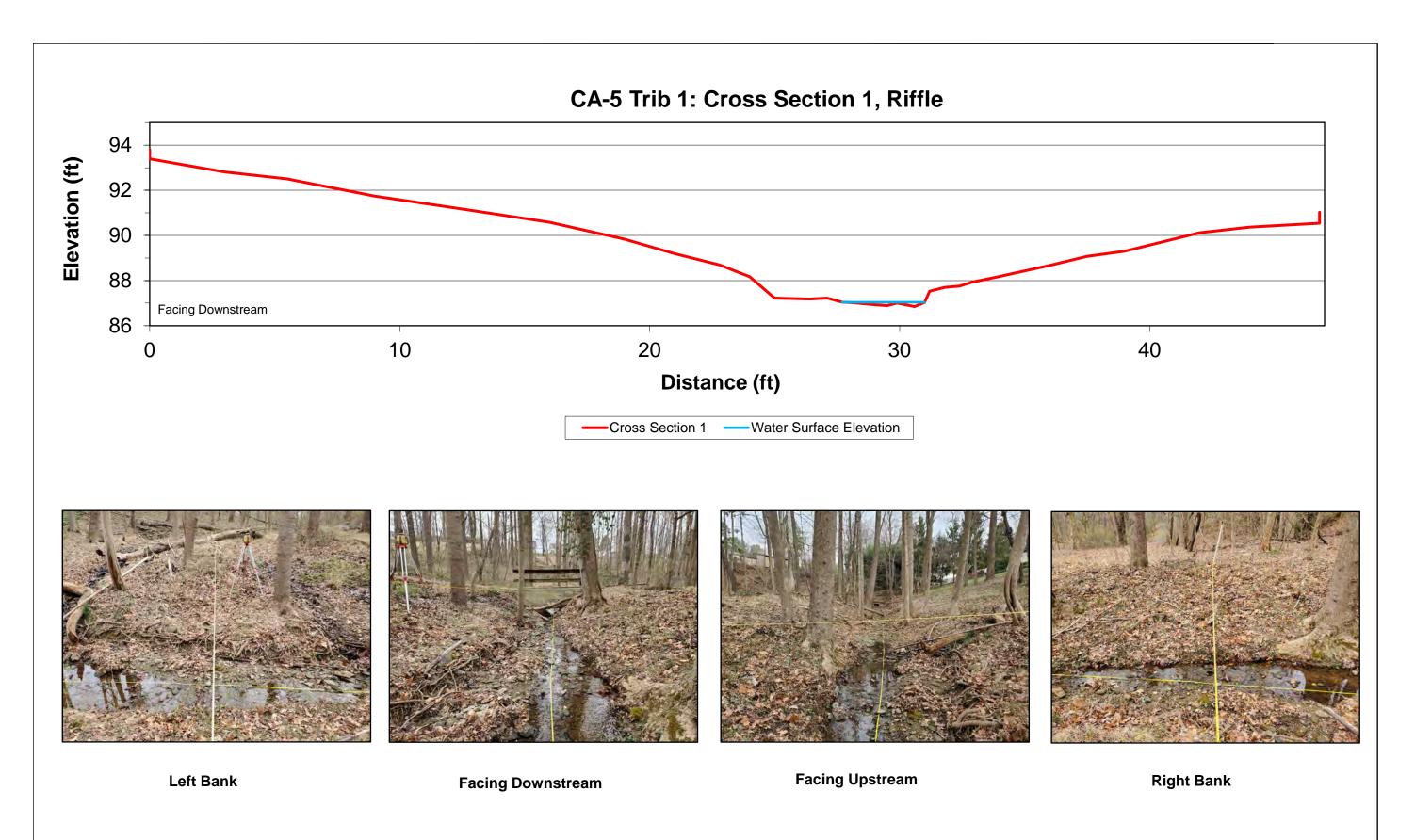

Facing Upstream

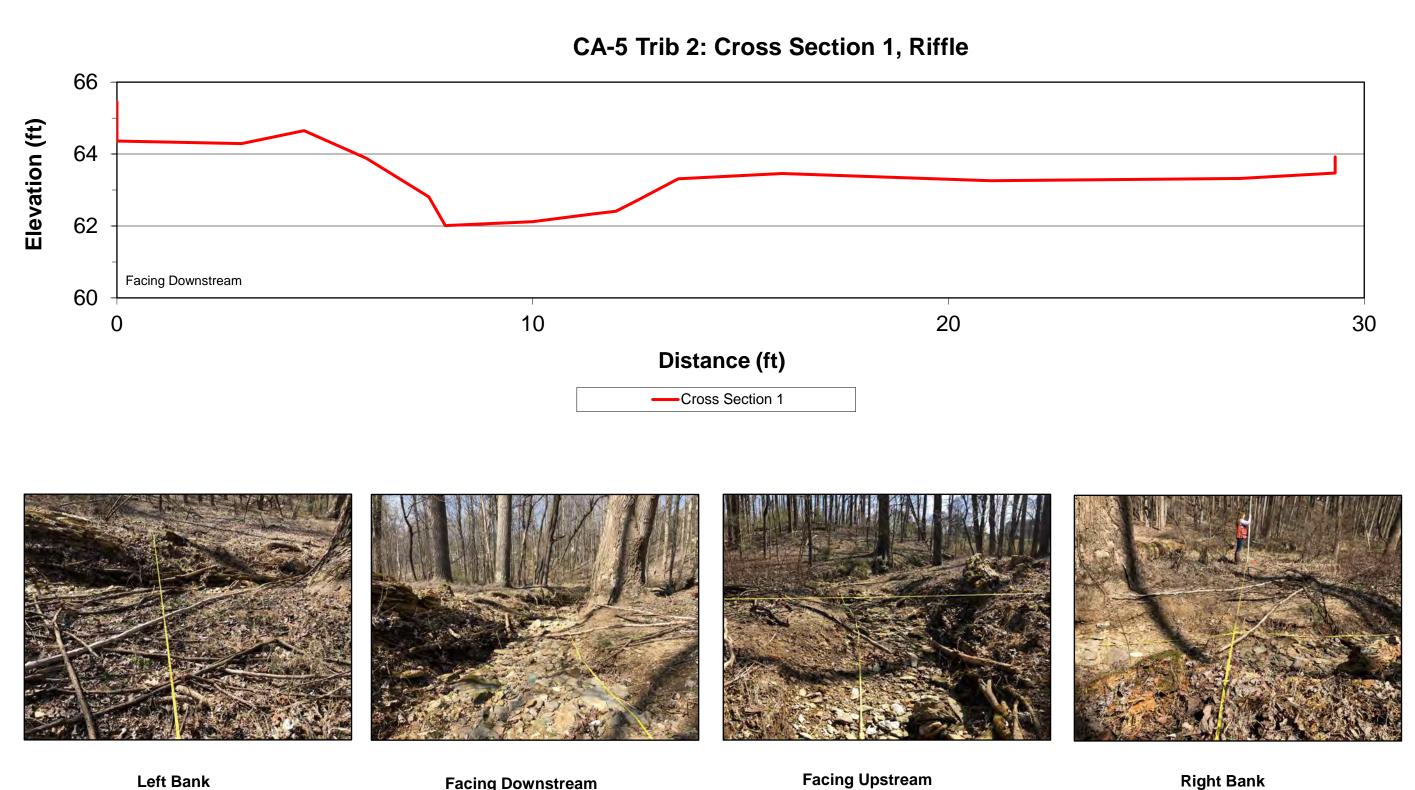


Facing Downstream

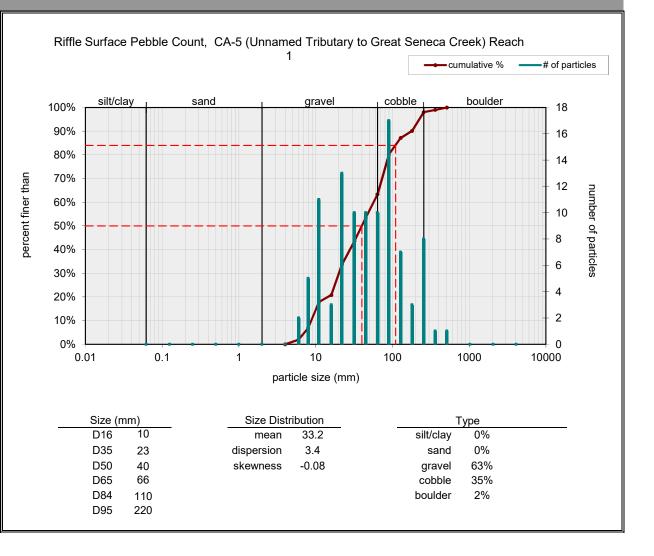
Facing Upstream

Facing Downstream


Facing Upstream


50		
	60	
ne Width		

Facing Downstream



Facing Downstream

Facing Upstream

Two individual samples may be entered below. Select sample type for each.

Riffle Surface	•		
Material	Size R	ange (mm)	Count
silt/clay	0	- 0.062	0
very fine sand	0.062	- 0.125	0
fine sand	0.125	- 0.25	0
medium sand	0.25	- 0.5	0
coarse sand	0.5		0
very coarse sand	1	- 2	0
very fine gravel	2	- 4	0
fine gravel	4	- 6	2
fine gravel	6	- 8	5
medium gravel	8	- 11	11
medium gravel	11	- 16	3
coarse gravel	16	- 22	13
coarse gravel		- 32	10
very coarse gravel		- 45	10
very coarse gravel		- 64	10
small cobble		- 90	17
medium cobble		- 128	7
large cobble		- 180	3
very large cobble		- 256	8
small boulder		- 362	1
small boulder	362	- 512	1
medium boulder		- 1024	0
large boulder	1024	- 2048	0
very large boulder	2048	- 4096	0
tota	al parti	cle count:	101
bedrock			
clay hardpan			
detritus/wood			
artificial			
aitholdi		tal count:	101
	lu		101
Note: XS-1			

Riffle Surface Material Size Range (mm) silt/clay 0 very fine sand 0.062	Count 1 0		Riffle Surface	e Pebble Co	unt, CA-5 (Unna	med Tributary 2		a Creek) Read ⊷cumulative %	ch ——# of partie	cles
fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 8 - 11 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 32 - 45 very coarse gravel 32 - 45 very coarse gravel 45 - 64 small cobble 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 256 - 362	0 0 8 27 0 1 4 4 6 9 9 9 12 7 7 7 4 1 1 0	percent finer than	100% silt/cl. 90% - 80% - 70% - 60% - 50% - 40% - 30% - 10% - 0% -	ay	sand	gravel	cobble	boulder	30 - 25 - 20 - 15 - 10 - 5 0	number of particles
small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 total particle count: bedrock clay hardpan detritus/wood artificial total count:	0 0 0 101		0.01 0.01 0.01 016 035 050 065 084	0.1 nm) 1.2 2 16 28 55		n 8.4	silt/c	and 35% vel 51% ble 13%	10000	
Note: XS-2			D84 D95	55 98						

Material Size Range (mm) silt/clay 0 very fine sand 0.062 very fine sand 0.062	Count 1 0		Riffle St	ırface	Pebble C	ount, (CA-5 (Unna Reach		y to Great	Concerner Creek)	——# of part	ticles
fine sand 0.125 - 0.25 medium sand 0.25 - 0.5	0			silt/c	lav ,	sand		gravel	, cobble	boulder		
coarse sand 0.5 - 1	7		100%			ound		giaroi	000,010	Bouldon	25	
very coarse sand 1 - 2	23		90%									
very fine gravel 2 - 4	0		000/				·				20	
fine gravel 4 - 6	1	Ę	80%								- 20	
fine gravel 6 - 8	1	the	70%						/			nu
medium gravel 8 - 11	4	Jer 1	60%								- 15	mb
medium gravel 11 - 16	8	t fir									10	ver
coarse gravel 16 - 22	9	percent finer than	50%					/				number of particles
coarse gravel 22 - 32	6	ero	40%								10	par
very coarse gravel 32 - 45	11	d	0.00/									ticl
very coarse gravel 45 - 64	12		30%				• /					es
small cobble 64 - 90	12		20%								- 5	
medium cobble 90 - 128	5		10%									
large cobble 128 - 180	0											
very large cobble 180 - 256 small boulder 256 - 362	0		0%						┛┛	┡╌╍╌╍	0	
small boulder 362 - 512	0		0.	01	0.1		1	10	100	1000	10000	
medium boulder 512 - 1024	0						par	icle size (mm)				
large boulder 1024 - 2048	0						P					
very large boulder 2048 - 4096	0											
total particle count:	102											
· · ·				Size (n	וm)		Size Dist	ribution		Туре		
bedrock				D16	1.2	3.4	mean	8.8	s	ilt/clay 1%		
clay hardpan				D35	8.5	12	dispersion	9.3		sand 31%		
detritus/wood				D50	18	17	skewness	-0.23		gravel 51%		
artificial				D65	37	20				cobble 17%		
total count:	102			D84	65	29			b	oulder 0%		
				D95	90	39						
Note: XS-3												

Riffle Surface Material Size Range (mm) silt/clay 0 - 0.062	Count 0		Riffle Surface	e Pebble C	ount, CA-5 (Unnar	ned Tributary 3		ca Creek) Read ⊷cumulative %	ch ——# of particles
very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 coarse sand 0.5 - 1 very coarse sand 1 - 2 very fine gravel 2 - 4 fine gravel 4 - 6 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 16 - 22 coarse gravel 22 - 32 very coarse gravel 32 - 45 very coarse gravel 64 - 90 medium cobble 90 - 128 large cobble 128 - 180 very large cobble 180 - 256 small boulder 256 - 362	0 0 3 34 0 0 1 2 5 8 10 12 8 3 10 3 1 0 0	percent finer than	100% silt/cl 90% 80% 70% 60% 50% 40% 30% 10%	ay	sand	gravel	cobble	boulder	40 - 35 - 30 - 25 number of particles - 15 - 10 - 5
small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 total particle count:	0 0 0 0 100		0% 0.01	0.1	1 pa	10 article size (mm	100 n)	1000	0 10000
bedrock clay hardpan detritus/wood artificial total count: Note: XS-4	100		Size (n D16 D35 D50 D65 D84 D95	nm) 1.3 1.9 20 34 72 120	Size Dis mean dispersion skewness	9.5		and 37% avel 46% oble 17%	

Material Size Range (nm) Count sill(clay 0 0.062 1 very fire sand 0.25 0.5 4 coarse sand 0.25 1 2 very coarse sand 0.5 1 2 very coarse sand 0.5 1 2 very coarse sand 0.5 1 2 very coarse sand 1 2 28 very coarse gravel 8 1 6 coarse gravel 16 22 30 very coarse gravel 22 32 9 very coarse gravel 16 22 100% 60% 0	Riffle Surface	 ▼ ↓ 			Riffle	Surface	Pebble Co	unt. CA-5 (Ur	inamed Tributary t	o Great Sene	ca Creek) Read	:h	
very fine sand 0.062 - 0.125 fine sand 0.125 - 0.25 fine sand 0.125 - 0.25 medium sand 0.25 - 0.5 very coarse sand 1 - 2 very coarse sand 1 - 2 very coarse sand 1 - 2 very coarse gravel 2 - 4 fine gravel 6 - 8 medium gravel 11 - 16 coarse gravel 6 - 22 medium gravel 11 - 16 coarse gravel 16 - 22 fillow very coarse gravel 22 - 32 medium cobble 90 - 128 small boulder 252 - 512 medium cobble 90 - 128 small boulder 362 - 512 medium cobble 122 - 1024 large cobble 128 - 180 very large boulder 1024 - 2048 very large boulder 1024 - 2048 very large boulder 1024 - 2048 detritus/wood			Count					,	4		,		ticles
Image: State of the send 0.125 0.25 1 medium sand 0.25 0.5 4 coarse sand 0.5 1 2 very coarse sand 1 2 28 very fine gravel 4 6 1 fine gravel 4 6 1 medium gravel 8 11 6 medium gravel 8 11 6 coarse gravel 12 23 9 very coarse gravel 12 100% 60% coarse gravel 13 6 60% small cobble 64 90 7 medium cobble 90 128 1 large cobble 180 266 small boulder 122 10 wery large cobble 180 266 small boulder 102 20% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 1arge cobble 10	,		1									# 01 part	licies
medium sand 0.25 - 0.5 4 coarse sand 0.5 - 1 2 very coarse sand 1 - 2 28 very fine gravel 2 - 4 fine gravel 6 - 8 3 medium gravel 8 - 11 6 coarse gravel 16 - 22 10 coarse gravel 16 - 22 10 coarse gravel 22 - 32 9 very coarse gravel 25 - 32 9 very coarse gravel 25 - 63 11 very coarse gravel 26 - 84 10 small cobble 64 - 90 7 medium boulder 526 - 362 small boulder 256 - 362 small boulder 256 - 362 small boulder 256 - 362 small boulder 256 - 362 small boulder 2048 - 4096 total particle count: 100 bedrock			4										
Intelluling and 0.23 + 0.3 + 2 30 coarse sand 0.5 - 1 2 very coarse sand 1 - 2 28 very fine gravel 2 - 4 fine gravel 6 - 8 medium gravel 8 - 11 6 6 medium gravel 11 - 16 6 60% coarse gravel 12 - 22 very coarse gravel 22 - 32 very coarse gravel 32 - 45 very large cobble 180 - 256 small boulder 256 small boulder 26 - 362 small boulder 26 - 362 small boulder 26 - 362 small boulder 204 - 40% very large boulde 100 bedrock			1		4000/	silt/cla	V I	sand	aravel	, cobble ,	boulder		
very coarse sand 1 - 2 28 very fine gravel 2 - 4 fine gravel 4 - 6 1 fine gravel 6 - 8 3 medium gravel 11 - 16 6 coarse gravel 12 - 13 1 ingre cobble 128 - 180 very coarse gravel 22 - 32 9 very coarse gravel 22 - 32 9 very coarse gravel 45 - 64 10 small boble 64 - 90 7 medium boble 64 - 90 7 medium boble 7 26 - 362 small boulder 266 - 362 small boulder 362 - 512 medium boulder 365 boots 14 skewness -0.21 gravel 56% cobble 8%					100% -		<i>.</i>		Jan				
Very Guald Stand 1 - 2 20 very fine gravel 2 - 4 1 fine gravel 4 - 6 1 fine gravel 6 - 8 3 medium gravel 8 - 11 6 coarse gravel 8 - 21 10 coarse gravel 22 - 32 9 very coarse gravel 32 - 45 11 very coarse gravel 32 - 45 10 small boulder 56 362 small boulder 128 - 180 20% very large boulder 1024 - 2048 very large boulder 1024 - 2048 very large boulder 100 bedrock 100 clay hardpan 100 detritus/wood 100 050 14 artificial 10 050 </td <td></td> <td></td> <td></td> <td></td> <td>90% -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					90% -								
if or gravel 2 - 4 if ne gravel 4 - 6 if ne gravel 6 - 8 medium gravel 8 - 11 6 6 medium gravel 11 - 16 6 60% coarse gravel 12 - 32 9 9 very coarse gravel 22 - 32 9 9 very coarse gravel 22 - 32 9 9 very coarse gravel 23 - 45 1 10 small cobble 64 - 90 7 70% 0 100 11 - 10 100 10 100 11 10 11 10 11 10 11 10 11 10 11 10 110 1000 110 1000 110 100 110 100 110 100 110 100 110 100 111 10<			20									- 25	
fine gravel 6 8 3 medium gravel 8 - 11 6 medium gravel 11 16 60% coarse gravel 12 - 32 9 very coarse gravel 22 - 32 9 very coarse gravel 22 - 45 11 very coarse gravel 45 - 64 10 small boulde 56 - 40% - 40% very large cobble 180 - 266 - 362 small boulder 512 - 1024 - 10% large boulder 1024 - 2048 - 20% very large boulder 1024 - 20% - 0% bedrock					80% -							20	
very coarse gravel 45 64 10 small cobble 64 90 7 medium cobble 90 128 1 large cobble 128 1 very large cobble 180 256 small boulder 256 362 small boulder 362 512 medium boulder 512 10% large boulder 1024 20% large boulder 2048 4096 very large boulder 2048 4096 0.01 0.1 1 100 1000 bedrock					700/								
very coarse gravel 45 64 10 small cobble 64 90 7 medium cobble 90 128 1 large cobble 128 1 very large cobble 180 256 small boulder 256 362 small boulder 362 512 medium boulder 512 10% large boulder 1024 20% large boulder 2048 4096 very large boulder 2048 4096 0.01 0.1 1 100 1000 bedrock	0		-	hai	10% -					İ.		- 20	D
very coarse gravel 45 64 10 small cobble 64 90 7 medium cobble 90 128 1 large cobble 128 1 very large cobble 180 256 small boulder 256 362 small boulder 362 512 medium boulder 512 10% large boulder 1024 20% large boulder 2048 4096 very large boulder 2048 4096 very large boulder 2048 4096 0.01 0.1 1 100 1000 bedrock			-	ert	60% -					1			um
very coarse gravel 45 64 10 small cobble 64 90 7 medium cobble 90 128 1 large cobble 128 1 very large cobble 180 256 small boulder 256 362 small boulder 362 512 medium boulder 512 10% large boulder 1024 20% large boulder 2048 4096 very large boulder 2048 4096 very large boulder 2048 4096 0.01 0.1 1 100 1000 bedrock			-	lij									ber
very coarse gravel 45 64 10 small cobble 64 90 7 medium cobble 90 128 1 large cobble 128 1 very large cobble 180 256 small boulder 256 362 small boulder 362 512 medium boulder 512 10% large boulder 1024 20% large boulder 2048 4096 very large boulder 2048 4096 very large boulder 2048 4096 0.01 0.1 1 100 1000 bedrock				ant .	50% -				/			+ 15	of
very coarse gravel 45 64 10 small cobble 64 90 7 medium cobble 90 128 1 large cobble 128 1 very large cobble 180 256 small boulder 256 362 small boulder 362 512 medium boulder 512 10% large boulder 1024 20% large boulder 2048 4096 very large boulder 2048 4096 0.01 0.1 1 100 1000 bedrock	0			Ŭ Ŭ	400/				Zi				b
$\frac{1}{1} \frac{1}{1} \frac{1}$, , , , , , , , , , , , , , , , , , , ,			pe	40% -								Intic
$\frac{1}{1} \frac{1}{1} \frac{1}$					30%			/		[]		+ 10	les
large cobble 128 - 180 very large cobble 180 - 256 small boulder 256 - 362 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 total particle count: 100 bedrock 0 clay hardpan 0 detritus/wood 0 artificial 0 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 14 050 0.21 050 14 050 14 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>/</td><td></td><td></td><td></td><td></td><td>•</td></t<>								/					•
very large cobble 180 - 256 small boulder 256 - 362 small boulder 362 - 512 medium boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 total particle count: 100 bedrock					20% -			/				5	
small boulder 256 - 362 0% small boulder 362 - 512 0% medium boulder 512 - 1024 0% large boulder 1024 - 2048 0% very large boulder 2048 - 4096 0 bedrock 0 0 clay hardpan 100 100 detritus/wood 0 12 artificial 0 12 artificial 0 12 artificial 0 12 0 100 1000 0 0.1 0.1 1 100 1000 10000 1000 10000 10000 0 0.1 0.1 1 100 1000 10000 10000 1000 1000 10000 10000 1000 1000 10000 10000 1016 1.2 mean 7.6 10 1035 2 0 0.21 1 10 105 14 1000 10000 10000 <	5				100/							T S	
small boulder 362 - 512 0% 0 <td>, , ,</td> <td></td> <td></td> <td></td> <td>10% -</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	, , ,				10% -								
medium boulder 512 - 1024 0.01 0.1 1 10 100 1000 1000 large boulder 1024 - 2048					0%							0	
large boulder 1024 - 2048 particle size (mm) total particle count: 100 bedrock 100 100 1.2 1016 1.2 1035 2 1050 14 105 25 belobelow 100 1016 1.2 1016 1.2 1017 100 1018 1.2 1019 1.4 1010 1.2 1010 1.2 1010 1.2						01	0.1	1	10	100	1000	10000	
very large boulder 2048 - 4096 total particle count: 100 bedrock Size (mm) bedrock D16 clay hardpan D35 detritus/wood D35 artificial D50 045 25	-								particle size (mm)				
Size (mm) Size Distribution Type bedrock D16 1.2 mean 7.6 silt/clay 1% clay hardpan D16 1.2 dispersion 7.5 sand 35% detritus/wood D50 14 skewness -0.21 gravel 56% artificial D65 25 cobble 8%													
Size (mm) Size Distribution Type bedrock D16 1.2 mean 7.6 silt/clay 1% clay hardpan D16 1.2 dispersion 7.5 sand 35% detritus/wood D50 14 skewness -0.21 gravel 56% artificial D65 25 cobble 8%			100										
bedrock D16 1.2 mean 7.6 silt/clay 1% clay hardpan D35 2 dispersion 7.5 sand 35% detritus/wood D50 14 skewness -0.21 gravel 56% artificial D65 25 cobble 8%	total p		100			Size (m	m)	Size	Distribution		Type		
clay hardpan D35 2 dispersion 7.5 sand 35% detritus/wood D50 14 skewness -0.21 gravel 56% artificial D65 25 cobble 8%	bedrock									silt/			
detritus/wood D50 14 skewness -0.21 gravel 56% artificial D65 25 cobble 8%													
artificial D65 25 cobble 8%								•					
								SKEWI	0.21	•			
1000000000000000000000000000000000000		total count:	100			D03 D84	48						
D95 74			100							bou			
Note: XS-5	Note: XS-5					090	14						

Material Size Range (mm) Count silt/clay 0 - 0.062 very fine sand 0.062 - 0.125		Riffle Surface	Pebble C	ount, C	CA-5 (Unnar Reach			Seneca Creek)# of part	icles
fine sand 0.125 0.25 medium sand 0.25 0.5 coarse sand 0.5 1 2 very coarse sand 1 2 31 very coarse sand 1 2 31 very fine gravel 2 -4 -4 fine gravel 4 -6 0 fine gravel 6 -8 3 medium gravel 8 -11 1 medium gravel 11 -16 4 coarse gravel 16 -22 5 coarse gravel 22 -32 6 very coarse gravel 32 -45 13 very coarse gravel 32 -45 13 very coarse gravel 45 -64 13 small cobble 64 -90 8 medium cobble 90 -128 14 large cobble 180 -256 small boulder 256 -362 small boulder 362 -512 medium boulder 512	percent finer than	100% silt/c 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%	lay	sand	1 narti	gravel	cobble cobble 100	boulder	35 30 25 20 15 10 5 0 10000	number of particles
Iarge boulder 512 - 1024 large boulder 1024 - 2048 very large boulder 2048 - 4096 total particle count: 100 bedrock		Size (n D16 D35 D50 D65 D84 D95	nm) 1.4 7.3 28 45 83 110	3.4 12 17 20 29 39	Size Distr mean dispersion skewness		g	Type t/clay 0% sand 33% ravel 45% obble 22% ulder 0%		

Riffle Surface Image: Count Silt/clay O Output silt/clay 0 - 0.062 0.062 very fine sand 0.062 - 0.125 0.125 fine sand 0.125 - 0.25 0.25		Riffle Surfa	ace Pet	ble Count, (CA-5 (Unnam Mainsten		/ to Great Sei	neca Creek)	# of part	ticles
medium sand 0.123 - 0.25		100% <u>sil</u>	/clay _	sand		gravel	cobble	L boulder	25	
coarse sand 0.5 - 1		100 /8							25	
very coarse sand 1 - 2		90%								
very fine gravel 2 - 4		80%					/		- 20	
fine gravel 4 - 6									20	
fine gravel 6 - 8 2	han	70%								–
medium gravel 8 - 11 4	ert	60%								um
medium gravel 11 - 16 6 coarse gravel 16 - 22 23	percent finer than						711			number of particles
coarse gravel 22 - 32 20	sent	50% – –								<u></u>
very coarse gravel 32 - 45 14	ero	40%				/			+ 10	par
very coarse gravel 45 - 64 18	0									ticle
small cobble 64 - 90 7		30%								S
medium cobble 90 - 128 5		20%							- 5	
large cobble 128 - 180 1		2070							Ū	
very large cobble 180 - 256		10%								
small boulder 256 - 362		0%							0	
small boulder 362 - 512		0.01		0.1	1	10	100	1000	10000	
medium boulder 512 - 1024		0.01		0.1	1			1000	10000	
large boulder 1024 - 2048					pa	rticle size (mn	n)			
very large boulder 2048 - 4096										
total particle count: 100		Ci	(100.000)			fuile : . fi e .e		T		
bedrock			: (mm) 3 17		Size Dis mean	31.9		Type ilt/clay 0%	<u> </u>	
clay hardpan		D35	-			1.9	3	sand 0%		
detritus/wood		D30			dispersion skewness	0.06		gravel 87%		
artificial		D50			SKEWIIESS	0.00		cobble 13%		
total count: 100		D03						oulder 0%		
		D04					D			
Note: XS-8			. 51							

3) Bulk Sample Sieve Analysis

Two samples may be entered below. Select sample type for each. • Bed Sub-pavement Bed Sub-pavement CA-5 (Unnamed Tribu -wt of particles passing sieve Sieve & Sieve Sieve Sample Retained Passing sand cobble gravel Weight Weight on Sieve Sieve 100% 5000 Size (g) (mm) (g) (g) 90% 4500 5159.61 4309 Bucket 850.485 48% -------80% 4000 1247.38 2239.61 992 11% 48% 48% 3500 weigh 3000 gh 481.942 1389.13 907 10% 11% 59% 70% percent finer than 510.291 1190.68 680 8% 10% 69% 60% 1190.68 8 510.291 680 8% 8% 76% 50% 2500 윽 16 538.641 1275.73 737 8% 8% 84% 2000 parti 1275.73 8% 8% 92% 31.5 538.6405 737 40% 63 538.641 0 0% 8% 100% 1500 🗑 30% 20% 1000 10% 500 0% 0 0.1 1 10 100 1000 particle size (mm) 9043 total wt retained in sieves: Size (mm) D16 D65 3.1 sand 100% ----16 Note: XS-2 D35 D84 ---D50 1.2 D95 41

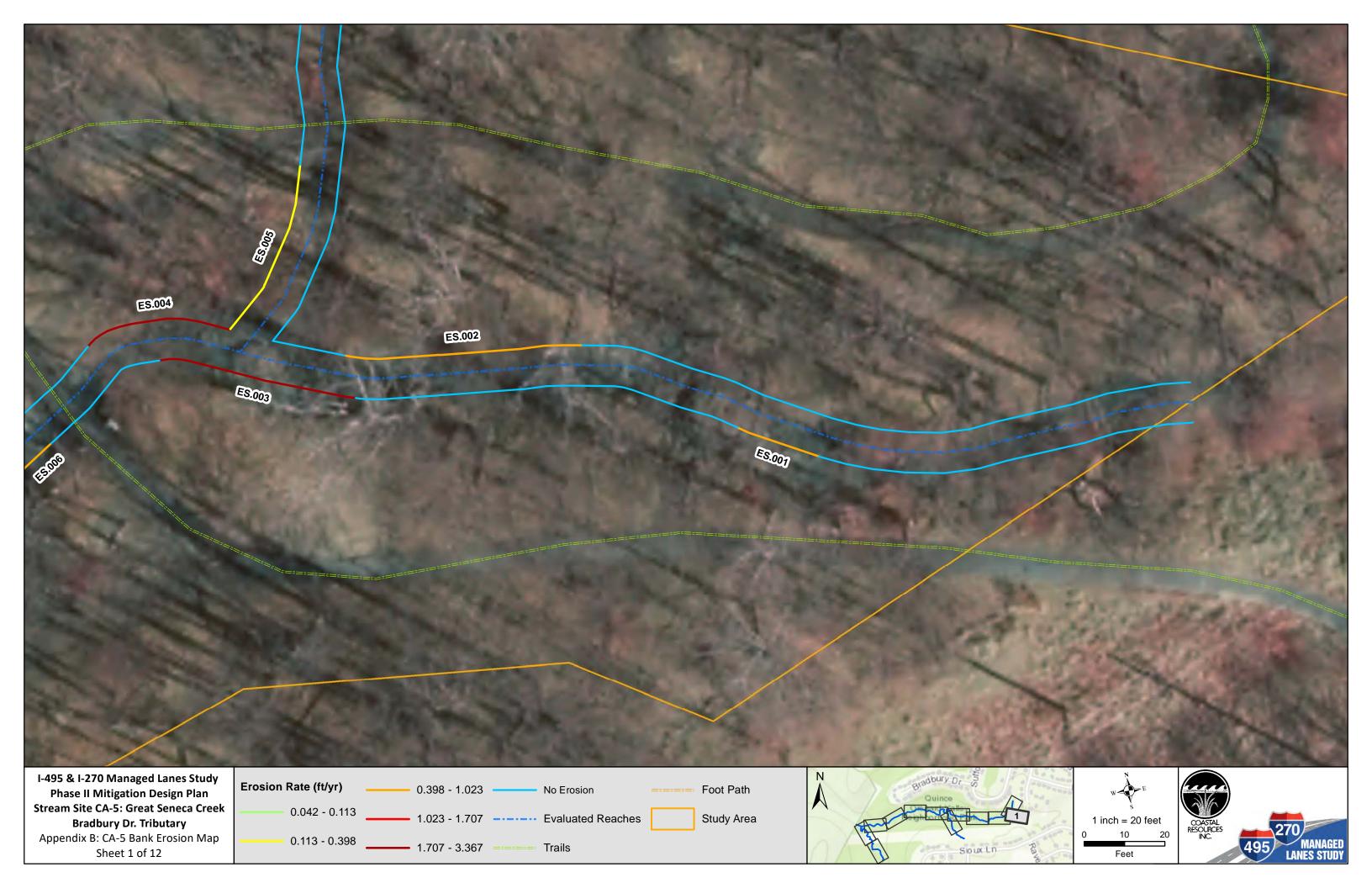
3) Bulk Sample Sieve Analysis Two samples may be entered below. Select sample type for each. • Bed Sub-pavement Bed Sub-pavement CA-5 (Unnamed Tribut Sieve & Sieve Sieve Sample Retained Passing sand cobble gravel Weight Weight on Sieve Sieve 100% Size (mm) (g) (g) (g) 90% 6520.39 Bucket 850.485 5670 47% -------80% 1247.38 2778.25 1531 13% 47% 47% 481.942 1219.03 737 6% 13% 60% 70% percent finer than 510.291 1275.73 765 6% 6% 66% 60% 510.291 1275.73 765 6% 72% 6% 50% 16 538.641 1219.03 680 6% 6% 79% 10% 6% 84% 31.5 538.6405 1729.32 1191 40% 63 538.641 1247.38 709 6% 10% 94% 30% 100 538.641 0% 6% 100% 0 20% 10% 0% 0.1 1 10 100 particle size (mm) total wt retained in sieves: 12049 Size (mm) D16 D65 3.6 ----31 Note: XS-6 D35 D84 ---D50 1.2 D95 68

-wt of particles passing sieve

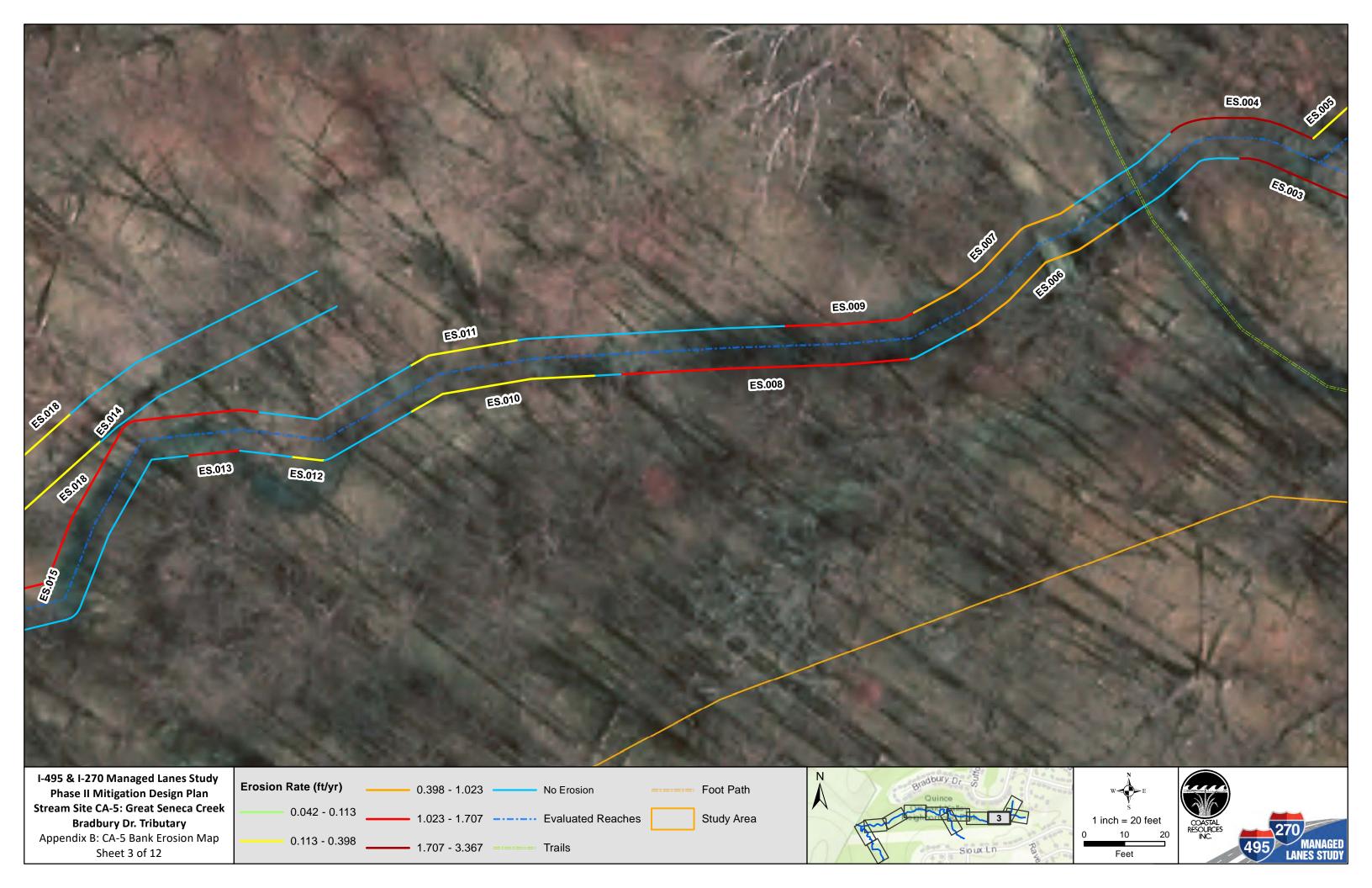
6000

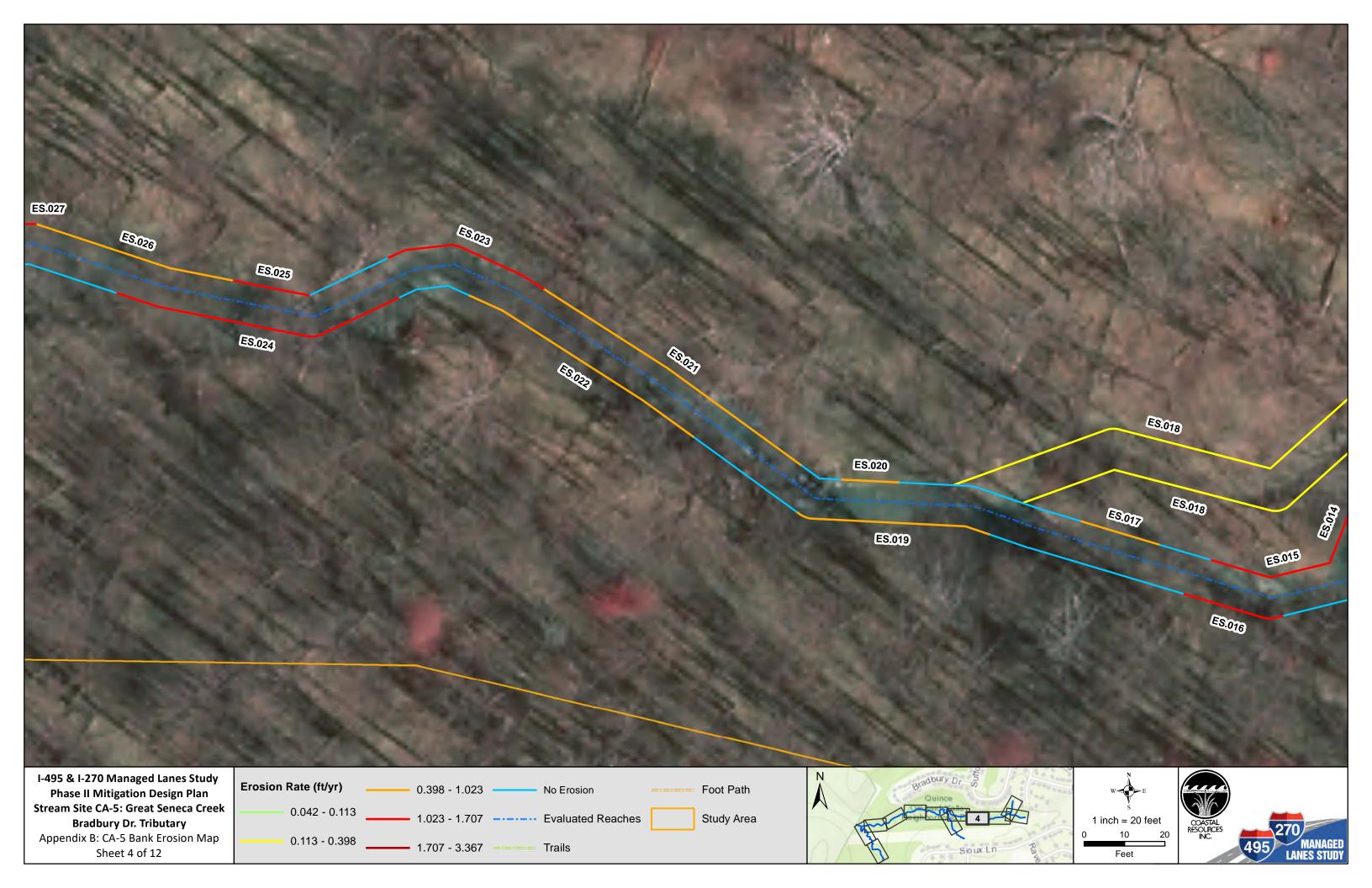
5000

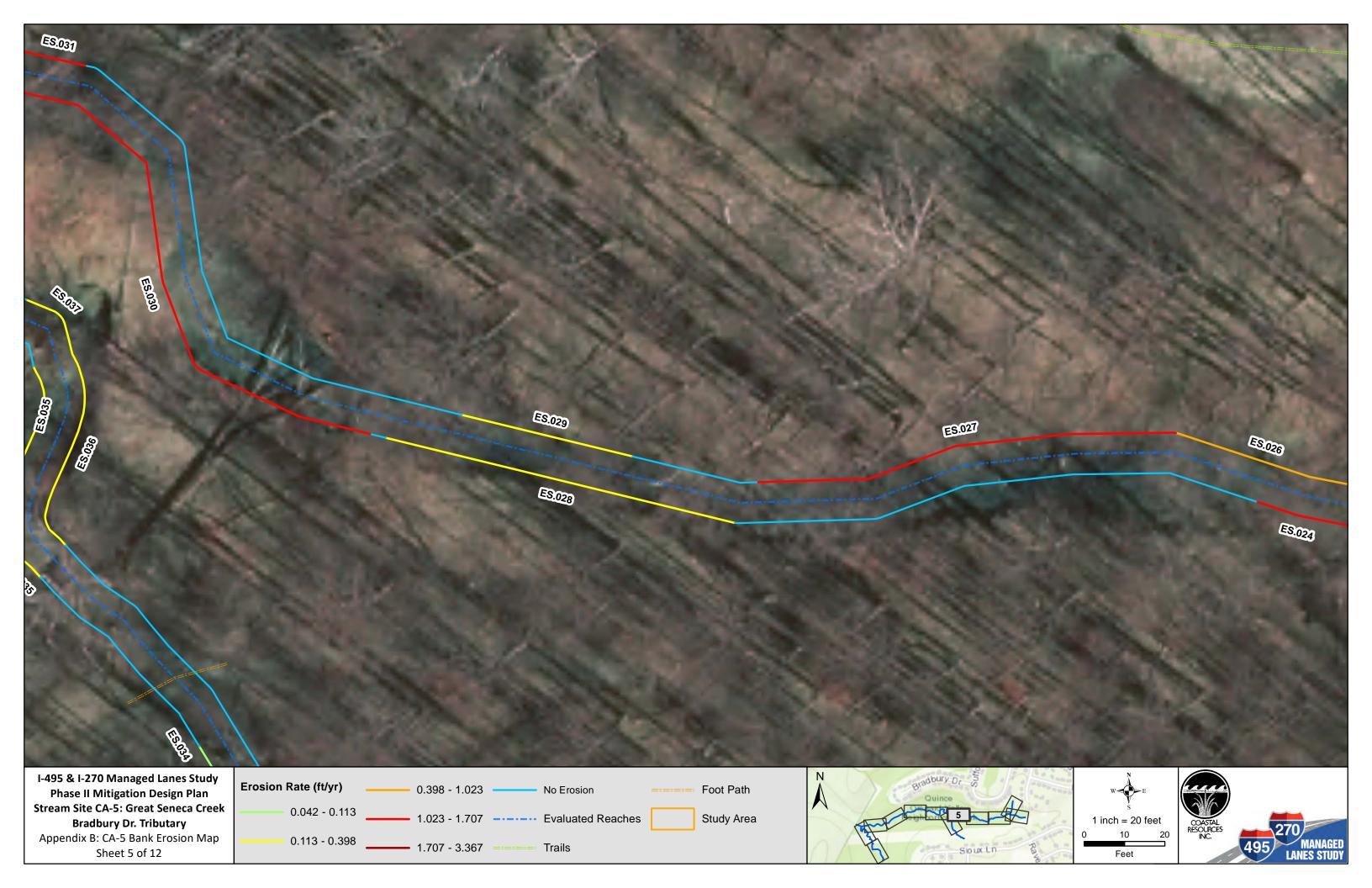
4000 weight

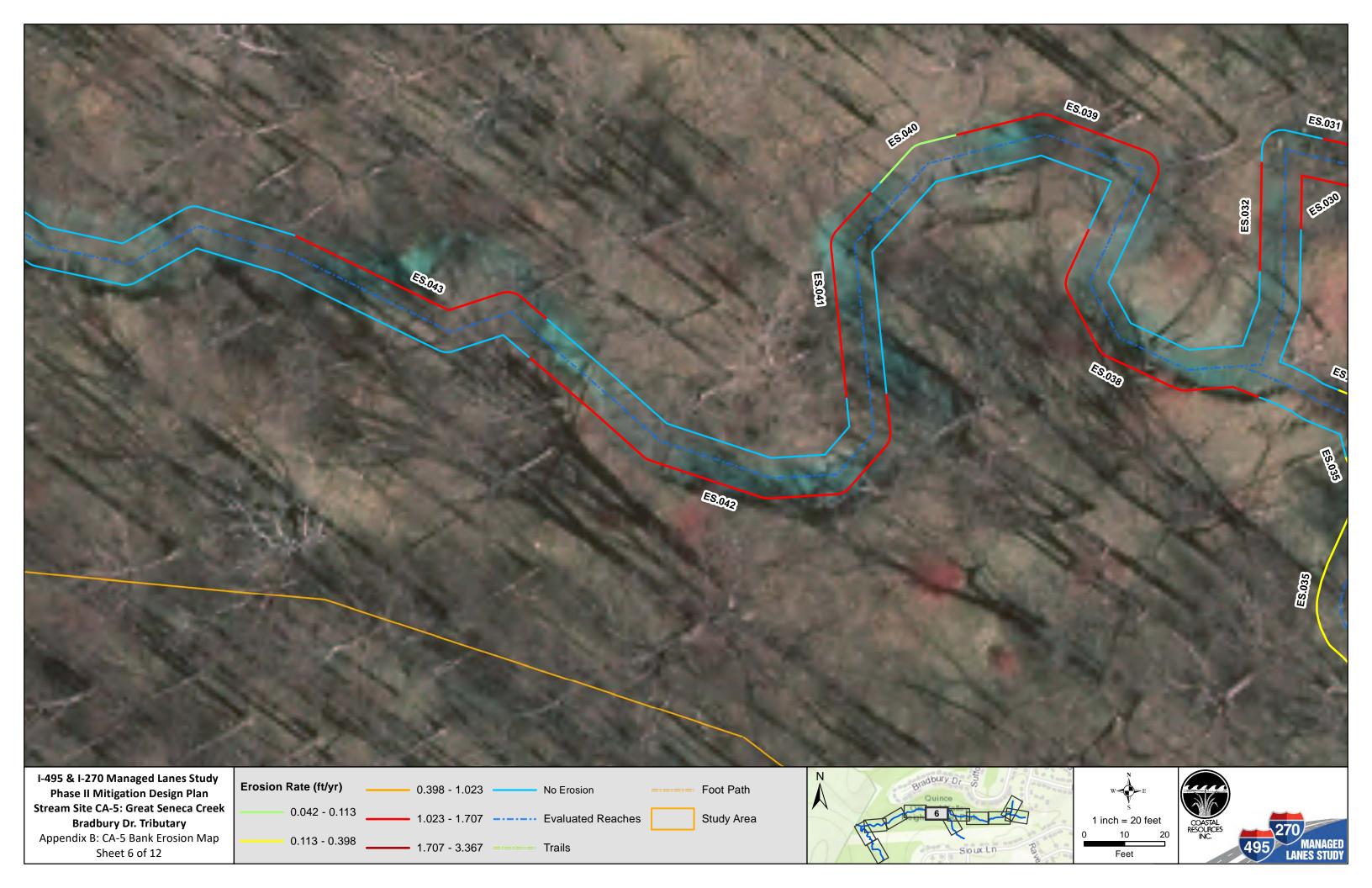

3000 particles

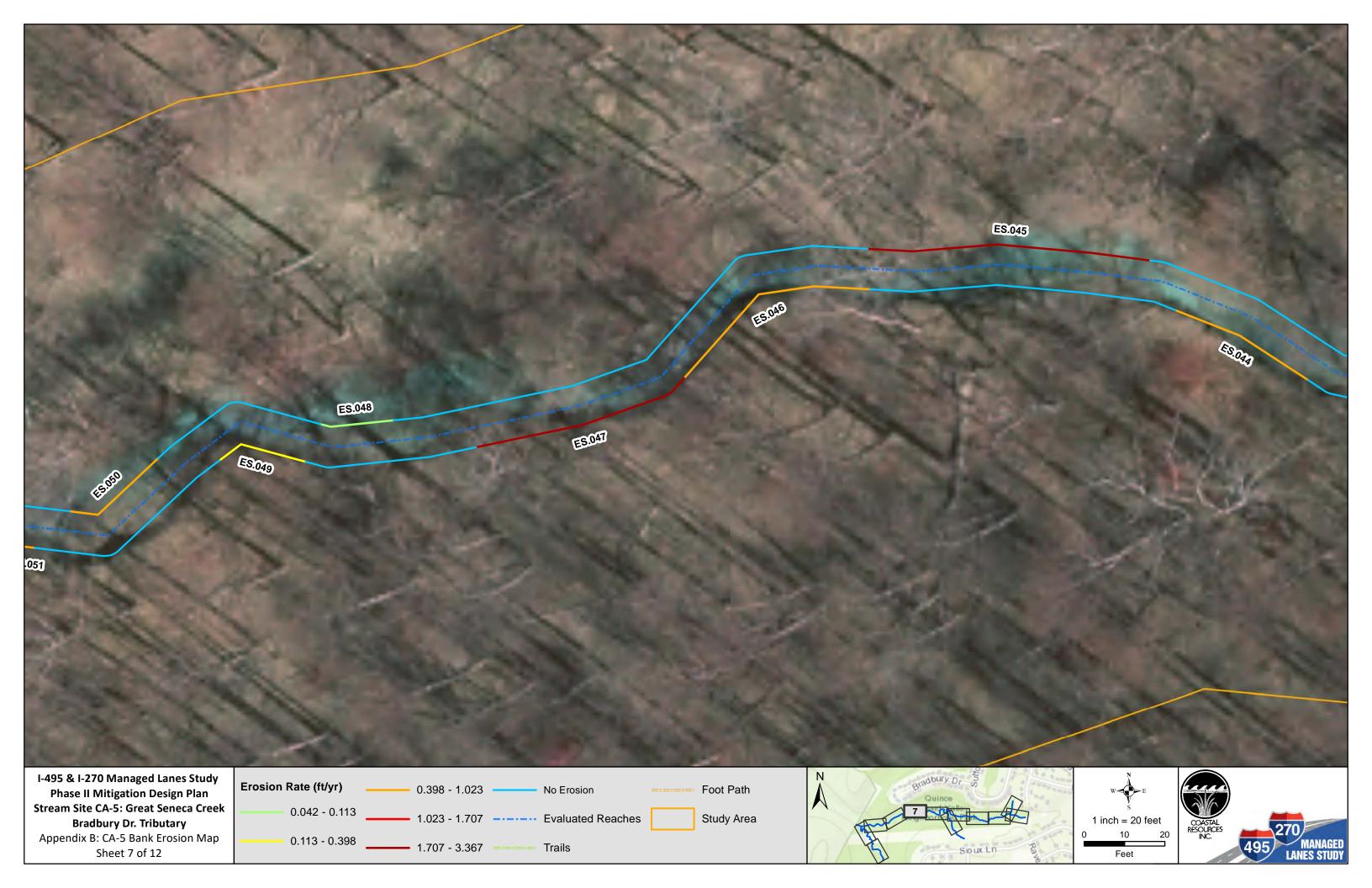
1000

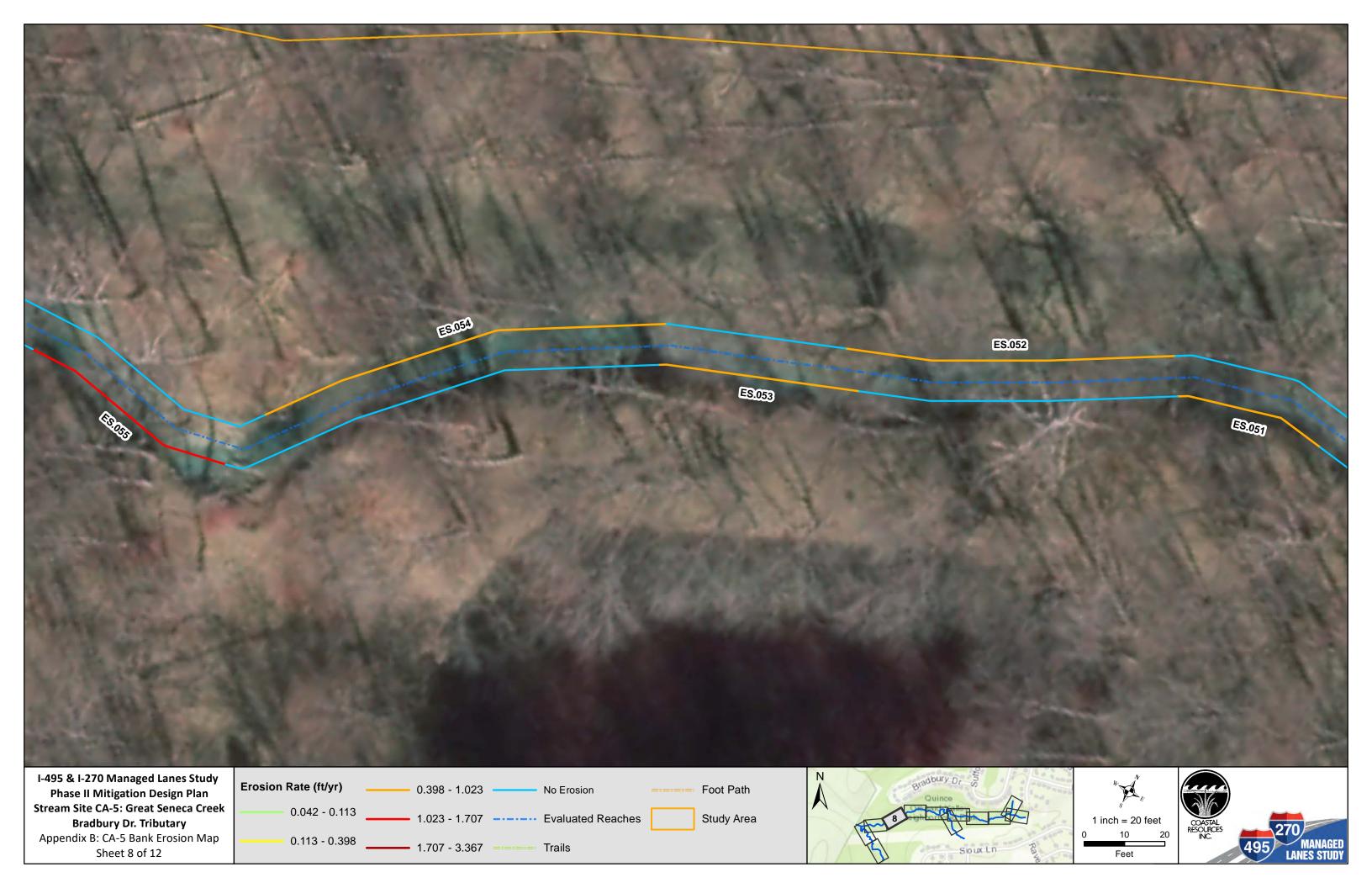

0

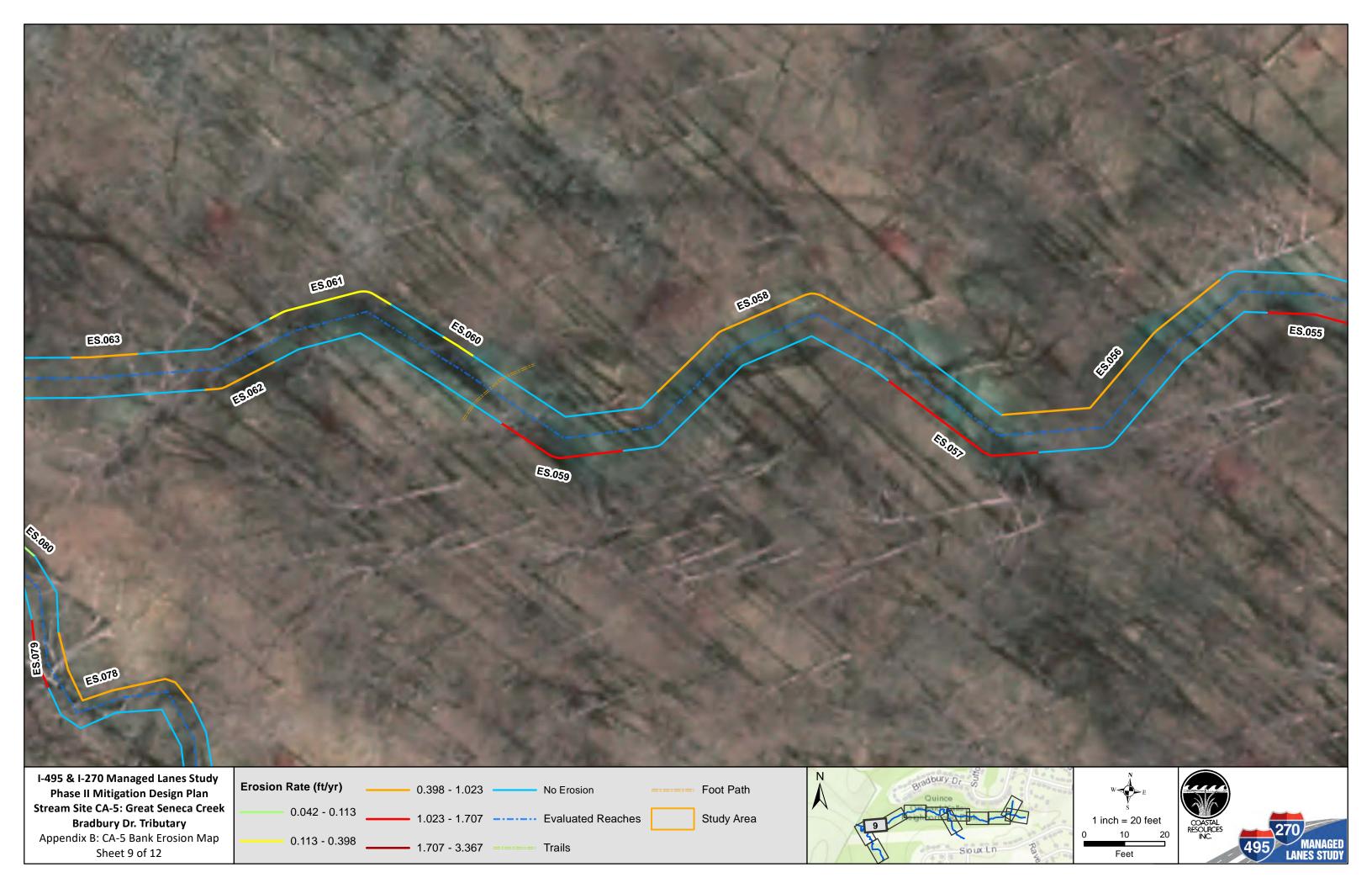

1000

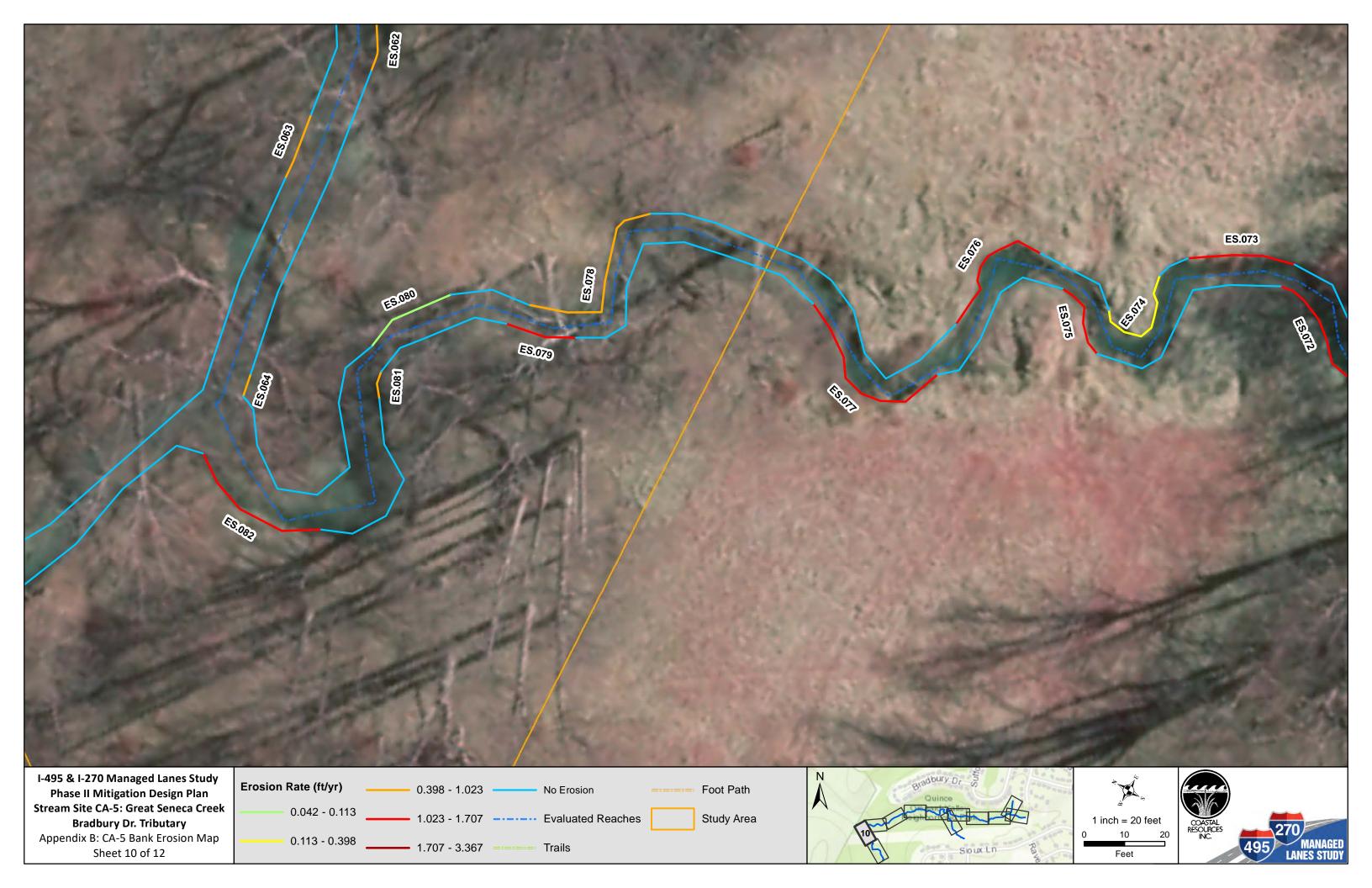

sand 100%

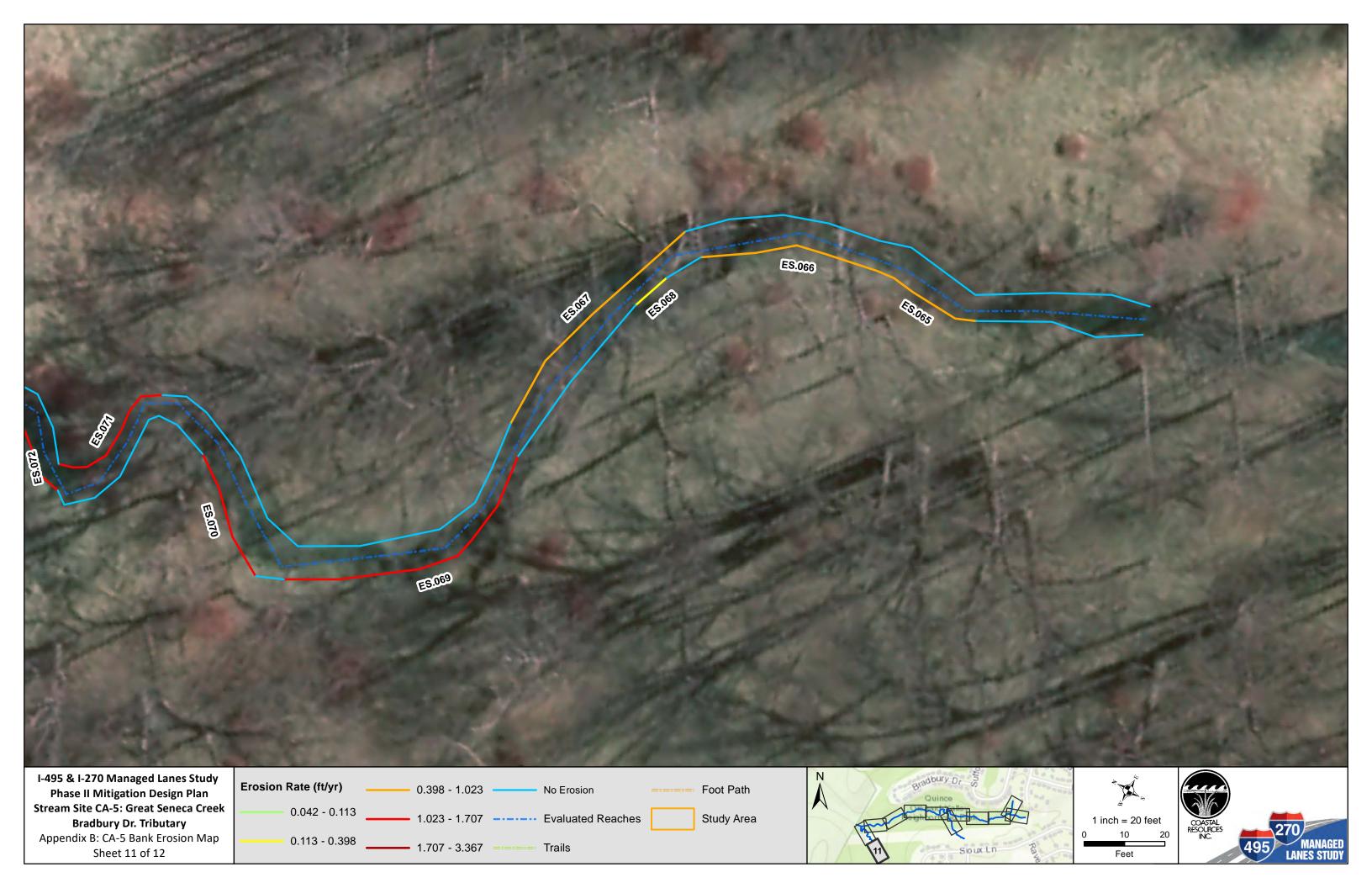


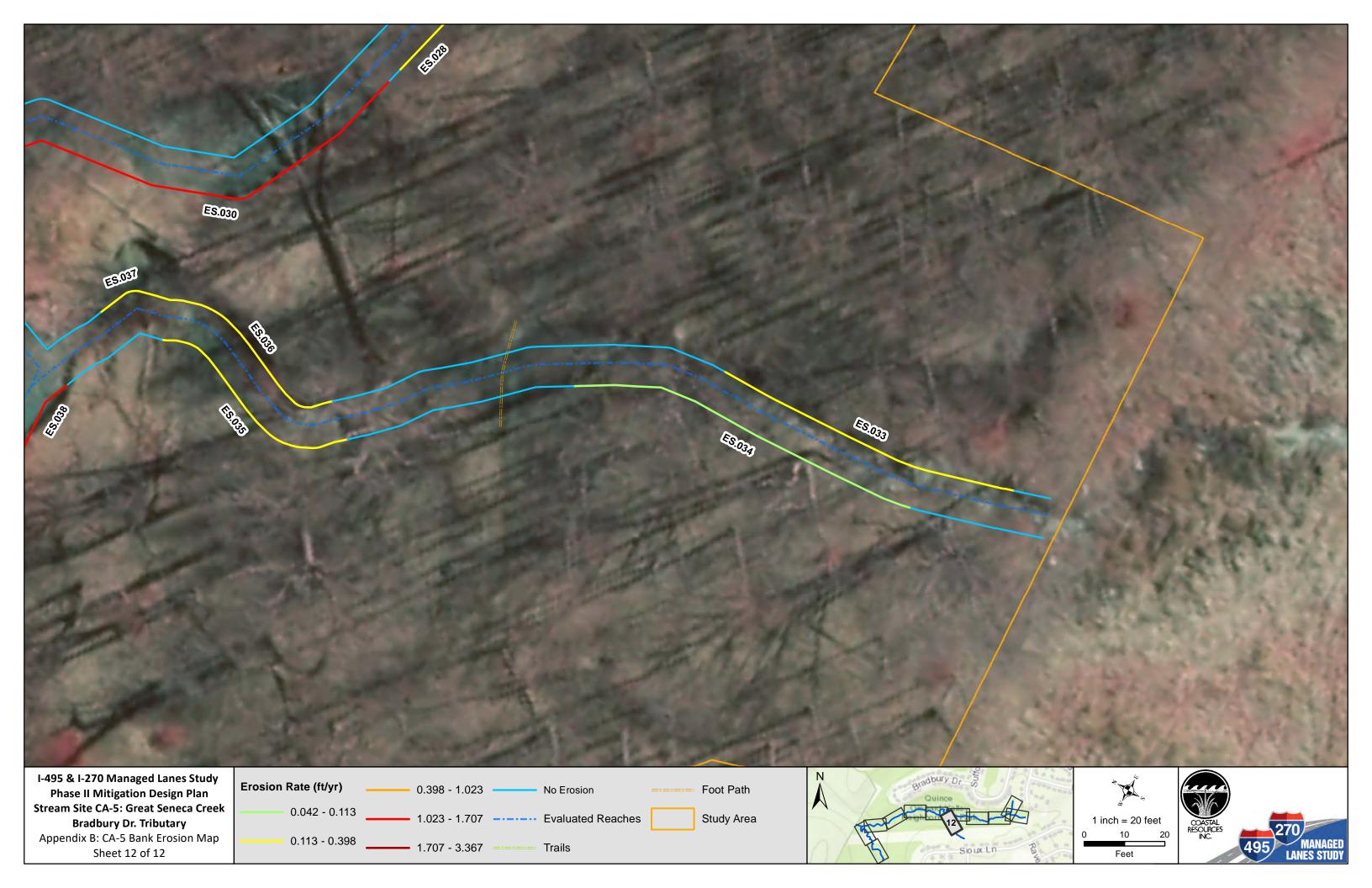












CA-5 BANCS Assessment

			Step 1				USFWS Draft DC					
			A. Study		NBS		NDC		Function Data	C - d'an ant	Sediment	Sediment
ID	Length	Bank	Bank	BEHI Rating	Method	NBS Rating	NBS x- value	Area (sf)	Erosion Rate	Sediment Load (ton/yr)	Load per ft (ton/yr/ft)	Load per ft (ton/yr/ft)
ES.001	21.3687	Left	Height 4.0	Very High	1	High	4	85.474984	(ft/yr) 1.023	5.466	0.256	0.256
ES.001	59.0784	Right	4.0 3.0	High	1	Moderate	3	177.2352	0.638	7.068	0.120	0.230
ES.002	49.7592	Left	4.0	Very High	1	Extreme	6	199.03673	2.631	32.735	0.658	0.120
ES.003	37.4131	Right	4.0	High	1	Extreme	6	149.65224	2.631	24.613	0.658	0.658
ES.004	45.1667	Right	4.0	Moderate	1	Moderate	3	180.6668	0.303	3.424	0.076	0.056
ES.005	46.6302	Left	4.0	High	1	Moderate	3	186.52083	0.638	7.438	0.160	0.160
ES.007	48.6425	Right	4.0 5.0	Very High	1	Moderate	3	243.21247	0.638	9.699	0.199	0.100
ES.007	71.9345	Left	3.0	High	1	Very High	5	243.21247	1.641	22.132	0.308	0.308
ES.009	32.6549	Right	3.0	Very High	1	Very High	5	97.964784	1.641	10.047	0.308	0.308
ES.010	47.3352	Left	3.0	Moderate	1	Moderate	3	142.00558	0.303	2.691	0.057	0.057
ES.010	27.7578	Right	3.0	Moderate	1	Moderate	3	83.273271	0.303	1.578	0.057	0.057
ES.011	8.20068	Left	1.0	High	1	Low	2	8.2006815	0.398	0.204	0.025	0.025
ES.012	12.9206	Left	3.0	High	1	Very High	5	38.761942	1.641	3.975	0.308	0.308
ES.013	70.9233	Right	2.0	Very High	1	Very High	5	141.84666	1.641	14.547	0.205	0.205
ES.014 ES.015	37.1635	Right	4	Very High	1	Very High	5	141.84000	1.641	15.245	0.203	0.203
ES.015	26.0118	Left	5	High	1	Very High	5	130.05919	1.641	13.338	0.513	0.410
ES.010	20.6506	Right	3	High	1	Moderate	3	61.951831	0.638	2.470	0.120	0.120
ES.017 ES.018	100.339	Left	4	Very High	1	Very Low	1	401.35471	0.038	6.223	0.120	0.120
ES.018 ES.018	100.339	Right	4	Very High	1	Very Low	1	439.12919	0.248	6.809	0.062	0.062
ES.018 ES.019	48.7918	Left	4	High	1	High	4	146.37532	1.023	9.361	0.082	0.082
ES.019 ES.020	48.7918 14.7038	Right	3	Very High	1	Moderate	4	44.111338	0.638	1.759	0.192	0.192
ES.020 ES.021	77.6837	Right	6	High	1	High	5 4	466.10226	1.023	29.807	0.120	0.120
ES.021 ES.022		-		-		-	-		1.023		0.384	0.384
ES.022 ES.023	66.2733 41.7642	Left Right	6 5	High Very High	1 1	High Very High	4 5	397.63962 208.82099	1.641	25.429 21.416	0.384 0.513	0.384 0.513
ES.023 ES.024	41.7642 73.7561	Left	5		1		5	368.78028	1.641	37.820	0.513	0.513
ES.024 ES.025	19.8365		5 4	Very High Extreme	1	Very High Moderate	3	79.34612	1.641	37.820 8.464	0.513	0.513
ES.025 ES.026	19.8365 50.6409	Right Bight	4		1	Moderate	3	202.5634	0.638	8.464 8.078	0.427	0.427
		Right		Very High								
ES.027	105.51	Right	4	Extreme	1	Moderate	3	422.03882	1.707	45.019	0.427	0.427
ES.028	88.9888	Left	4	Moderate	1	Moderate	3	355.95502	0.303	6.745	0.076	0.076
ES.029	43.492	Right	4	Moderate	1	Moderate	3	173.96818	0.303	3.297	0.076	0.076
ES.030	157.24	Left	4	Very High	1	Very High	5	628.96177	1.641	64.503	0.410	0.410
ES.031	19.5329	Right	8	Very High	1	Very High	5	156.26339	1.641	16.026	0.820	0.820
ES.032	27.4216	Right	5	Moderate	1	Very High	5	137.10779	1.641	14.061	0.513	0.513
ES.033	78.2208	Right	3	High	1	Very Low	1	234.66247	0.248	3.639	0.047	0.047
ES.034	90.5682	Left	2	Moderate	1	Very Low	1	181.13636	0.042	0.479	0.005	0.005

CA-5 BANCS Assessment

			Step 1				USFWS Draft DC					
			A. Study Bank		NBS		NBS x-		Erosion Rate	Sediment	Sediment Load per ft	Sediment Load per ft
ID	Length	Bank	Height	BEHI Rating	Method	NBS Rating	value	Area (sf)	(ft/yr)	Load (ton/yr)	-	(ton/yr/ft)
ES.035	57.6131	Left	7	Very High	1	Very Low	1	403.29177	0.248	6.253	0.109	0.109
ES.036	55.0643	Right	, 7	High	1	Very Low	1	385.45029	0.248	5.977	0.109	0.109
ES.037	15.9244	Right	6	Very High	1	Very Low	1	95.546326	0.248	1.481	0.093	0.093
ES.038	76.0911	Left	6	Very High	1	Very High	5	456.54647	1.641	46.821	0.615	0.615
ES.039	61.6049	Right	8	Very High	1	Very High	5	492.83894	1.641	50.543	0.820	0.820
ES.040	23.5436	Right	1	Low	1	Moderate	3	23.543645	0.077	0.113	0.005	0.005
ES.041	55.1881	Right	4	High	1	Very High	5	220.7526	1.641	22.639	0.410	0.410
ES.042	118.102	Left	5	Very High	1	Very High	5	590.50978	1.641	60.560	0.513	0.513
ES.042	69.9318	Right	5	Very High	1	Very High	5	349.65921	1.641	35.859	0.513	0.513
ES.044	37.2285	Left	4	High	1	High	4	148.91387	1.023	9.523	0.256	0.256
ES.045	70.2876	Right	5	Extreme	-	High	4	351.43797	2.397	52.658	0.749	0.749
ES.046	55.227	Left	4	High	1	High	4	220.90804	1.023	14.127	0.256	0.256
ES.047	55.5298	Left	4	Extreme	1	Very High	5	222.11904	3.367	46.749	0.842	0.842
ES.048	18.3091	Right	3	Moderate	1	Low	2	54.927413	0.113	0.389	0.021	0.021
ES.049	23.2507	Left	4	High	1	Low	2	93.002612	0.398	2.313	0.099	0.099
ES.050	27.5597	Right	2	Moderate	1	High	4	55.119331	0.812	2.796	0.101	0.101
ES.051	38.3444	Left	4	Very High	1	Moderate	3	153.37753	0.638	6.116	0.160	0.160
ES.052	81.9304	Right	5	High	1	Moderate	3	409.6519	0.638	16.336	0.199	0.199
ES.053	50.2488	Left	6	High	1	High	4	301.49252	1.023	19.280	0.384	0.384
ES.054	103.503	Right	4	High	1	Moderate	3	414.01135	0.638	16.510	0.160	0.160
ES.055	56.4354	Left	4	High	1	Very High	5	225.74177	1.641	23.151	0.410	0.410
ES.056	67.6649	Right	4	High	1	High	4	270.65956	1.023	17.309	0.256	0.256
ES.057	43.6086	Left	4	High	1	Very High	5	174.4345	1.641	17.889	0.410	0.410
ES.058	64.5109	Right	5	Very High	1	High	4	322.55457	1.023	20.627	0.320	0.320
ES.059	32.9346	Left	4	High	1	Very High	5	131.73845	1.641	13.510	0.410	0.410
ES.060	9.15345	Right	2	Low	1	High	4	18.306903	0.315	0.361	0.039	0.039
ES.061	32.2273	Right	4	High	1	Low	2	128.90938	0.398	3.205	0.099	0.099
ES.062	19.3017	Left	4	Very High	1	High	4	77.206972	1.023	4.937	0.256	0.256
ES.063	16.8808	Right	3	Moderate	1	High	4	50.642273	0.812	2.569	0.152	0.152
ES.064	5.88223	Left	2	High	1	Moderate	3	11.76446	0.638	0.469	0.080	0.080
ES.065	28	Left	4	High	1	High	4	112	1.023	7.162	0.256	0.256
ES.066	44.6	Left	6	High	1	Moderate	3	267.6	0.638	10.671	0.239	0.239
ES.067	65	Right	3	Moderate	1	High	4	195	0.812	9.893	0.152	0.152
ES.068	10	Left	3	Moderate	1	Moderate	3	30	0.303	0.569	0.057	0.057
ES.069	73	Left	5	High	1	Very High	5	365	1.641	37.433	0.513	0.513

CA-5 BANCS Assessment

			Step 1				USFWS Draft DC					
			A. Study Bank		NBS		NBS x-		Erosion Rate	Sediment	Sediment Load per ft	Sediment Load per ft
ID	Length	Bank	Height	BEHI Rating	Method	NBS Rating	value	Area (sf)	(ft/yr)	Load (ton/yr)	(ton/yr/ft)	(ton/yr/ft)
ES.070	33	Left	6	Very High	1	Very High	5	198	1.641	20.306	0.615	0.615
ES.071	35	Right	3	Very High	1	Very High	5	105	1.641	10.768	0.308	0.308
ES.072	31	Left	4	High	1	Very High	5	124	1.641	12.717	0.410	0.410
ES.073	27	Right	5	High	1	Very High	5	135	1.641	13.845	0.513	0.513
ES.074	28	Right	3	Moderate	1	Moderate	3	84	0.303	1.592	0.057	0.057
ES.075	20	Left	3	Moderate	1	Very High	5	60	1.641	6.153	0.308	0.308
ES.076	34	Right	4	High	1	Very High	5	136	1.641	13.947	0.410	0.410
ES.077	48	Left	5	Very High	1	Very High	5	240	1.641	24.613	0.513	0.513
ES.078	49	Right	3	Moderate	1	High	4	147	0.812	7.458	0.152	0.152
ES.079	18	Left	4	High	1	Very High	5	72	1.641	7.384	0.410	0.410
ES.080	24	Right	3	Low	1	Moderate	3	72	0.077	0.345	0.014	0.014
ES.081	7	Left	3	High	1	Low	2	21	0.398	0.522	0.075	0.075
ES.082	38	Left	4	High	1	Very High	5	152	1.641	15.588	0.410	0.410
									TOTALS	1207.640	23.881	23.887

APPENDIX C. NATURAL RESOURCES INVENTORIES

MEMORANDUM

25 Old Solomons Island Road Annapolis, MD 21401 410-956-9000 410-956-0566 (Fax)

Date: January 15,2021

Subject: I-495/I-270 Stream and Floodplain Wetland Mitigation Site No. CA-5 Wetland Delineation

Introduction

Coastal Resources, Inc. (CRI), under contract to the Maryland State Highway Administration (SHA), has completed wetland and waterway delineations at the I-495/I-270 Stream and Floodplain Wetland Mitigation Site No. CA-5 project in Montgomery County, Maryland. Mitigation Site No CA-5 is a stream and floodplain restoration project proposed by SHA in order to prepare Phase II Mitigation Documents with permit agency and landowner support, obtain PRD Concept Approval, and prepare the PRD Site Development Plan submittal. Field investigations were conducted on March 24th, March 27th, and November 10th, 2020.

Study Area Description

The study area consists of a buffer along the proposed restoration reach, which ranges in width from 50 to 200 feet along the stream channel and includes approximately 3,562 linear feet of an unnamed tributary to Great Seneca Creek and two tributaries. The study area is located in Gaithersburg, Maryland and is bound by Suffolk Terrace and Bradbury Lane to the north and a powerline ROW to the south (see **Appendix A** – Vicinity Map). Land use classifications within and adjacent to the study area include institutional, deciduous forest, and medium density residential. The proposed stream restoration occurs within the Seneca Creek watershed (MDE 8-digit 02140208), within the Piedmont Plateau physiographic province (MGS, 2008).

Methods

The study area was field investigated to identify and locate boundaries of waters of the United States (U.S.), including wetlands. Wetland boundaries were flagged with pink wetland delineation survey ribbon labeled consecutively with an alphanumeric designation. Each flag was then traditionally surveyed. Stream boundaries were delineated using detailed topographic survey.

Prior to the field investigation, possible wetland areas were located using the United States Fish & Wildlife Service (USFWS) National Wetland Inventory and Maryland Department of Natural Resources (NWI/MDNR) wetland maps and the Natural Resource Conservation Service (NRCS) Soil Survey Maps for Montgomery County, Maryland.

Wetlands were identified in accordance with the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont Region, Version 2.0* (USACE 2010). This methodology requires interpretation of a three-parameter approach representing hydrology, vegetation, and soils, which are known indicators of a wetland. Soils were sampled using three-inch diameter Dutch augers and Munsell Color charts were used to identify color (Munsell 1975). Wetland Determination Data Forms (USACE 2010) were completed during the field work in order to describe wetland characteristics and provide a rationale for delineation of the wetland boundary. Stream characteristics were recorded for each identified watercourse on a stream field datasheet. Each wetland and watercourse were photographed, and a photo log was compiled (see **Appendix C**).

All identified waters of the U.S., including wetlands, were classified according to a *Classification* of Wetland and Deep-Water Habitats in the United States (USFWS 1979). The wetland indicator status of the observed vegetation was identified using the National Wetland Plant List (NWPL) (Lichvar 2016).

Results

During the field investigations, 18 waters of the U.S., including wetlands, were identified within the study area. The surveyed locations of these resources are shown on the detailed maps provided in **Appendix B**. All wetland and stream field datasheets can be found in **Appendix D**. The delineated systems are described below.

An agency field meeting with the Maryland Department of the Environment (MDE) and the U.S. Army Corps of Engineers (USACE) was conducted on January 14, 2021 to review the boundaries of the delineated wetlands and waters within the study area. The discussion points of the agency field review are included below for each system.

Watercourse 1 (WC1) is perennial stream with a gravel, sand, and organic substrate (R3UB1/2/4). WC1 is located in the eastern portion of the study area and flows west from a hillside seep into Watercourse 2 (WC2). The average channel width and depth are four feet and one foot, respectively. During the site visit, the average water depth was four inches. Overall, habitat complexity was considered low. Flow was almost entirely shallow run and the stream lacked stable habitat. Bank erosion was considered minor along both banks which were well vegetated. Approximately 90 percent of the channel was shaded by woody species. *MDE and USACE requested the channel be changed from intermittent to a perennial stream as it appeared to be receiving hydrology from a groundwater seep at the time of the agency review meeting.*

Watercourse 2 (WC2) is an ephemeral and perennial tributary to Watercourse 7 (WC7) with a cobble, gravel, and sand substrate (R3UB1/2). WC2 is located in the eastern portion of the study area and flows south from a culvert into WC7. The average channel width is four feet and channel depth ranges from one to three feet, respectively. During the site visit, the average water depth was variable throughout the reach, ranging from one to six inches. Habitat complexity was considered poor due to a general lack of stable habitat and having primarily shallow runs. Overall, bank erosion was considered minor with a small area of scour downstream of the foot bridge. Approximately 90 percent of the channel was shaded by woody species. *MDE and USACE considered the ephemeral channel non-jurisdictional. Furthermore, MDE and USACE requested the intermittent portion be changed to perennial as the channel was receiving flow from WC1*

which the agencies classified as perennial during the agency review meeting.

Watercourse 3 (WC3) is an intermittent tributary to WC7 with a cobble, gravel, and sand substrate (R4SB3/4). WC3 is located in the eastern portion of the study area and flows southwest from Wetland 2 (WL2) into WC7. The average channel width and depth are six and three feet, respectively. During the site visit, the average water depth was two inches. Habitat complexity was considered poor, as instream habitat was lacking. Overall, bank erosion was severe as the banks are actively eroding. Approximately 70 percent of the channel was shaded by woody species. *MDE and USACE accepted this system as delineated*.

Watercourse 4 (WC4) is an intermittent tributary to WC7 with a cobble, gravel, and sand substrate (R4SB3/4). WC4 is located in the western portion of the study area and flows southwest from outside the study area into WC7. The average channel width and depth are four feet and one foot, respectively. During the site visit, the average water depth was four inches. Habitat complexity was considered moderate with many leaf packs and riffle-run complexes; however, the stream was lacking stable cover. Overall, bank erosion was moderate as portions of both banks were actively eroding. Approximately 80 percent of the channel was shaded by woody species. *MDE and USACE accepted this system as delineated*.

Watercourse 5 (WC5) is an intermittent tributary to WC7 with a gravel and sand substrate (R4SB3/4). WC5 is located in the western portion of the study area and flows west from Wetland 3 (WL3) to WC7 outside the study area. The average channel width and depth are three feet and one foot, respectively. During the site visit, the average water depth was three inches. Habitat complexity was considered marginal as there were shallow flows, but the stream had some root wads and leaf packs throughout. Overall, bank erosion was moderate as there was some scour throughout. Approximately 60 percent of the channel was shaded by woody species. *MDE and USACE accepted this system as delineated*.

Watercourse 6 (WC6) is a perennial tributary to WC7 with a cobble, gravel, and sand substrate (R3UB1/2). WC6 is located in the western portion of the study area and flows northwest from outside the study area into WC7. The average channel width ranges from eight to 20 feet and the channel depth is four feet. During the site visit, the average water depth ranged from one to 10 inches. Habitat complexity was considered marginal as there was some stable woody debris and undercut banks, however the substrate within the riffles was mostly gravel. Overall, bank erosion was moderate but severe along meanders. Approximately 60 percent of the channel was shaded by woody species. *MDE and USACE accepted this system as delineated*.

Watercourse 7 (WC7) is an unnamed, perennial tributary to Great Seneca Creek with a cobble, gravel, and sand substrate (R3UB1/2). WC7 enters the study area at the eastern end and flows west through the study area. The average channel width ranges from eight to 20 feet and the channel depth is four feet. During the site visit, the average water depth ranged from one to 12 inches. Habitat complexity was considered marginal as there was limited flow diversity, short riffles with mostly gravel substrate, and some large woody debris. Overall, bank erosion was moderate throughout most of the stream, however severe erosion was present along meanders and at some confluences with tributaries. Approximately 75 percent of the channel was shaded by woody species. *MDE and USACE accepted this system as delineated*.

Watercourse 8 (WC8) is an intermittent tributary to WC7 with boulder, cobble, and gravel substrate (R4SB3/4). WC8 flows northwest from an old farm pond (WC10) into WC7. The average channel width and depth ranges from one to two feet. During the site visit, the average water depth was two inches. Habitat complexity was considered marginal as there was some larger boulders however the stream is subject to intermittent flows and lacked other stable habitat. Overall, bank erosion was minor with slight erosion present at the confluence with WC7. Approximately 75 percent of the channel was shaded by woody species. *MDE and USACE accepted this system as delineated*.

Watercourse 9 (WC9) is an ephemeral and intermittent tributary to WC7 with cobble, gravel, and sand substrate (R4SB3/4). WC9 flows north from outside the study area into WC7. The average channel width ranges from four to 15 feet and the channel depth ranges from one to seven feet. During the site visit, the average water depth ranged from zero to three inches. Habitat complexity was considered poor as the stream was lacking stable habitat and is subject to ephemeral and intermittent flows. Overall, bank erosion was severe in the intermittent portion of the stream and minor to moderate in the ephemeral portion. In addition, a water or sewer line was exposed within the intermittent portion of the stream. Approximately 75 percent of the channel was shaded by woody species. USACE confirmed the ephemeral portion is non-jurisdictional and will not be regulated; MDE concurred. Both agencies agreed with the delineated system.

Watercourse 10 (WC10) is an old farm pond that is classified as palustrine open water (POW). This pond is in the southern floodplain of WC7 and drains north to WC8. *MDE and USACE accepted this system as delineated*.

Wetland 1 (WL1) is a toe-of-slope seep located in the eastern portion of the study area that abuts WC1. Test plot WTP-1 characterizes this system, which is classified as a palustrine forested wetland with a seasonally saturated water regime (PFO1B). Primary hydrologic indicators observed during the site visit included a high water table, saturation, and water-stained leaves. Based on the dominance test for hydrophytic vegetation, 63 percent of the dominant species within the test plot were considered OBL, FACW, or FAC. Dominant species within the sampling plot included red maple (*Acer rubrum*), ash-leaf maple (*Acer negundo*), northern spicebush (*Lindera benzoin*), winged burning bush (*Euonymus alatus*), Japanese stilt grass (*Microstegium vimineum*), groundivy (*Glechoma hederacea*), Japanese honeysuckle (*Lonicera japonica*), and horsebrier (*Smilax rotundifolia*). Soils in the wetland are mapped as Brinklow-Blocktown channery silt loams, which is considered predominantly hydric by NRCS. Soil samples met the Depleted Matrix (F3) hydric soil indicator. Potential functions and values provided by this wetland include groundwater recharge/discharge, floodflow alteration, sediment/toxicant retention, nutrient removal, wildlife habitat, recreation, educational/scientific value, and uniqueness/heritage. *MDE and USACE accepted this system as delineated*.

Wetland 2 (WL2) is a floodplain wetland located in the eastern portion of the study area that abuts WC3. Test plot WTP-2 characterizes this system, which is classified as a PFO1B wetland. Primary hydrologic indicators observed during the site visit included surface water, drift deposits, and water-stained leaves. Based on the dominance test for hydrophytic vegetation, 67 percent of the dominant species within the test plot were considered OBL, FACW, or FAC. Dominant species within the sampling plot included ash-leaf maple, red maple, wine raspberry (*Rubus phoenicolasius*), rambler rose (*Rosa multiflora*), Japanese stilt grass, and small-spike false nettle (*Boehmeria cylindrica*).

Soils in the wetland are mapped as Brinklow-Blocktown channery silt loam, which is considered predominantly hydric by NRCS. Soil samples met the Redox Dark Surface (F6) hydric soil indicator. Potential functions and values provided by this wetland include floodflow alteration, sediment/toxicant retention, nutrient removal, wildlife habitat, recreation, education/scientific value, and uniqueness/heritage. *MDE and USACE accepted this system as delineated*.

Wetland 3 (WL3) is a floodplain wetland located in the western portion of the study area that abuts WC4 and WC5. Test plot WTP-3 characterizes this system, which is classified as a palustrine forest wetland with a temporarily flooded water regime (PFO1A). Primary hydrologic indicators observed during the site visit included surface water, a high water table, saturation, and water-stained leaves. Based on the dominance test for hydrophytic vegetation, 67 percent of the dominant species within the test plot were considered OBL, FACW, or FAC. Dominant species within the sampling plot included river birch (*Betula nigra*), eastern cottonwood (*Populus deltoides*), rambler rose, Japanese barberry (*Berberis thunbergii*), Japanese stilt grass, and small-spike false nettle. Soils in the wetland are mapped as Codorus silt loam, which is considered predominantly non-hydric by NRCS. However, soil samples met the Depleted Matrix (F3) hydric soil indicator. Potential functions and values provided by this wetland include floodflow alteration, wildlife habitat, recreation, education/scientific value, and uniqueness/heritage. *MDE and USACE accepted this system as delineated*.

Wetland 4 (WL4) is an oxbow wetland located in the western portion of the study area that abuts WC6. Test plot WTP-4 characterizes this system, which is classified as a PFO1A wetland because it is an emergent wetland within a forested setting with approximately 60 percent canopy cover. Primary hydrologic indicators observed during the visit included a high water table, saturation, and water-stained leaves. Based on the dominance test for hydrophytic vegetation, 100 percent of the dominant species within the test plot were considered OBL, FACW, or FAC. The dominant species within the sampling plot was sweet wood-reed (*Cinna arundinacea*). Soils in the wetland are mapped as Codorus silt loam, which is considered predominantly non-hydric by NRCS. However, soil samples met the Depleted Matrix (F3) hydric soil indicator. Potential functions and values provided by this wetland include floodflow alteration, sediment/shoreline stabilization, wildlife habitat, recreation, educational/scientific value, and uniqueness/heritage. *MDE and USACE accepted this system as delineated*.

Wetland 5 (WL5) is floodplain depression wetland located in the western portion of the study area adjacent to WC6. Test plot WTP-5 characterizes this system, which is classified as a PFO1A wetland. Primary hydrologic indicators observed during the visit included saturation and waterstained leaves. Based on the dominance test for hydrophytic vegetation, 80 percent of the dominant species within the test plot were considered OBL, FACW, or FAC. Dominant species within the sampling plot included red maple, autumn-olive (*Elaeagnus umbellata*), rambler rose, Japanese stilt grass, and sweet wood-reed. Soils in the wetland are mapped as Codorus silt loam, which is considered predominantly non-hydric by NRCS. However, soil samples met the Depleted Matrix (F3) hydric soil indicator. Potential functions and values provided by this wetland include recreation, educational/scientific floodflow alteration, wildlife habitat, value, and uniqueness/heritage. MDE and USACE accepted this system as delineated.

Wetland 6 (WL6) is a floodplain wetland located in the eastern portion of the study area adjacent to WC7. Test plot WTP-6 characterizes this system, which is classified as a PFO1A wetland. Primary hydrologic indicators observed during the visit included saturation and water-stained leaves. Based on the dominance test for hydrophytic vegetation, 100 percent of the dominant species within the test plot were considered OBL, FACW, or FAC. Dominant species within the sampling plot included red maple, ash-leaf maple, and Japanese stilt grass. Soils in the wetland are mapped as Baile silt loam, which is considered predominantly hydric by NRCS. Soil samples met the Redox Dark Surface (F6) hydric soil indicator. Potential functions and values provided by this wetland include floodflow alteration, sediment/toxicant retention, nutrient removal, sediment/shoreline stabilization, wildlife habitat, recreation, educational/scientific value, and uniqueness/heritage. *MDE and USACE accepted this system as delineated*.

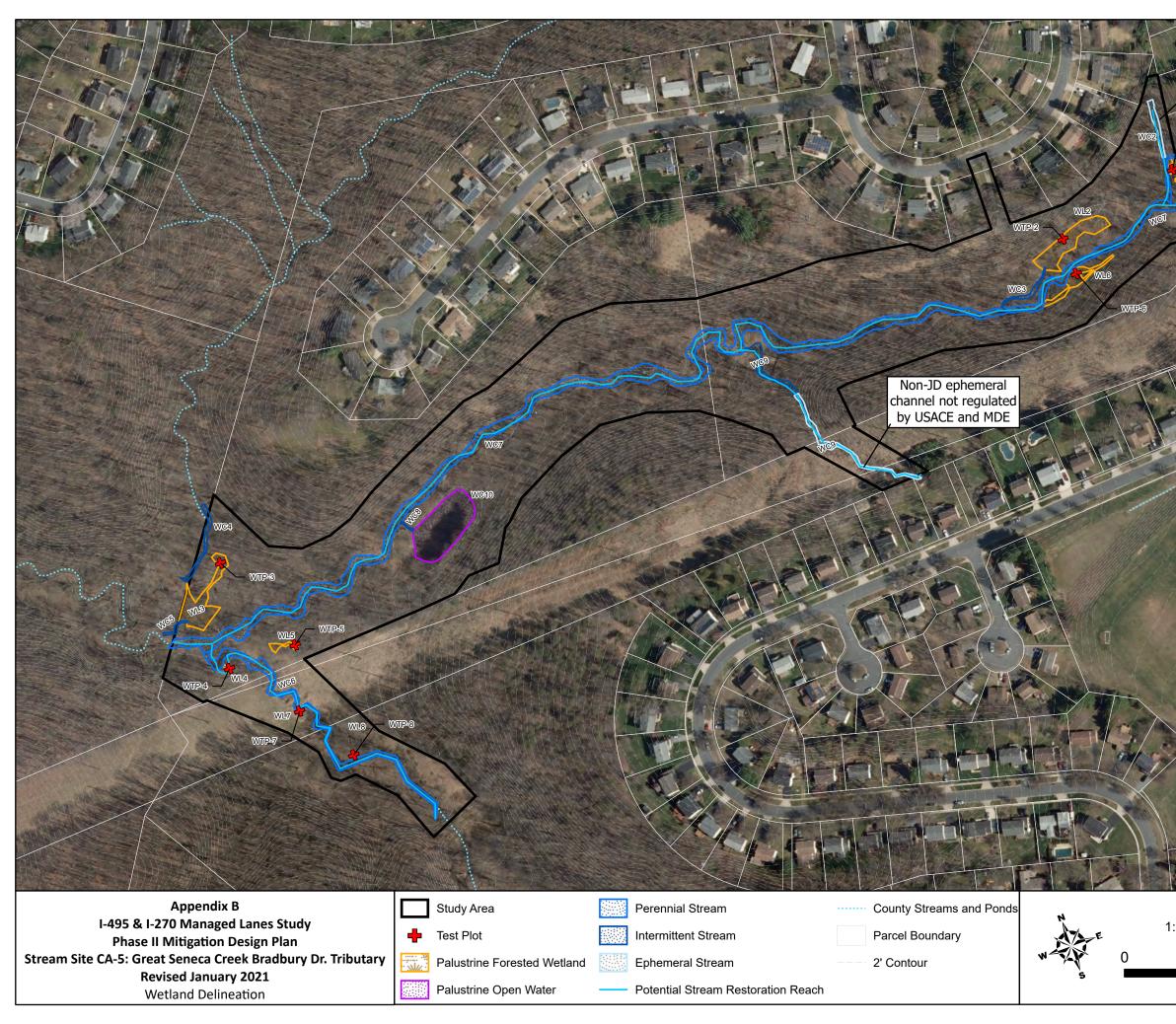
Wetland 7 (WL7) is a wetland bench located in the southwestern portion of the study area abutting WC6. Test plot WTP-7 characterizes this system, which is classified as a palustrine emergent wetland with a seasonally saturated water regime (PEM1B). Primary hydrologic indicators observed during the visit included high water table, saturation, geomorphic position, and the FAC-Neutral test. Based on the dominance test for hydrophytic vegetation, 100 percent of the dominant species within the test plot were considered OBL, FACW, or FAC. Dominant species within the sampling plot included leafy bulrush (*Scirpus polyphyllus*), Japanese stilt grass, rice cut grass (*Leersia oryzoides*), and small carp grass (*Arthraxon hispidus*). Soils in the wetland are mapped as Codorus silt loam, which is considered predominantly hydric by NRCS. Soil samples met the Depleted Matrix (F3) hydric soil indicator. Potential functions and values provided by this wetland include groundwater recharge/discharge, floodflow alteration, and wildlife habitat. *MDE and USACE accepted this system as delineated*.

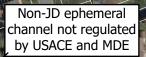
Wetland 8 (WL8) is a wetland bench and oxbow located in the southwestern portion of the study area abutting WC6. Test plot WTP-8 characterizes this system, which is classified as a PEM1A. Primary hydrologic indicators observed during the visit included drainage patterns and geomorphic position. Based on the dominance test for hydrophytic vegetation, 100 percent of the dominant species within the test plot were considered OBL, FACW, or FAC. Dominant species within the sampling plot included Japanese stilt grass. Soils in the wetland are mapped as Codorus silt loam, which is considered predominantly hydric by NRCS. Soil samples met the Depleted Matrix (F3) hydric soil indicator. Potential functions and values provided by this wetland include groundwater recharge/discharge, floodflow alteration, and wildlife habitat, recreation, education/scientific value, and uniqueness/heritage. *MDE and USACE accepted this system as delineated*.

Conclusions


A total of 18 waters of the U.S., including wetlands, were identified within the study area. Disturbances to these systems will require a permit from the USACE and the Maryland Department of the Environment (MDE). All wetland boundaries were reviewed during the agency review meeting and are considered final.

Appendix A: Vicinity Map Appendix B: Waters of the U.S. Delineation Map Appendix C: Photograph Log Appendix D: Waters of the U.S. Datasheets


References


- Lichvar, Robert W., M. Butterwick, N.C. Melvin, and W.N. Kirchner. 2016. *The National Wetland Plant List*: 2016 Update of Wetland Ratings. Phytoneuron 2014-41:1-42.
- MGS. 2008. Physiographic Map of Maryland. Available online at: www.mgd.md.gov.
- Munsell.1975. *Munsell Soil Color Charts*. MacBeth Division of Kollmorgen Instruments Corporation, Baltimore, Maryland.
- U.S. Army Corps of Engineers (USACE). 1999. The Highway Methodology Workbook Supplement: Wetland Functions and Values, A Descriptive Approach. New England District. Concord, MA. Report# NAEEP 360-1-30a.
- USACE. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Eastern Mountains and Piedmont, Version 2.0. eds. JS Wakeley, RW Lichvar, and CV Noble. U.S. Army Engineer Research and Development Center. Vicksburg, MS. Report# ERDC/EL TR-10-20.
- U.S. Department of Agriculture, Natural Resources Conservation Service. 2014. Soil Survey Geographic (SSURGO) Database for Montgomery County, Maryland. Available online: http://websoilsurvey.nrcs.usda.gov
- U.S. Fish and Wildlife Service (USFWS). 1979. *Classification of Wetlands and Deepwater Habitats of the United States.* eds. Cowardin LM, Carter V, Golet FC, LaRoe ET. Washington D.C. Report #FWS/OBS-79/31.
- USFWS. 1988. National List of Plant Species That Occur in Wetlands: Northeast (Region 1). ed. Reed PB. National Ecology Research Center. St. Petersburg, FL. Biological Report 88 (26.1).

Appendix A – Vicinity Map

Appendix B – Wetland Delineation Map

1:2,400 200 400 495 Feet

Appendix C – Photograph Log

CA-5 Mitigation Site Photograph Log – March 2020

Photo 1: Looking downstream at WC1, a perennial stream.

Photo 2: Looking upstream at the ephemeral portion of WC2.

Photo 3: Looking upstream at the perennial portion of WC2.

Photo 4: Looking downstream at the perennial portion of WC2.

Photo 5: Looking downstream at WC3, an intermittent stream.

Photo 6: Looking downstream at WC5, an intermittent stream.

Photo 7: Looking downstream at WC6, a perennial stream.

Photo 8: Looking downstream at the upstream end of WC7, a perennial stream.

Photo 9: Looking downstream at the downstream end of WC7.

Photo 10: Looking upstream at WC8, an intermittent stream.

Photo 11: Looking downstream at the ephemeral portion of WC9.

Photo 12: Looking downstream at the intermittent portion of WC9.

Photo 13: Looking northwest at WC10, a palustrine open water (POW).

Photo 14: Looking west at WL1, a palustrine forested (PFO) wetland.

Photo 15: Looking west at WL2, a PFO wetland.

Photo 16: Looking north at WL3, a PFO wetland.

Photo 17: Looking south at WL4, a PFO wetland.

Photo 18: Looking west at WL5, a PFO wetland.

Photo 19: Looking west at WL6, a PFO wetland.

Appendix D – Field Datasheets

In I.	C 1 5			Strea	m ID:	WC-
Date: 3 24 20			Upstream:	2	Downs	stream: <u>3</u>
Observer(s): HT E	<u>B</u>	Photos:				
Flow Type:			Cou	ardin Cla	ssification	1: R3UB1/2/2
D Perennial	□ Intermittent	Ephemera		arum ola	oomean	11
Justification:	originates a	t spring :	reep			
Channel Characteristi	cs:	. 0			(heret)	
Natural	Artificial (m	ade-made)	Manipulat	ted (man-	anereu	
Explain:				D 0.4	V7 2.1	□ 4:1 or greater
Channel Gradient (%)	: 3-10% Avera	age Bank Slope:	□ Vertical	□ 2:1	23.1	L 4.1 0. 3
Channel Has (check a						
Bed and ba	nks					
⊠ cha □ she ⊠ veq ⊠ lea □ see	ar, natural line impresse anges in character of sol elving getation matted down, b if litter disturbed or wash diment deposition ater staining e presence of litter and c	n ent, or absent ned away	D abrunt ch	sorting	ack line or predicte lant comn	ed flow events
Discontinu	ous OHWM (explain):					:4"
Avg. Channel Width	: <u>4'</u> Dep	th:		Avg. Wa	ter Depth	
	etivity: Flow	direction: <u>vve</u>		Adiacont		WI
Upstream:	N/A Dow	Instream:	~			
	edrock 🗆 Rubble					
	lud X Organic (characterize): <u>Low</u>	intermittent	Clows 6	acks st	able h.	abitat.
Habitat Complexity	(characterize): <u>Low</u>	man	1 101-01			100 m
Bank Erosion:		Moderate XM	1 1			
Describe: 1	servations, potential sou	rces, stormwater	outfalls, etc.):	runoff	from	·
Pollutants (field obs	hal propertie	5				
Wildlife Observation						
	Ŷ					
Describe (fo	prest, residential yard, e	mergent wetland,	etc.): Left bank:	funct	1xid	tid word
Diaht bank	trost		Left bank: proximate Sha	Jore SI	Voody Sp	acies (%): 90%
M	Hth. 40'/Left : 75		proximate Sha	ang by v	toody op	
Dominant s	species: <u>PLOC</u> , NO	TU CIT	a met	lands		
Other Comments:	Soling Seep	UDD ING	YWEI			
Hugs	1A-5A ; 1'B-	20				

Date: 3 24 20 Project Site: CA	-5	Stream ID:
Observer(s): HT, EB	Photos:	Upstream: <u>4 (ephon</u>) Downstream: <u>6 (perenne</u> 5 (perennial)
Flow Type:		
A Perennial Intermittent Justification: <u>epheneral above</u>	X Ephemer	ral Cowardin Classification: <u>BBUB12</u> . ne, perennial below well and
Channel Characteristics:	riage.	
Natural Artificial (made-made)	Manipulated (man-altered)
Explain: originates at culve	ert, thus t	hrough culvert under toot bridge.
Channel Gradient (%): 5%. Ave	rage Bank Slope	e: □ Vertical ऄ॔2:1 □ 3:1 □ 4:1 or greater
Channel Has (check all that apply):		
Bed and banks		
OHWM Clear, natural line impress changes in character of s shelving vegetation matted down, cheaf litter disturbed or was sediment deposition water staining the presence of litter and	oil bent, or absent shed away	 destruction of terrestrial vegetation the presence of wrack line sediment sorting scour multiple observed or predicted flow events abrupt change in plant community other (list):
Discontinuous OHWM (explain):	2	
Avg. Channel Width: 4 De	pth: 1-3	Avg. Water Depth: 1-6"
Elo Elo	w direction.	Adjacent/abutting: WCI, WLI
Substrate: Bedrock Rubble	⊠ Cobble	Gravel Sand
	□ Vegetated	to other boulders
Habitat Complexity (characterize): ALO	eral lack	of stable hobitat & habitat
Vociety, primarily 5	hallow runs	s, few leat pucks
	Moderate MM	
Describe: mull arou of s	wor dawns	tream of bridge
Pollutants (field observations, potential so	urces, stormwater	outfalls, etc.): <u>CUNOTE From</u>
cesidential proper	ties	
Wildlife Observations:		
Riparian Zone:		
Describe (forest, residential yard, e Right bank: <u>forest</u> , <u>residen</u>	that yords App	Left bank: Threst residential yards proximate Shading by Woody Species (%): 90
Dominant species: LITU	ACRU, LIJ	BE , ROMU, LUJA
Other Comments: nut flugged	in field	
	the second	

<u>\</u>

Date: 3/24/20 Project Site:	A-5		Stream	mID: WC3
Observer(s): HT, ER				Downstream: 9
Flow Type:				
Derennial Intermittent Justification: Flowing during	□ Ephemen visit, hydric	al Cow. Soils.	ardin Clas	ssification: <u>RHSB314</u>
Channel Characteristics:	U			
Natural D Artificial	(made-made)	🗆 Manipulate	ed (man-a	altered)
Explain:		11 March 10		
Channel Gradient (%): 3-5 Av	verage Bank Slope:	Vertical	2:1	□ 3:1 □ 4:1 or greater
Channel Has (check all that apply):				
Bed and banks				
OHWM Clear, natural line impres changes in character of shelving -vegetation matted down leaf litter disturbed or wa sediment deposition u water staining the presence of litter and	soil , bent, or absent ashed away	□ the presen □ sediment s □ scour □ multiple ob □ abrupt cha	ice of wra sorting oserved of inge in pla	trial vegetation ck line r predicted flow events ant community
Discontinuous OHWM (explain):				
Avg. Channel Width: De		A	vo. Wate	Pr Depth: 21
Hydrological Connectivity: Flo				
Upstream: WLQ Do	the Works Annual Contract Street Street		djacent/a	butting: WLZ
Substrate: Bedrock Rubble		Contract of the second s	1 S 2 S S S S S S	
🗆 Mud 🛛 Organic		1 . A		
Habitat Complexity (characterize): <u>shul</u>	low flan w	la lack o	of st	able
Bank Erosion: Severe	Moderate	or		
Describe: majority of bu			erud	ina
Pollutants (field observations, potential sou			1	
Wildlife Observations: None				
Riparian Zone:				
Describe (forest, residential yard, e	mergent wetland, et	c.).		
Right bank: forest		Left bank:	Fores.	+
Riparian Buffer Width: >50'	Appro			ody Species (%): 70
Dominant species: LITU, A				
Other Comments: Originates as			là '	,

Date: 3 24 20 Project Site: C	A-5		Stre	am ID: WCY
Observer(s): HT, EB		Upstream:	and the second sec	Downstream: 11
Flow Type:				
Derennial Antermittent Justification: <u>Hydric Soils</u> 7			wardin Cla	assification: <u>R45B3</u> [4
Channel Characteristics:	5	9	- 5	
Natural DArtificia	al (made-made)	Manipula	ated (man	-altered)
Explain: appears nature				
Channel Gradient (%): 1-3% A				
Channel Has (check all that apply):			~	Harris a contradiction
H Bed and banks				
OHWM Clear, natural line impre- changes in character of changes in character of shelving leaf litter disturbed or w Sediment deposition water staining the presence of litter ar	f soil n, bent, or absent /ashed away	the press Desedimen Scour	ence of wr t sorting observed hange in p	estrial vegetation rack line or predicted flow events lant community
Discontinuous OHWM (explain)		-		
Avg. Channel Width:1 D			Avg. Wa	ter Depth: 4"
Hydrological Connectivity: F				
Upstream: NA D			Adjacent	abutting: WL3
	Cobble			
		=		
Habitat Complexity (characterize): 100	k of stable	(Ner,	Dumo	uily rittle-iur
complexs w/ many	Laf Packs	throws	hart	
	Moderate D Mir		0	
Describe: Pxposed/nus	banks throw	chast		
Pollutants (field observations, potential so	ources, stormwater o	utfalls, etc.):		
runoff from ups	slope nesi	dentia	Pro	perties_
Wildlife Observations: None	0 .		V	V.
Riparian Zone:	1			
Describe (forest, residential yard,	emergent wetland, et	tc.):		
Right bank:		Left bank:	fore	st
Riparian Buffer Width: 250'	Appr	oximate Sha	ding by W	loody Species (%): 80
Dominant species: LITU, A	CRU, Privet	MIVI	ALVI .	ACNE
Other Comments:	4	, A		
- Flags IA-1	A + 13-14	B		

- - - **-**-- **-** -

Date: 3/24/20 Project Site: CA-5			Strea		5
Observer(s): HT EG	Photos:	Upstream:			
Flow Type:					
Perennial Perennial	D Ephemer	al Co	wardin Cla	ssification: <u>R</u>	45B3 4
Justification: Flowing during VIS	it. hudric	Soils	1.01		
Channel Characteristics:	10				
Natural Artificial (mad	e-made)	□ Manipula	ated (man-a	altered)	
Explain: Sewer manhale w	ladiacent				
Channel Gradient (%): 3 % Average			文 2:1	□ 3:1 □	4:1 or greater
Channel Has (check all that apply):	10110				10.0.20.00
Bed and banks					
 Clear, natural line impressed o Changes in character of soil shelving vegetation matted down, bent, leaf litter disturbed or washed sediment deposition water staining the presence of litter and debr 	, or absent away	☐ the prese ☐ sedimen ☐ scour ☐ multiple o ☐ abrupt ch	ence of wra t sorting observed o hange in pla	strial vegetation ick line r predicted flo ant communit	ow events ly
□ Discontinuous OHWM (explain):					
Avg. Channel Width: 3 Depth:	1)		Avg. Wat	er Depth:	3111
Hydrological Connectivity: Flow dire	ection: w/e s	+			
Upstream: <u>WL3</u> Downstr	eam:		Adjacent/a	abutting: U	163
Substrate: Bedrock Rubble	Cobble	Gravel	X Sar	nd	
🗆 Mud 🛛 Organic	□ Vegetated	Other			
Habitat Complexity (characterize): 10 14 5) debris + last parts -	through	aut; all			4
Bank Erosion:		ior			
Describe: Some areas of	SLOUT				
Pollutants (field observations, potential sources,	stormwater of	utfalls, etc.): _		N.C.	
runoff thom upslop	e resid	intal	puper	nel	
Wildlife Observations: Novu		- 1 - TA	u u	-	
Riparian Zone:					
Describe (forest, residential yard, emerge Right bank: <u>frest</u>	ent wetland, et	c.): Left bank: _	forest		
Riparian Buffer Width:	Appro	oximate Shad	ling by Wo	ody Species	s (%): 604.
Dominant species: LITU, ACRU	PLOC, PC	DE Prin	ret Ro	MU, MIN	1
Other Comments:		1			
flags WC5-1Ato7A +	1B107	В			

Non-tidal	Stream	Features	Field	Datasheet

			Mitigation		Strea		
Observer(s):	EB, MN		Photos:	Upstream:	2	Downs	tream: <u>3</u>
Flow Type:							
Pe	rennial D	Intermittent	Ephemer	al Co	wardin Cla	ssification	: R34B1/2
Justifi	cation: Bed +	Danks, flow	ing during v	isit			1
Channel Cha		, , ,)]				
1 Na	tural	□ Artificial (m	ade-made)	D Manipula	ated (man-	altered)	
	ln:						
Channel Grad	dient (%): <u>3</u>	n. Aver	age Bank Slope	Vertical	□ 2:1	□ 3:1	□ 4:1 or greater
	(check all that a		a series and				
🗹 Be	d and banks	2					
	□ changes in □ shelving □ vegetation □ leaf litter di □ sediment o □ water stain		l ent, or absent ed away	☐ destructi ☐ the press ☐ sedimen ☐ scour ☐ multiple ☐ abrupt cl ☐ other (lis	ence of wra t sorting observed o hange in pl	ack line or predicte ant comm	d flow events
D Dis		NM (explain):					
			h: 4		Avg. Wat	er Depth:	1-10"
Hydrological	Connectivity:	Flow	direction: <u>NW</u>		1 St. 1		
Upstr	eam: Outside S	A Dowr	stream: WC7		Adjacent/	abutting:	WL4
			Cobble				
	D Mud	Organic	□ Vegetated	Other			
Habitat Com ban	plexity (characters, substrate	arize): Low to	moderate, s mostly grai	omestabl 1e1	e woody	debris;	undercut
			were along	¥			
			es, stormwater of		A 1	e autor	d. 04
			sted setting	utialis, etc.). <u>I</u>	Sconnin	0 00131	uc on
			io others obse	und hit	ivelus	recont	
Riparian Zon		a minnow) i	io ondis neac	100 1000	incend by	Carolin,	
		lantial word ama	rgent wetland, et	o):			
	bank: Forest	ential yard, ente	rgent wetand, et	Left bank:	Fivest		
and the second sec	fer Width: 70	0'	Anne			andy Sna	cies (%): <u>(</u> 0
CONTRACTOR OF THE	and a second	the state of the s	UNI, ACRU	Annate Shat	ang by w	oouy spe	cies (70). <u>GO</u>
	ents:		indisati nerva				
other comm	ma						

Date: 3 27 2020 Projec	t Site: CA 5 Mitiaation Sit	Stream ID:	WCT
Observer(s): EB. MN	Photos:	Upstream: 1 1 Do	wnstream: 6 18 -Us end
Flow Type:		Dsend Usend	the second se
Perennial	Intermittent D Ephemera	H	ation: R3481/2
Justification: Brd+be	anks, many tribs		1
Channel Characteristics:)		
⊡ Natural	□ Artificial (made-made)	Manipulated (man-altered	±))
Explain: Some foot	t bridges crossing stream	n, blown out cullvert 1	nstream
	Average Bank Slope:	A state of the second sec	
Channel Has (check all that ap	oply):		
Bed and banks			
□ changes in o □ shelving □ vegetation n □ leaf litter dis □ sediment de □ water stainin		 ☑ destruction of terrestrial v ☑ the presence of wrack line ☑ sediment sorting ☑ scour ☑ multiple observed or pred □ abrupt change in plant co □ other (list): 	e licted flow events mmunity
Discontinuous OHW	/M (explain);		
Avg. Channel Width: 8-20		Avg. Water De	oth: $1^{"} - 12^{"}$
Hydrological Connectivity:	Flow direction:		
Upstream: Outside S.	A Downstream: Outsid	le SA Adjacent/abuttir	g:_WL1-WL6
Substrate: Bedrock	Rubble Cobble	Gravel Sand	
🗆 Mud		Other	
Habitat Complexity (character	rize): Low to moderate, lin c woody debris	nuted those diversity, sho	it riffles w/ mostly
Bank Erosion: Seve	ere D'Moderate D Mind	or	Na -
Describe: Modulate	hrough most but severe a	et meanders + Some con	tuences
	potential sources, stormwater ou n Storm drains that But		
Wildlife Observations: Greek	n froas		
Riparian Zone:	1-0		
Describe (forest, reside	ential yard, emergent wetland, etc	c.):	
Right bank: Forest		Left bank: tovest	
Riparian Buffer Width: 50^{1}	to >100' Appro	ximate Shading by Woody	Species (%): <u>757</u> ,
Dominant species: LI	TU, ACRU, PLOC, PRSE,	BENI	
Other Comments:			

1÷

Date: 327/20 Project Sit	e: CA-5		Stream ID:	NCB
Observer(s): EB. MM		Upstream: _/2		
Flow Type:				
D Perennial D Inter	mittent D Ephemera	al Coward	in Classification	1: R45B314
	les, drains pond to			1
Channel Characteristics:	1			
Natural	Artificial (made-made)	Manipulated	man-altered)	
Explain: Bermed on				
Channel Gradient (%): 57.	Average Bank Slope:	Vertical	2:1 □ 3:1	□ 4:1 or greater
Channel Has (check all that apply)				10 10 10 10 10 10 10 10 10 10 10 10 10 1
Bed and banks				
I changes in chara I shelving I vegetation matte	ed down, bent, or absent ed or washed away ition	☐ destruction of ☐ the presence ☐ sediment sort ☐ scour ☐ multiple obser ☐ abrupt change ☐ other (list):	of wrack line ing ved or predicte e in plant comm	ed flow events nunity
Discontinuous OHWM (e	explain):			
Avg. Channel Width: 1-2'		Avg	. Water Depth	2"
Hydrological Connectivity:				
Upstream: Pond	Downstream: WC7	Adja	cent/abutting:	None
Substrate: Bedrock		the second se	□ Sand	
🗆 Mud 🔲	Organic D Vegetated	S Other Boul	der	
Habitat Complexity (characterize):	Some larger boul	ders, no lara	e woodes a	lebris.
runs only,	0	. 0	0	
Bank Erosion:	D Moderate D Min	or		
Describe: Slight cross	on at confluence	W/WOT		
Pollutants (field observations, pote	STATISTICS AND ADDRESS TO A DREET AND ADDRESS ADDR	1 0	nol from	~ neighborhood
upslope.			11 /	0
Wildlife Observations: Green-	Frogs			
Riparian Zone:	1 5			
Describe (forest, residential	yard, emergent wetland, etc	c.):		
Right bank: Forest		Left bank: For	est	
Riparian Buffer Width:	Appro	ximate Shading I	for the second s	cies (%): 75
the second se	L. ACRU, PRSE.	and the second sec	MU, ELU	
Other Comments: Flags IA-	1			

Date: 3127120	Project Site: CA-5	Mitigation	Site Strea	m ID: WC9
Observer(s):		Photos:		Downstream: 13 (R4)
Flow Type:			15 (EPH)	ILE (EPH)
D Perennia		Ephemer	al Cowardin Cla	ssification: <u>R45B3/4</u>
Justification	: Bed + banks throng	hourt, lawe!	needcut @ start of	int water in puds in in
Channel Character		9		or lightly flow see
2 Natural	□ Artificial (ma	de-made)	Manipulated (man-a	altered)
Explain: M	lalking that prosses up		9	
	(%): Average		: Vertical D 2:1	□ 3:1 □ 4:1 or greater
Channel Has (chec				
D Bed and	banks			
	clear, natural line impressed changes in character of soil shelving vegetation matted down, ben eaf litter disturbed or washed sediment deposition water staining he presence of litter and deb	it, or absent d away	 ☑ destruction of terres ☑ the presence of wra ☑ sediment sorting ☑ scour ☑ multiple observed o □ abrupt change in pla □ other (list): 	r predicted flow events ant community
Discontin	nuous OHWM (explain):			
Avg. Channel Widt	th: <u>4-15</u> Depth:	1-7'	Avg. Wate	er Depth: _0-3"
	ectivity: Flow di			
Upstream: [lutside Downs	tream: WC7	Adjacent/a	abutting: None
Substrate: 🗆 🗆	Bedrock	Cobble	☐ Gravel ☐ Sar	nd
	Mud 🗆 Organic			
Habitat Complexity	y (characterize): <u>Poor, Lac</u>	king stable	c habitat, ephemen	Dintermittent flows
	Severe Mod Nostly severe erosion servations, potential sources	in int-sec,	Moderate Minsr in e	ph Exposed water or source
n# 1	rom residences upslope		analis, etc.). <u>Cripsia n</u>	MILLER MI SCHUCE PARCO,
Wildlife Observatio	ins: None			
Riparian Zone:				
Describe (fo	rest, residential yard, emerg	jent wetland, et	tc.):	
Right bank:	Forest		Left bank: forest	
Riparian Buffer Wie	dth: >10D1	Appro	oximate Shading by Wo	ody Species (%): <u>757.</u>
Dominant sp	pecies: LITU, PICA, L	IBE, MIV	1, RUPH, THBE	

Project/Site: CA-5	City/County: Montgomery Sampling Date: 32420
pplicant/Owner: MDOT SHA	State: MD Sampling Point: WTP-1
nvestigator(s): EB, HT	Section, Township, Range:
andform (hillslope, terrace, etc.): See D	Local relief (concave, convex, none): COACGVE Slope (%):0-5
ubregion (LRR or MLRA): MLRA 148 Lat: 3	1.130591 Long: 77,249894 Datum: NADB 3 (20)
il Map Unit Name: Brinklow-Blocktown cho	unery ailt bans, 15-25 7- slopes NWI classification: PTOIB
e climatic / hydrologic conditions on the site typical for the	his time of year? Yes No (If no, explain In Remarks.)
· · · · · · · · · · · · · · · · · · ·	significantly disturbed? Are "Normal Circumstances" present? Yes No
e Vegetation, Soll, or Hydrology	
Allach site map	o showing sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes	No Is the Sampled Area
lydric Soil Present? Yes	No Within a Wetland? Yes No
Vetland Hydrology Present? Yes	No
Remarks: Photo 1 - 100st	F1445 WLI-1 to WLI-30
- we tlund bisected by Parce	LO, Ja L. Da.
	a ditch alms the trail to make
- someone recently dug	wetland drain to stream faster.
DROLOGY	
/etland Hydrology Indicators:	Secondary Indicators (minimum of two required)
imary Indicators (minimum of one is reguired; check a	
	ue Aquatic Plants (B14) Sparsely Vegetated Concave Surface (B8)
	drogen Sulfide Odor (C1) Drainage Patterns (B10)
	didized Rhizospheres on Living Roots (C3) Moss Trim Lines (B16)
	esence of Reduced Iron (C4) Dry-Season Water Table (C2) ecent Iron Reduction in Tilled Solls (C6) Crayfish Burrows (C8)
	in Muck Surface (C7) Saturation Visible on Aerial Imagery (C9)
	her (Explain in Remarks) Stunted or Stressed Plants (D1)
_ Iron Deposits (B5)	Geomorphic Position (D2)
_ Inundation Visible on Aerial Imagery (B7)	Shallow Aquitard (D3)
Water-Stained Leaves (B9) Aquatic Fauna (B13)	Microtopographic Relief (D4)
eld Observations:	FAC-Neutral Test (D5)
1	epth (inches):
	epth (Inches): S
2월 20일 전 12월 20일 전 200 20 20 20 20	epth (Inches): 0" Wetland Hydrology Present? Yes V No
ncludes capillary fringe)	partal photos, provious inspectiona). If evolution
escribe Recorded Data (stream gauge, monitoring well,	aenai protos, previous inspections), il available.
emarks:	
rain when pressions 14	have
- rain whin previous 24	110515
all a second	ning to wel & wed.
- Wetland Seep Grai	alog 10 well wed.
ie l	0

部長

VEGETATION (Four Strata) – Use scientific names of plants. Sampling Point: Absolute Dominant Indicator Dominance Test worksheet: Tree Stratum (Plot size: _____) % Cover Species? Status 1. Acec Yubrum 15 FAC Number of Dominant Species (A) That Are OBL, FACW, or FAC: 2 Acr heards do / FAC Total Number of Dominant 1 (B) Species Across All Strata: Percent of Dominant Species 62.5% (A/B) That Are OBL, FACW, or FAC: 6 Prevalence Index worksheet: Total % Cover of: Multiply by: 35 = Total Cover 50% of total cover: 17.5 20% of total cover: OBL species x 1 = FACW species _____ x 2 = _____ 1. Lindera henzoin 30 FAC species _____ x 3 = _____ FACU species _____ x 4 = _____ 2. ELIONUMOS ALATUS 15 / UPL species _____ x 5 = _____ (A) (B) Column Totals: Prevalence Index = B/A = 6. Hydrophytic Vegetation Indicators: ____ 1,- Rapid Test for Hydrophytic Vegetation 2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0¹ 45 = Total Cover 4 - Morphological Adaptations¹ (Provide supporting 9 50% of total cover: 27.5 20% of total cover:_ data in Remarks or on a separate sheet) Herb Stratum (Plot size: _____) Problematic Hydrophytic Vegetation¹ (Explain) 01 FACU onicera 14 popula 1. 5 FACW 2. montiens rapensis Indicators of hydric soil and wetland hydrology must 20 FAC 3. mitroctegion viminuon be present, unless disturbed or problematic. 3 FAC ar neunda Definitions of Four Vegetation Strata: 3 NIA alatus VORUMIK Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or 30 FACU Glechoma hoderacea more in diameter at breast height (DBH), regardless of 3 FACH 7. Rosa multitlara height. 10 FACU 8. Alliaria petiolata Sapling/Shrub - Woody plants, excluding vines, less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall, 10. Herb - All herbaceous (non-woody) plants, regardless 11. 84 = Total Cover of size, and woody plants less than 3.28 ft tall. 50% of total cover: 42 20% of total cover: 16.8 Woody vine - All woody vines greater than 3.28 ft in Woody Vine Stratum (Plot size: _____ height. TACH 1. Lonicera japonica 2.5milax ruthindifolla. FAL Hydrophytic Vegetation Yes No Present? 8 = Total Cover 50% of total cover: 4 20% of total cover: 1.6 Remarks: (Include photo numbers here or on a separate sheet.) & plot size is limited by wetland shape Euonymus alatus does not have an indicator status.

US Army Corps of Engineers

Eastern Mountains and Piedmont - Version 2.0

SOIL

(Inches)	Matrix		Red	ox Feature	s	or contain	n the absence	of Indicators.)
0-4	Color (moist)	%	Color (moist)	%	Type	_Loc ²	Texture	Remarks
1-4	2.544/2	40	104RS16	10	C	m	Sil	Grave
	IOYR31	30	6 6					Jeavel
-10+	LOVE31	YO	104R510	D	C	m	Sil	arnial
	2.54413	30	- hole	10		<u></u>		grave
	2.544/1	20	-					
		au						
						_		
				1.			1000	
	A					-	-	
Type: C=C	oncentration, D=Dep	pletion, RM	=Reduced Matrix, M	S=Masked	Sand Gra	lins	2 ocation: P	L=Pore Lining, M=Matrix.
iyunc son	indicators:			-	bund bit		Indica	ators for Problematic Hydric Soils ³ :
_ Histosol			Dark Surfac				2	cm Muck (A10) (MLRA 147)
	pipedon (A2) istic (A3)		Polyvalue B	elow Surfac	e (S8) (M	LRA 147,		oast Prairie Redox (A16)
	en Sulfide (A4)		Thin Dark S	urface (S9)	(MLRA 1	47, 148)		(MLRA 147, 148)
	d Layers (A5)		Z Depleted Ma		-2)		- P	iedmont Floodplain Soils (F19) (MLRA 136, 147)
_ 2 cm Mu	uck (A10) (LRR N)		Redox Dark		5)		V	ery Shallow Dark Surface (TF12)
	d Below Dark Surfac	e (A11)	Depleted Da	rk Surface	(F7)			ther (Explain In Remarks)
	ark Surface (A12)		Redox Depr					
	Aucky Mineral (S1) (A 147, 148)	LRR N,	Iron-Mangar MLRA 13		s (F12) (L	RR N,		
	eleyed Matrix (S4)		Umbric Surfa		AL PA 13	5 122)	³ Indi	cators of hydrophytic vegetation and
Sandy G						1, 1621		calors of nyurophytic vedetation and
	Redox (S5)						 8) well 	land hydrology must be present
<pre>_ Sandy R _ Stripped</pre>	Redox (S5) Matrix (S6)		Piedmont Fle Red Parent I	bodplain Sc	ils (F19)	MLRA 14	8) we	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L	Redox (S5)		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we	tland hydrology must be present,
Sandy R Stripped Restrictive L Type:	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present,
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type:	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped testrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped testrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped testrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped testrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped Restrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.
Sandy R Stripped testrictive L Type: Depth (inc	Redox (S5) Matrix (S6) Layer (if observed):		Piedmont Fle	bodplain Sc	ils (F19)	MLRA 14	8) we) uni	tland hydrology must be present, ess disturbed or problematic.

Wetland	Funct	ion-Valu	ue Eval	uation	Form

Total area of wetland 0.05 ac Human made?	lo Is	wetland	part of a wildlife corrido	r? Ves	or a "habitat island"? N	Wetland I.D. WL
				1		
Adjacent land use Forest, resident	Ial		Distance to nearest	roadway o	or other development ~ 70	Prepared by: <u>EB, HT</u> Date <u>3 25 2020</u>
Dominant wetland systems present PFO			Contiguous undev	eloped buf	fer zone present \sim 70'	Wetland Impact: Type Area
Is the wetland a separate hydraulic system? <u>No</u> How many tributaries contribute to the wetland?					0	Evaluation based on: Office Field Corps manual wetland delineation
Function/Value		ability N	Rationale (Reference #)*	Princ Funct	tion(s)/Value(s)	completed? Y N Comments
Groundwater Recharge/Discharge	~				Hillside scep wett surface water non	and w/ concave pockets retaining noff from residences upslope.
Floodflow Alteration	1	•			Retains runoff fro	m upslope
Search Shellfish Habitat		1				
Sediment/Toxicant Retention	1			-	Excess sediments	toxicants from residences upslope.
Nutrient Removal	1				Excess nutrient	3 from residences upslope.
Production Export		/			\$-	
Sediment/Shoreline Stabilization		/		- 32		
← Wildlife Habitat	/				Observed hawk cat	ch a frog in wetland. Wetland is ark,
A Recreation	/				Wetland is within walking path	ark." O a county park, adjacent to a
Educational/Scientific Value	/				Su note above.	
🖈 Uniqueness/Heritage	1				Within county Po development.	re surrounded by residential
Visual Quality/Aesthetics		/				
ES Endangered Species Habitat		~				
Other						

* Refer to backup list of numbered considerations.

WETLAND DETERMINATION DATA FORM – Eastern Mountains and Piedmont Region Project/Site: CA-5 Sampling Date: 3 (24/20 City/County: MUAL anmeril Applicant/Owner: MDOTSHA Sampling Point: WTP-State: Investigator(s): HT EB Section, Township, Range: Landform (hillslope, terrace, etc.): +100201an Local relief (concave, convex, none): Concave Slope (%): 0-2 Datum: NAD 83 (2011) Subregion (LRR or MLRA): MLRA 148 Lat: 39.13074 Long: -77.250859 Soll Map Unit Name: Brinklow-Blocktown channery Siltloams, 15-25% slopes NWI classification: PFOIR Are climatic / hydrologic conditions on the site typical for this time of year? Yes _____ No ____ (If no, explain in Remarks.) Are Vegetation _____, Soil _____, or Hydrology ____ significantly disturbed? N Are "Normal Circumstances" present? Yes ____ No__ Are Vegetation _____, Soil _____, or Hydrology _____ naturally problematic? N (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Ves No Is the Sampled Area Hydric Soll Present? Yes No Yes No within a Wetland? Wetland Hydrology Present? No Yes Remarks: flags WLd-1 to Photo 7 - west HYDROLOGY Wetland Hydrology Indicators: Secondary Indicators (minimum of two required) Primary Indicators (minimum of one is required; check all that apply) Surface Soil Cracks (B6) Sparsely Vegetated Concave Surface (B8) Surface Water (A1) True Aquatic Plants (B14) ✓ Drainage Patterns (B10) High Water Table (A2) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roots (C3) ____ Moss Trim Lines (B16) Saturation.(A3) Water Marks (B1) Presence of Reduced Iron (C4) Dry-Season Water Table (C2) Recent Iron Reduction in Tilled Solls (C6) Sediment Deposits (B2) Crayfish Burrows (C8) Thin Muck Surface (C7) Saturation Visible on Aerial Imagery (C9) Drift Deposits (B3) Other (Explain in Remarks) Algal Mat or Crust (B4) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Shallow Aquitard (D3) Microtopographic Relief (D4) Water-Stained Leaves (B9) FAC-Neutral Test (D5) Aquatic Fauna (B13) Field Observations: Depth (inches): 0.5 No Surface Water Present? No V Depth (inches): Water Table Present? Depth (inches):___ Wetland Hydrology Present? Yes Saturation Present? Yes \ No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: rain in previous originates along the of slope ids through ficodplain, draming wetland to the mainstern (WC_) and WC

* surfue water in 25% of plot.

VEGETATION (Four Strata) - Use scientific names of plants.

Sampling Point: WT P-1

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: 230')		Species?		
1. Arecnegunda	50	/	FAC	Number of Dominant Species That Are OBL, FACW, or FAC:(A)
	15	-		That Are OBL, FACW, or FAC: (A)
2. Acar rubrum	15		FAL	Total Number of Dominant
3. Betula nigra	10	_	FACW	Species Across All Strata: (B)
4		_	_	
5				Percent of Dominant Species 677. (A/B)
				That Are OBL, FACW, or FAC: (A/B)
6			-	Prevalence Index worksheet:
7				
	75	= Total Cove	er	Total % Cover of: Multiply by:
50% of total cover: 37.	5 20% of	total cover:	15	OBL species x 1 =
Sapling/Shrub Stratum (Plot size: 30')				FACW species x 2 =
1. Rubus phoenicolasius	5	1	FACY	FAC species x 3 =
2 Bible hastfitte	-			FACU species x 4 =
2. Rosa multitlore		_	EACU	
3			1	UPL species x 5 =
4			Concernant of	Column Totals: (A) (B)
5				Prevalence Index = B/A =
6				Hydrophytic Vegetation Indicators:
7		1000		
.8				1 - Rapid Test for Hydrophytic Vegetation
9.				2 - Dominance Test is >50%
	2	200.05		3 - Prevalence Index is ≤3.0 ¹
	_0	= Total Cove		4 - Morphological Adaptations ¹ (Provide supporting
50% of total cover: 4	20% of	total cover:	1.4	
Herb Stratum (Plot size: 20')		1.2	1.00	data in Remarks or on a separate sheet)
1. MICIUSTEMUM VIMINUM	75	/	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Ruchmeria cylindrica.	25		FACW	
	20			¹ Indicators of hydric soil and wetland hydrology must
3 Sinna annanadig	90	-	FACW	be present, unless disturbed or problematic.
4. Lonicora japonica.	10		FACH	Definitions of Four Vegetation Strata:
5. Viola Sp.	3		NIA	bennitions of Four vegetation Strata:
6. Veranira hedracea		-		Tree - Woody plants, excluding vines, 3 In. (7.6 cm) or
6. Verunica neciucia	12		NLF	more in diameter at breast height (DBH), regardless of
1			<u> </u>	height.
8	_			Capling/Charles Westerland
9			č	Sapling/Shrub – Woody plants, excluding vines, less than 3 in, DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11	150			Herb - All herbaceous (non-woody) plants, regardless
	120	= Total Cove	51.	of size, and woody plants less than 3.28 ft tall.
50% of total cover: 79	1_ 20% of	total cover:	31.4	Weedvalue Allowed A
Woody Vine Stratum (Plot size: 30')				Woody vine – All woody vines greater than 3.28 ft in height.
1. None				Theight.
1				
٤			\rightarrow	
3				
4	-			in the second
5.				Hydrophytic
				Vegetation Present? Yes <u>No</u>
and the second se		= Total Cove		res_v_ No
50% of total cover:		total cover:		
Remarks: (Include photo numbers here or on a separate s	heet.)			

SOIL

dicators: x1) edon (A2) c (A3)	% 90 90 25	Color (molst) 754844 754844 754844 7.54844 Reduced Matrix, M	% 10 15		M,PL M,PL M,PL	 Fsc 	1	gravel
$\frac{1.5 \sqrt{5}}{2.5 \sqrt{5}}$	90 25	754R44 7.54R444	15	_	MPL	Fsc	<u>r</u>	gravel
$\frac{2 + 5 + 5 + 5}{5 + 5 + 5}$ $\frac{2 + 5 + 5 + 5}{5 + 5 + 5}$	25			_				gravel
$\frac{centration, D=Depl}{dicators:}$ (1) (c) (A3)			15		<u></u>	<u>scl</u>		grand
$\frac{centration, D=Depl}{dicators:}$ (1) (c) (A3)		Reduced Matrix, M						J.
centration, D=Depl dicators: (1) edon (A2) c (A3)		Reduced Matrix, M						
dicators: x1) edon (A2) c (A3)		Reduced Matrix, M						
dicators: x1) edon (A2) c (A3)		Reduced Matrix, M		-		-		
dicators: x1) edon (A2) c (A3)	letion, RM=	Reduced Matrix, M				_		
dicators: x1) edon (A2) c (A3)	letion, RM=	Reduced Matrix, M				-		
dicators: x1) edon (A2) c (A3)	letion, RM=	Reduced Matrix, M	Ξ	_				
dicators: x1) edon (A2) c (A3)	letion, RM=	Reduced Matrix, M	_					
dicators: x1) edon (A2) c (A3)	etion, RM=	Reduced Matrix, M						
dicators: x1) edon (A2) c (A3)	letion, RM=	Reduced Matrix, M	_					
dicators: x1) edon (A2) c (A3)		Reduced Matrix, M	S-Mackad	Sand C	alac	21 ocatio	DI - Poro I	ining, M=Matrix.
v1) edon (A2) c (A3)			3=IVId5Keu	Sand G	dins.			Problematic Hydric Soils ³ :
edon (A2) c (A3)		Dark Surface	(\$7)					k (A10) (MLRA 147)
c (A3)		Polyvalue B		n (S8) /	AI DA 147	148)		irie Redox (A16)
		Thin Dark Si				140)	the second se	147, 148)
Sulfide (A4)		Loamy Gley			147, 140)			Floodplain Soils (F19)
ayers (A5)		Depleted Ma		-/				136, 147)
(A10) (LRR N)				6)				low Dark Surface (TF12)
	e (A11)							plain in Remarks)
	RR N,				LRR N.			
				- 1 - 1	C. C. S.			
yed Matrix (S4)				MLRA 1	36, 122)		³ Indicators of	f hydrophytic vegetation and
dox (S5)						8)		trology must be present,
latrix (S6)		Red Parent	Material (F:	21) (MLF	A 127, 147)		urbed or problematic.
yer (if observed):						-		
es):						Hydrid	Soil Present	? Yes No
		_				1		
	Below Dark Surface Surface (A12) cky Mineral (S1) (L 47, 148) yed Matrix (S4) dox (S5) latrix (S6)	Below Dark Surface (A11) Surface (A12) Cky Mineral (S1) (LRR N, (47, 148) yed Matrix (S4) dox (S5) latrix (S6) yer (if observed):	Below Dark Surface (A11) Depleted Date Surface (A12) Redox Depresent cky Mineral (S1) (LRR N, Iron-Mangar Iron-Mangar (47, 148) MLRA 13 yed Matrix (S4) Umbric Surfactory dox (S5) Piedmont Fill latrix (S6) Red Parent I yer (if observed):	Below Dark Surface (A11)	Below Dark Surface (A11)	Below Dark Surface (A11) Depleted Dark Surface (F7) Surface (A12) Redox Depressions (F8) Iron-Manganese Masses (F12) (LRR N, Iron-Manganese Masses (F12) (LRR N, (47, 148) MLRA 136) yed Matrix (S4) Umbric Surface (F13) (MLRA 136, 122) dox (S5) Piedmont Floodplain Soils (F19) (MLRA 14 latrix (S6) Red Parent Material (F21) (MLRA 127, 147 yer (if observed): Iron-Manganese Masses (F12) (MLRA 127, 147	Below Dark Surface (A11) Depleted Dark Surface (F7) Surface (A12) Redox Depressions (F8) Icky Mineral (S1) (LRR N, Iron-Manganese Masses (F12) (LRR N, (47, 148) MLRA 136) yed Matrix (S4) Umbric Surface (F13) (MLRA 136, 122) dox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) latrix (S6) Red Parent Material (F21) (MLRA 127, 147) yer (if observed): Image: Second	Below Dark Surface (A11) Depleted Dark Surface (F7) Other (Exp Surface (A12) Redox Depressions (F8) Other (Exp cky Mineral (S1) (LRR N, Iron-Manganese Masses (F12) (LRR N, MLRA 136) yed Matrix (S4) Umbric Surface (F13) (MLRA 136, 122) Indicators of dox (S5) Piedmont Floodplain Soils (F19) (MLRA 148) wetland hydrix latrix (S6) Red Parent Material (F21) (MLRA 127, 147) unless distures

i change i and hom i and brandelon i onn	Wetland	Funct	tion-V	alue	Eva	luation	Form
--	---------	-------	--------	------	-----	---------	------

Total area of wetland <u>0.13 ac</u> Human made? N	o_I	s wetland	part of a wildlife corrido	or? Yes	or a "habitat island"? No	Wetland I.D. WLZ Latitude <u>39.13074</u> Longitude -77.25085			
Adjacent land use Forest				1	y or other development n 70' Prepared by: EB, HT Date 3 25 2020				
Dominant wetland systems present <u>PFO</u>					Wetland Impact:				
Is the wetland a separate hydraulic system?			where does the wetland			Evaluation based on: Office Field Corps manual wetland delineation completed? Y N			
Function/Value		ability N	Rationale (Reference #)*	Princi Funct		omments			
Groundwater Recharge/Discharge		1							
	1				Within floodplain of from residences	mainstern, receives noroff			
Fish and Shellfish Habitat		1			10				
Sediment/Toxicant Retention	1				Excess sedement/toxicants fi	rom residences up slope.			
Nutrient Removal	1				Excess nutrients from	residences upslope			
Production Export		1							
Sediment/Shoreline Stabilization		/							
₩ Wildlife Habitat	1				within a county park, er observed birds.	vidence of deer in wetland,			
A Recreation	1				within a county park,	walking trails near wetland.			
Educational/Scientific Value	1				Sunote above.				
🐲 Uniqueness/Heritage	1				Within county park su development	mounded by residential			
Visual Quality/Aesthetics		1							
ES Endangered Species Habitat									
Other									

* Refer to backup list of numbered considerations.

Notes:

	WETLA	ND DETER	MINATION D				ns and Pledmont Region
Project/Site:	CAS	E.1.0		City/	County: Thom I &	1.4	sampling Date: 3 24 20
Applicant/Owner		SHA					_ State: MD_ Sampling Point: WTP - 5_
nvestigator(s): _	HT.EB.				lon, Township, Ran		
Subregion (LRR Soll Map Unit Na Are climatic / hyd	or MLRA): <u>[</u> ime: <u>[]&dbv</u> irologic cond	ILRA 14 US SILT los Itions on the s	Lat: 39.	130201 slopes, or ime of year?	Long casionally f Yes No	-Tood	ne): <u>CON (AV C</u> Slope (%): <u>O-2</u> 7.257702 Datum: <u>NAD 83 (201</u> <u>ad</u> NWI classification: <u>PFD1A</u> (If no, explain in Remarks.)
							I Circumstances" present? Yes No
Are Vegetation _	, Soll	, or Hyd	Irology na	turally problem	natic? No (If nee	eded, e	explain any answers in Remarks.)
SUMMARY (OF FINDIN	IGS - Atta	ch site map s	howing sal	mpling point lo	ocatio	ons, transects, important features, etc.
Hydrophytic Ve Hydric Soll Pre: Wetland Hydrol Remarks: Photo	sent?		Yes / No Yes / No		Is the Sampled a within a Wetland	d?	ves No
HYDROLOG	Y					_	
Wetland Hydro	ology Indica	tors:					Secondary Indicators (minimum of two required)
Primary Indicat	tors (minimur	n of one is rea	uired; check all th	at apply)		_	Surface Soil Cracks (B6)
	r Table (A2)		Hydro	Aquatic Plants ogen Sulfide O	dor (C1)	1000	Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10)
the second se	rks (B1) Deposits (B2)	Prese Recei	nce of Reduce	ion in Tilled Solls (C		Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
Iron Depos	or Crust (B4) sits (B5)	erial Imagery	Other	(Explain in Re			Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3)
Water-Stal							Microtopographic Relief (D4)
Aquatic Fa	auna (B13)						FAC-Neutral Test (D5)
Field Observa Surface Water Water Table Pr Saturation Pres (includes capilit	Present? resent? sent? ary fringe)	Yes Ves Ves Ves	No Dept	+ (inches): h (inches): h (inches):			Hydrology Present? Yes 🔽 No
Describe Reco	rded Data (si	tream gauge,	monitoring well, a	erial photos, pr	revious inspections)), If ava	allable;
Remarks:				0	7.1		
Xsur	face 1	water	in 104	o ot (plot		

7-1	Absolute	Dominant	Indicator	Sampling Point: WTP-3
ree Stratum (Plot size:)	% Cover	Specles?	Status	Number of Dominant Species
Acecnegondo	10		FAC	That Are OBL, FACW, or FAC: (A)
Betola nisru	30	1	FACW	
PODULIX deltoides	50	1	FAC	Total Number of Dominant Species Across All Strata: (B)
ACCEUDED	15			Species Across All Strata: (B)
			FAC	Percent of Dominant Species
s	- 3	(`		That Are OBL, FACW, or FAC: (A/B
h				Beer to the term of the set
-		-		Prevalence Index worksheet:
	105	= Total Cov	er	Total % Cover of:Multiply by:
50% of total cover: 5	2.5 20% of	total cover:	21	OBL species x 1 =
apling/Shrub Stratum (Plot size: 30)		100000000000		FACW species x 2 =
Rosa multiflura	10	1	FACH	FAC species x 3 =
Berberts thunberain				FACU species x 4 =
Carbons Thunderare			FACU	UPL species x 5 =
0	_			
				Column Totals: (A) (B)
				Development of the D/A
				Prevalence Index = B/A =
	_			Hydrophytic Vegetation Indicators:
		\rightarrow		1 - Rapid Test for Hydrophytic Vegetation
				2 - Dominance Test is >50%
·				3 - Prevalence Index is ≤3.0 ¹
	15	= Total Cov	er ,	4 - Morphological Adaptations ¹ (Provide supportin
50% of total cover:	·5 20% of	total cover:	5	
Herb Stratum (Plot size: 30')	1111			data in Remarks or on a separate sheet)
Cinha arondinada	25		FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
Micholegium Vienneum	80	1	FAC	
Biphmeria cylindrica	40	1	FACW	¹ Indicators of hydric soil and wetland hydrology must
Veronica hederitolia	20		UPL	be present, unless disturbed or problematic.
				Definitions of Four Vegetation Strata:
Allion vinale			FACH	Tree Weedunters autottenden 21-724 auto
Lonicia japonica	5		FACH	Tree – Woody plants, excluding vines, 3 in. (7.6 cm) of more in diameter at breast height (DBH), regardless of
Rosa mutifidra	5		FACH	height.
Junios ettusus	3		FACW	
				Sapling/Shrub - Woody plants, excluding vines, less
0	-			than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
1,	102			Herb - All herbaceous (non-woody) plants, regardles:
0	12100	= Total Cov	er 3/ I	of size, and woody plants less than 3.28 ft tall.
50% of total cover: 9	20% 0	total cover:	24.0	Woody vine - All woody vines greater than 3.28 ft in
Voody Vine Stratum (Plot size: 30')				height.
None				
l				Hydrophytic
·				Vegetation Present? Yes No
	_	= Total Cov	er	Present? Yes No
50% of total cover:	20% of	total cover:	_	
Remarks: (Include photo numbers here or on a separal	e sheet.)			
Xmany dead ash				

US Army Corps of Engineers

SOIL

	scription: (Describe	to the dept				or confirm	n the absence	e of indicators.)
Depth (inches)	Matrix Color (molst)	%	Color (moist)	Features %	Type ¹	Loc ²	Texture	Remarks
0-3	104R412	95	7. SURY/4	5	C	00	SIL	Kemana
	al and a second s	0		20	-	-101		Constant I
3-10	2.54513	80	7.54R5[5'	20	-	11	sicl	grave
10+	restrictme	layer			_			0
		E						
_	-			-	_			
	-							
		(and)		_				
				_		-		
						<u> </u>		
ype: C=0	Concentration, D=Dep	letion, RM=	Reduced Matrix, MS	=Masked	Sand Gr	lins.	² Location: P	L=Pore Lining, M=Matrix.
	I Indicators:							ators for Problematic Hydric Soils ³ :
Histos	ol (A1)		Dark Surface	(S7)			. 2	2 cm Muck (A10) (MLRA 147)
	Epipedon (A2)		Polyvalue Bel		ce (S8) (N	LRA 147,		Coast Prairie Redox (A16)
_ Black I	Histic (A3)		Thin Dark Sur					(MLRA 147, 148)
_ Hydrog	gen Sulfide (A4)		Loamy Gleye	d Matrix (F2)		P	Piedmont Floodplain Soils (F19)
	ed Layers (A5)		Z Depleted Mat	rix (F3)				(MLRA 136, 147)
	Auck (A10) (LRR N)		Redox Dark S					/ery Shallow Dark Surface (TF12)
	ed Below Dark Surfac	e (A11)	Depleted Darl				_ c	Other (Explain in Remarks)
	Dark Surface (A12)		Redox Depres		1 F	24.42		
	Mucky Mineral (S1) (I	LRR N,	Iron-Mangane		es (F12) (.RR N,		
	RA 147, 148)		MLRA 136			4001	3.	I A THE REPORT OF A THE REPORT OF A
	Gleyed Matrix (S4) Redox (S5)		Umbric Surface Piedmont Floor					licators of hydrophytic vegetation and
	ed Matrix (S6)		Red Parent M					etland hydrology must be present, less disturbed or problematic.
	E Layer (if observed):			ateriai (i		127, 147	1	less disturbed of problematic.
Type:	 Contraction of the second se Second second se							4
Depth (i	1 1 2 4		_				Dudala Call	Description / m
	ncnes): 10		_				Hydric Soil	Present? Yes No
emarks:								

Wetland Function-Value Evaluation Form

Total area of wetland 0.11 ac Human made?	οI	s wetland	l part of a wildlife corride	r? Ves	or a "habitat island"? N 6	Wetland I.D. <u>[]] L3</u>
김 아파이는 것이 것 같아요. 이번 모이 가 같아?				1		Latitude <u>39,13020</u> Longitude -77.25770
Adjacent land use Forest		_	Distance to nearest	roadway o	or other development $\sim 500'$	Prepared by: <u>EB, HT</u> Date <u>3252020</u>
Dominant wetland systems present PFO			Contiguous undev	eloped buf	fer zone present 500 '	Wetland Impact: Type Area
Is the wetland a separate hydraulic system? N_{\odot}	>	If not,	where does the wetland	lie in the d	rainage basin? Mid	Evaluation based on:
	1					Office Field
How many tributaries contribute to the wetland?	10	we w	ildlife & vegetation diver	sity/abund	ance (see attached list)	Corps manual wetland delineation
	Suit	ability	Rationale	Princ	ipal	completed? Y N
Function/Value		N	(Reference #)*	Funct	ion(s)/Value(s) C	omments
Groundwater Recharge/Discharge		1				
	1				Within Floodplain of	mainstern + fributary
		V				
Sediment/Toxicant Retention		1				
Nutrient Removal		1				
Production Export		1				
Sediment/Shoreline Stabilization		\checkmark				
🐿 Wildlife Habitat	1				within a park, wide birds.	ince of deer in wetland. Observed
A Recreation	1				Within a county pe	arte w/ walking trails
Educational/Scientific Value	1				'See note obove	×
🔆 Uniqueness/Heritage	/				Within a county par residential develops	resurrounded by nent.
Visual Quality/Aesthetics	-	1				
ES Endangered Species Habitat		/				
Other						

* Refer to backup list of numbered considerations.

Notes:

WETLAND DETERMINATION DATA FORM – Easter	n Mountains and Piedmont Region
Project/Site: CA-5 Mitigation Site City/County: M	Sampling Date: 3/27/2020
Applicant/Owner: MDOT SHA	State: MD Sampling Point: WTP - 4
Investigator(s): EB, M.N Section, Townsh	
Landform (hillslope, terrace, etc.): OXbow Local relief (concav	
Subregion (LRR or MLRA): MLRA 148 Lat: 39,130034	Long -77 75 7793 Datum (ADES (2011)
Soli Map Unit Name: Codorus silt loam, 0-37. slopes, occasional	
Are climatic / hydrologic conditions on the site typical for this time of year? Yes	No (If no, explain in Remarks.)
Are Vegetation, Soll, or Hydrology significantly disturbed? N	Are "Normal Circumstances" present? Yes No
Are Vegetation, Soil, or Hydrology naturally problematic? ${\mathbb N}$	(If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling p	oint locations, transects, important features, etc.
	mpled Area Wetland? Yes <u>Ves</u> No
HYDROLOGY	Secondary Indicators (minimum of two required)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Water-Stained Leaves (B9) Aquatic Fauna (B13) 	Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10) g Roots (C3) Moss Trim Lines (B16) Dry-Season Water Table (C2)
Field Observations: Surface Water Present? Yes No Depth (inches): Water Table Present? Yes No Depth (inches): Saturation Present? Yes No Depth (inches): (includes capillary fringe) Yes No Depth (inches): Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspired	Wetland Hydrology Present? Yes No
Describe Recorded Data (stream gauge, monitoring weil, aenai photos, previous insp	
Remarks:	

VEGETATION (Four Strata) - Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>*</u>)		Species?		
and the second sec	the second se	and the second of		Number of Dominant Species
1				That Are OBL, FACW, or FAC: (A)
2		-		Total Number of Dominant
3			_	Species Across All Strata: (B)
4				
5				Percent of Dominant Species
				That Are OBL, FACW, or FAC: (A/B)
6				Prevalence Index worksheet:
7				
the second se		Total Cove		Total % Cover of:Multiply by:
50% of total cover:	20% of	total cover:		OBL species x 1 =
Sapling/Shrub Stratum (Plot size: *)		total caver.		FACW species x 2 =
				FAC species x 3 =
1				
2				FACU species x 4 =
3				UPL species x 5 =
				Column Totals: (A) (B)
4				
5				Prevalence Index = B/A =
6			100	
7				Hydrophytic Vegetation Indicators:
8				1. Rapid Test for Hydrophytic Vegetation
8				2 - Dominance Test is >50%
9				3 - Prevalence Index is ≤3.0 ¹
		Total Cove	er	
50% of total cover:	20% of	total cover:		4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size: 💥)				data in Remarks or on a separate sheet)
1. Cinna arundinacea	50	- /	FACW	Problematic Hydrophytic Vegetation ¹ (Explain)
		_V	and all and all all all all all all all all all al	
2. Impatiens capensis	-5-		EACW	Induces which a start where the start sta
3. Rosa multiflora	15		FACU	Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
4. Mirrosteaun Vinineum	15		FAC	
5. Carex SD.	-			Definitions of Four Vegetation Strata:
s. Farex spi		-	NA	Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or
6		-		more in diameter at breast height (DBH), regardless of
7		-		height.
8				
				Sapling/Shrub – Woody plants, excluding vines, less
9				than 3 in. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11				Herb - All herbaceous (non-woody) plants, regardless
	90 .	= Total Cove	er	of size, and woody plants less than 3.28 ft tall.
50% of total cover: 45	20% of	total cover:	18	
Woody Vine Stratum (Plot size:)				Woody vine - All woody vines greater than 3.28 ft in
woody vine Stratum (Flot size)				height.
1				
2				
3.				
				Charles and the second s
4				Hydrophytic
5	÷			Vegetation
		= Total Cove	er	Present? Yes No
50% of total cover:	20% of	total cover:	_	
Remarks: (Include photo numbers here or on a separate s	sheet.)			
& Plot size is entire wetland,	~17'	x 10'		
of that size is called werner by	1 12	n		11
1 Sur 1	1.1		11	1 · · · · Carl I a the rat
Only amargant very within weth	and, how	Never 1	Netlan	d is in torested selling a
only chergent very commence	a			0
ADDONING LA LAND AND MANNER	vero	1771	Arr	PIL + PIDI
Only emergent veg within well, approximately ceo7. Canopy co	- 7	LIN) MCK	
Unable to Truth Providence	di di	1:	p.	
Unable to identify Carex sp a	rue To	Time	of yes	21 -
0			10	

Depth	Matrix		oth needed to docun Redo	x Features				
Inches)	Color (moist)	%	Color (moist)	%	Type1	Loc ²	Texture	Remarks
)-3_	2.5V4/2 10VR4/1	40	7.5/R.4/6	5	C	M.PL	SIL	
3-10	2.54411	90	754R314	5	C	m	SICL	
0-12+	2.54411	75	7.54R416 754R416	5	C	M	Sall	Gravel
ype: C=C	oncentration, D=De	pletion, RIV	I=Reduced Matrix, MS	5=Masked	Sand Gr			PL=Pore Lining, M=Matrix. ators for Problematic Hydric Solis ³
_ Histosol _ Histic E	(A1) pipedon (A2) istic (A3) en Sulfide (A4)		Dark Surface Polyvalue Be Thin Dark Su Loamy Gleye Depleted Mai	low Surfac rface (S9) d Matrix (F trix (F3)	(MLRA 1 2)		148) 2 F	2 cm Muck (A10) (MLRA 147) Coast Prairie Redox (A16) (MLRA 147, 148) Piedmont Floodplain Solls (F19) (MLRA 136, 147)
Hydrogo Stratifie 2 cm Mi Deplete Thick D Sandy M	d Layers (A5) Jck (A10) (LRR N) d Below Dark Surfa ark Surface (A12) Aucky Mineral (S1)		Redox Dark S Depleted Dar Redox Depre	k Surface ssions (F8 ese Masse	(F7) 3)	LRR N,		/ery Shallow Dark Surface (TF12) Diher (Explain in Remarks)
Hydrogo Stratifie 2 cm Mi Deplete Thick D Sandy M MLR. Sandy G Sandy F Stripped	uck (A10) (LRR N) d Below Dark Surfa ark Surface (A12) Aucky Mineral (S1) A 147, 148) Sileyed Matrix (S4) Redox (S5) I Matrix (S6)	(LRR N,	Depleted Dar Redox Depre	k Surface ssions (F8 ese Masse 6) ce (F13) (I odplain So	(F7))) es (F12) (MLRA 13 pills (F19)	6, 122) (MLRA 14	(³ Inc 8) we	/ery Shallow Dark Surface (TF12)
Hydrogo Stratifie 2 cm Mi Deplete Thick D Sandy N MLR Sandy C Sandy F Stripped estrictive	uck (A10) (LRR N) d Below Dark Surfa ark Surface (A12) Aucky Mineral (S1) A 147, 148) Sleyed Matrix (S4) Redox (S5)	(LRR N,	Depleted Dar Redox Depre Iron-Mangan MLRA 13 Umbric Surfa Piedmont Flo	k Surface ssions (F8 ese Masse 6) ce (F13) (I odplain So	(F7))) es (F12) (MLRA 13 pills (F19)	6, 122) (MLRA 14	(³ Inc 8) we	Very Shallow Dark Surface (TF12) Other (Explain in Remarks) dicators of hydrophytic vegetation and etland hydrology must be present,
Hydrogo Stratifie 2 cm Mi Deplete Thick D Sandy M MLR. Sandy G Sandy F Stripped	uck (A10) (LRR N) d Below Dark Surfa ark Surface (A12) Aucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed	(LRR N,	Depleted Dar Redox Depre Iron-Mangan MLRA 13 Umbric Surfa Piedmont Flo	k Surface ssions (F8 ese Masse 6) ce (F13) (I odplain So	(F7))) es (F12) (MLRA 13 pills (F19)	6, 122) (MLRA 14	(³ Inc 8) we	/ery Shallow Dark Surface (TF12) Other (Explain in Remarks) dicators of hydrophytic vegetation and etland hydrology must be present, nless disturbed or problematic.

Wetland Function-Value Evaluation For	orm
---------------------------------------	-----

Total area of wetland 0.004 acHuman made?	0 I	s wetland	part of a wildlife corrido	or? Ves	or a "habitat island"? No	Wetland I.D. 11 L4
Adjacent land use Forest, Utility ROM						Latitude <u>39.130634</u> Longitude <u>-77.25778</u> Prepared by: EB Date <u>492020</u>
Adjacent land use <u>101es</u> , <u>vctudid</u> , <u>hum</u>	V		Distance to nearest	roadway o	or other development 1000	Wetland Impact:
Dominant wetland systems present PFO			Contiguous undev	veloped but	fer zone present $^{\sim}50'$	TypeArea
Is the wetland a separate hydraulic system? <u>No</u>		_ If not,	where does the wetland	lie in the d	rainage basin? Mid	Evaluation based on:
How many tributaries contribute to the wetland?	No	<u>ne</u> w	ildlife & vegetation dive	rsity/abund	lance (see attached list)	Office Field Corps manual wetland delineation completed? Y N
Function/Value		ability N	Rationale (Reference #)*	Princ Funct		Comments
Groundwater Recharge/Discharge		1				
Floodflow Alteration	1				Adjacent to stream, I as stream levels rise	receives excess flood water
Fish and Shellfish Habitat		/				
Sediment/Toxicant Retention		/				
Nutrient Removal	1	/				
Production Export		1				
Sediment/Shoreline Stabilization	1				Adjacent to stream wetland edge as it is o	, bank is not croded a land mother parts of the streaking is surrounded by residential of den + birds observed ik, walking trail adjacent to
🖢 Wildlife Habitat	/				Within a county par development, evidence	resummended by residential
A Recreation	/				Within a county par wetland	ik, walking trail adjacent to
Educational/Scientific Value	1				See note above	
🜟 Uniqueness/Heritage	/				County park surround	ded by residential +
Visual Quality/Aesthetics		1				
ES Endangered Species Habitat		/				
Other						

* Refer to backup list of numbered considerations.

Notes:

in a ma

FORM – Eastern Mountai	ins and Piedmi	ont Region	
City/County: Montgome	ny	Sampling Date: 3/27/2020	
0		Sampling Point: WTP-5	
Section, Township, Range:			
Local relief (concave, convex, no	me): concaut	Slope (%): 27,	
		Datum: NAD83(20)	
is occassionally flood	NWI classific	allon: PFO IA	
year? Yes No	(If no, explain in Re	emarks.)	
ntly disturbed? N Are "Norma	al Circumstances" p	resent? Yes No	
problematic? N (If needed,	explain any answer	s in Remarks.)	
ng sampling point location	ons, transects,	important features, etc.	
Is the Sampled Area within a Wetland?	Yes	_ No	
	Secondary Indicators (minimum of two required)		
(y)			
ulfide Odor (C1) Izospheres on Living Roots (C3) Reduced Iron (C4) Reduction in Tilled Solls (C6) Surface (C7) ain in Remarks)	Moss Trim Lit Dry-Season V Crayfish Burr Saturation Vis Stunted or St Geomorphic 1 Shallow Aqui Microtopogra	nes (B16) Vater Table (C2) ows (C8) sible on Aerial Imagery (C9) ressed Plants (D1) Position (D2) tard (D3) phic Rellef (D4)	
(200			
nes):	The second second	17 Yes / No	
and provide a spanned of the ar		· · · · · · · · · · · · · · · · · · ·	
ils. Rain whin pa	st 12 his,		

VEGETATION (Four Strata) – Use scientific names of plants.

	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size: <u>*</u>)		Species?		Number of Dominant Species
1. Acer rubrum	30	/	FAC	That Are OBL, FACW, or FAC: (A)
2		3		Table Museum of Development
3			ile:	Total Number of Dominant Species Across All Strata:(B)
4				
				Percent of Dominant Species
5				That Are OBL, FACW, or FAC: <u>BO</u> (A/B)
6		·		Prevalence Index worksheet:
7	0.0			
	30	= Total Cov	er ,	Total % Cover of: Multiply by:
50% of total cover:5	20% of	total cover:	<u> </u>	OBL species x 1 =
Sapling/Shrub Stratum (Plot size:			- (j. j. j.	FACW species x 2 =
1. Elacagnus umbellata	3		NA	FAC species x 3 =
2. Rosa multiflora	3		FAC	FACU species x 4 =
2	<u></u>		<u></u>	UPL species x 5 =
3				Column Totals: (A) (B)
4				
5				Prevalence Index = B/A =
6				Hydrophytic Vegetation Indicators:
7				
8.				1 - Rapid Test for Hydrophytic Vegetation
0		ć.		2 - Dominance Test is >50%
	1.	Telefor		3 - Prevalence Index is ≤3.0 ¹
50% of total cover: 3	- 6	= Total Cov		4 - Morphological Adaptations ¹ (Provide supporting
	20% of	total cover:	1.6	data in Remarks or on a separate sheet)
Herb Stratum (Plot size:)	57	/		Problematic Hydrophytic Vegetation ¹ (Explain)
1 Microstegium vimineum	50		FAC	
2 Cinna Arundinacea	25		FACW	1
3. Buchmena culindrica	5		FACW	¹ Indicators of hydric soll and wetland hydrology must be present, unless disturbed or problematic.
4. Allium vincale	2	1	FACU	
5. Carex SD,	2	T 675	NIA	Definitions of Four Vegetation Strata:
6. Dichanthelium clandistinum	2			Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or
Bringhouthellum clanaistinum	4		FAC	more in diameter at breast height (DBH), regardless of
7. Rosa multiflora	<u>4</u>		FACU	height.
8		<u> </u>		Sapling/Shrub – Woody plants, excluding vines, less
9		· · · ·	- 1 S	than 3 in. DBH and greater than or equal to 3.28 ft (1
10				m) tall.
11		- 16° 60'		
	90	Tatal Car		Herb – All herbaceous (non-woody) plants, regardless
50% of total cover: 45		= Total Cove total cover:		of size, and woody plants less than 3.28 ft tall.
	20% 0	total cover:	10	Woody vine - All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size:)				height.
1. None				
2	- 6 ⁶ [*	<u> </u>		
3				
4		80 . 30 ⁶		
5		105 - L-		Hydrophytic
		TUUR		Vegetation Present? Yes No
		= Total Cove		
50% of total cover:		total cover:		
Remarks: (Include photo numbers here or on a separate sh	heet.)	- V 7		
* Entire wetland = Plot size.				
of Charle Wertand - FIDI JICC.	1 15	1	5	4
1 1 1 1 1 I I P POLOVED due	e to th	me o	r yea	A A A A
Unable to Lacking which of		· 1 - 1.	Y.	At the
Slandonus un bellat does not he	we ar	n indi	Catur	BINGUS.
Unable to identify carex sp due Elaeognus umbellata does not he				
\sim				

SOIL

		to the dep	oth needed to docur			or confirm	the absence of	Indicators.)		
Depth (inches)	Color (moist)	%	Color (moist)	x Fealure %	s Type'	Loc ²	Texture	Remarks		
1_0		90	7.5VR416	-70	Type			Remarks		
	2.5442	- 42	1 SYK 4 10	0	L	M, PL	Sich			
- 10	104R4/4	70	7.5VR514	10	C	M	Sic_			
0-12+	2,515/3	90	7.51R414	10	C	M.PL	SIC			
	1.1	_		112	_					
					-					
					-					
-				_	-					
_		_			_					
	1									
	-					· — — — — — — — — — — — — — — — — — — —				
					-			or the state of the		
dric Soll	Indicators:	pletion, RM	=Reduced Matrix, MS	S=Masked	Sand Gr	ains.		Pore Lining, M=Matrix. rs for Problematic Hydric Soils ³ :		
Histoso			Dark Surface	(57)				Muck (A10) (MLRA 147)		
	pipedon (A2)		Polyvalue Be		ce (58) (1	AL RA 147		st Prairie Redox (A16)		
	listic (A3)		Thin Dark Su					ILRA 147, 148)		
	en Sulfide (A4)		Loamy Gleye					mont Floodplain Soils (F19)		
	d Layers (A5)		Depleted Ma					ILRA 136, 147)		
	uck (A10) (LRR N)		Redox Dark		6)			Shallow Dark Surface (TF12)		
	d Below Dark Surfa	ce (A11)		Depleted Dark Surface (F7) Other (Explain In Remarks)						
	ark Surface (A12)			Redox Depressions (F8)						
Sandy M	Mucky Mineral (S1)	LRR N.	Iron-Mangan			LRR N,				
MLR	A 147, 148)		MLRA 13	6)						
	Gleyed Matrix (S4)		Umbric Surfa				³ Indicators of hydrophytic vegetation and			
	Redox (S5)		Piedmont Flo					d hydrology must be present,		
	d Matrix (S6)		Red Parent M	Aaterial (F	21) (MLR	A 127, 147) unless	disturbed or problematic.		
	Layer (if observed)):								
Type:							10000			
Depth (in	iches):						Hydric Soil Pre	esent? Yes V No		
marks:										

Wetland Function-Value Evaluation Form	Wetland	Function-V	alue Eva	luation	Form
--	---------	------------	----------	---------	------

Total area of wetland 0.01 ac Human made?	<u>o</u> I	s wetland	l part of a wildlife corride	or? Ves	or a "habitat island"? N6	Wetland I.D. WL5 Latitude 39.130638 Longitude 77.257262
Adjacent land use Forest, Uhlity ROM						Prepared by: <u>EB</u> Date <u>4/9/2020</u>
J			Contiguous undev	Wetland Impact: TypeArea		
Is the wetland a separate hydraulic system? $\underbrace{465}$		_ If not,	where does the wetland	lie in the di	ainage basin?	Evaluation based on:
How many tributaries contribute to the wetland?	Non	L_W	ildlife & vegetation diver	rsity/abund	ance (see attached list)	Office Field Corps manual wetland delineation
Function/Value		ability N	Rationale (Reference #)*	Princi Funct	pal ion(s)/Value(s)	completed? Y N Comments
Groundwater Recharge/Discharge						
	/				Located in flat flor residences upslope +	utility ROW.
Fish and Shellfish Habitat		1				
Sediment/Toxicant Retention		/				
Nutrient Removal		/			1	
Production Export		1				
Sediment/Shoreline Stabilization		/				
🕊 Wildlife Habitat	1			1	Within a county po development. Evidence	k adjacent to a walking trail.
A Recreation	V				Within a county par	k adjacent to a walking trail.
Educational/Scientific Value	/				Scende above.	
🖄 Uniqueness/Heritage	/				within a country port	urk surrounded by residential
Visual Quality/Aesthetics		1				
ES Endangered Species Habitat		1				
Other						

*Refer to backup list of numbered considerations.

Notes:

WETLAND DETERMINATION	I DATA FORM – Eastern Mour	Itains and Piedmont Region						
Project/Site: CA-5 Mitigation Site	city/County: (1) on too	MLKY Sampling Date: 3 27 2020						
Applicant/Owner: MDOT SHA	J	State: MD Sampling Point: WTP-6						
vestigator(s): EB, MN Section, Township, Range:								
Landform (hillslope, terrace, etc.): Floodplain	Local rellef (concave, convex	(, none): <u>CIMCAUL</u> Slope (%): <u>27</u> -						
Subregion (LRR or MLRA): MLRA 148 Lat:3	19.130527 Long:	-77.250854 Datum: NAD 83 (2011						
Soll Map Unit Name: Baile silt Isam 0-37. 51		NWI classification: PEOLA						
Are climatic / hydrologic conditions on the site typical for		(If no, explain in Remarks.)						
Are Vegetation, Soll, or Hydrology		ormal Circumstances" present? Yes No						
Are Vegetation, Soil, or Hydrology		ed, explain any answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site ma								
SUMMART OF FINDINGS - Allach sile ma	p showing sampling point loc	ationa, italiaceta, important reatures, etc.						
Hydrophytic Vegetation Present? Yes Hydric Soll Present? Yes	No Is the Sampled Ar No within a Wetland?							
Wetland Hydrology Present? Yes Remarks:	No	the second second second second second						
Flags WL61-22+1A-3A Ph19-W								
HYDROLOGY								
Wetland Hydrology Indicators:	1.7 (1.5) (1.5)	Secondary Indicators (minimum of two required)						
Primary Indicators (minimum of one is required; check a		Surface Soll Cracks (B6)						
	rue Aquatic Plants (B14) ydrogen Sulfide Odor (C1)	Sparsely Vegetated Concave Surface (B8) Drainage Patterns (B10)						
	xidized Rhizospheres on Living Roots (C	and a second						
	resence of Reduced Iron (C4)	Dry-Season Water Table (C2)						
	ecent Iron Reduction in Tilled Soils (C6)							
	hin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)						
Algal Mat or Crust (B4) O Iron Deposits (B5)	ther (Explain in Remarks)	Stunted or Stressed Plants (D1) / Geomorphic Position (D2)						
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3)						
Water-Stained Leaves (B9)		Microtopographic Relief (D4)						
Aquatic Fauna (B13)		FAC-Neutral Test (D5)						
Field Observations:								
	Depth (inches):							
	Depth (inches):	nd Hydrology Present? Yes / No						
(includes capillary fringe)								
Describe Recorded Data (stream gauge, monitoring we	I, aerial photos, previous inspections), If	f available:						
Remarks:								
Rain Win past 24 hrs								
		0						

VEGETATION (Four Strata) - Use scientific names of plants.

Sampling Point: WTP-6

les? Status Number of Dominant Species 3 (A) FAC Total Number of Dominant 3 (B) FAC Total Number of Dominant 3 (B) Percent of Dominant Species 1007 (A/B) Percent of Dominant Species 1007 (A/B) Prevalence Index worksheet: 1007 (A/B) Cover OBL species $x1 =$ $x1 =$ Cover: B Species $x2 =$ FAC species $x3 =$ $x4 =$ $x4 =$ UPL species $x5 =$ $x6$ (B) Prevalence Index = $B/A =$ 1007 (B) Prevalence Index = $3 =$ (A) (B) Prevalence Index = $3 =$ (A) (B) Prevalence Index = $3/A =$ (A) (B) Prevalence Index is $>50\%$ $3 -$ Prevalence Index is $< 3.0^{1}$ Cover 4 Member of size of Member of size of Member of size of Member of the superson of the supe
FAC That Are OBL, FACW, or FAC:
FAC Total Number of Dominant 3 (B) Percent of Dominant Species DDD (A/B) Prevalence Index worksheet:
Initial Number of Dominant 3 (B) Species Across All Strata: 3 (B) Percent of Dominant Species DDD (A/B) Prevalence Index worksheet: 10000 (A/B) Cover OBL species $x 1 =$ (A/B) Prevalence Index worksheet: Total % Cover of: Multiply by: (A/B) Cover OBL species $x 2 =$ (A/B) FACW species $x 2 =$ (A/B) FACW species $x 2 =$ (B) FACU species $x 4 =$ (B) Prevalence Index = B/A = (B) (B) Prevalence Index = B/A = 1000000000000000000000000000000000000
Percent of Dominant Species That Are OBL, FACW, or FAC: DDD. (A/B) Prevalence Index worksheet:
Percent of Dominant SpeciesThat Are OBL, FACW, or FAC:Prevalence Index worksheet:Total % Cover of:Multiply by:OBL species $x 1 =$ FACW species $x 2 =$ FAC species $x 3 =$ FACU species $x 4 =$ UPL species $x 5 =$ Column Totals:(A)Prevalence Index = B/A =Hydrophytic Vegetation Indicators: <td< td=""></td<>
That Are OBL, FACW, or FAC:
Prevalence Index worksheet:Total % Cover of:Multiply by:OBL species $x 1 =$ FACW species $x 2 =$ FAC species $x 3 =$ FACU species $x 4 =$ UPL species $x 5 =$ Column Totals:(A)Prevalence Index = B/A =Hydrophytic Vegetation Indicators:1 - Rapid Test for Hydrophytic Vegetation2 - Dominance Test is >50%3 - Prevalence Index is $\leq 3.0^1$
Prevalence Index worksheet:Total % Cover of:Multiply by:over: B $Species$ $x 1 =$ FACW species $x 2 =$ $x 2 =$ FACW species $x 3 =$ $x 3 =$ FACU species $x 4 =$ $y 2 =$ UPL species $x 3 =$ $y 2 =$ Column Totals: (A) (B) Prevalence Index $B/A =$ Hydrophytic Vegetation Indicators: $1 -$ Rapid Test for Hydrophytic Vegetation $2 -$ Dominance Test is >50% $3 -$ Prevalence Index is $\leq 3.0^1$
Cover OBL species $x 1 =$ FACW species $x 2 =$ FAC species $x 3 =$ FACU species $x 4 =$ UPL species $x 5 =$ Column Totals: (A) Prevalence Index = B/A = Hydrophytic Vegetation Indicators: - - Prevalence Test is >50% 3 - Prevalence Index is $\leq 3.0^1$
over: 8 OBL species $x 1 =$ FACW species $x 2 =$ FAC species $x 3 =$ FACU species $x 4 =$ UPL species $x 5 =$ Column Totals: (A) Prevalence Index $B/A =$ Hydrophytic Vegetation Indicators: Prevalence Test is >50% S - Prevalence Index is $\leq 3.0^1$
FACW species $x 2 =$ FAC species $x 3 =$ FAC species $x 3 =$ FACU species $x 4 =$ UPL species $x 5 =$ Column Totals: (A) Prevalence Index $B/A =$ Hydrophytic Vegetation Indicators: - 1 - Rapid Test for Hydrophytic Vegetation 2 - Dominance Test is >50% 3 - Prevalence Index is $\leq 3.0^1$
FAC species x 3 =
FACU species x 4 = UPL species x 5 = Column Totals: (A) Prevalence Index B/A = Hydrophytic Vegetation Indicators: - - Prevalence Test is >50% 3 - Prevalence Index is \$3.01
FACU species $x 4 =$ UPL species $x 5 =$ Column Totals: (A) Prevalence Index $B/A =$ Hydrophytic Vegetation Indicators: 1 Rapid Test for Hydrophytic Vegetation 2 Dominance Test is >50% 3 Prevalence Index is $\leq 3.0^1$
UPL species x 5 = Column Totals: (A) Prevalence Index = B/A = Hydrophytic Vegetation Indicators: - 1 - Rapid Test for Hydrophytic Vegetation - 2 - Dominance Test is >50% - 3 - Prevalence Index is ≤3.0 ¹
Column Totals: (A) (B) Prevalence Index = B/A = (B) Hydrophytic Vegetation Indicators: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Prevalence Index = B/A = Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation 2 - Dominance Test is >50% 3 - Prevalence Index is \$3.01
Hydrophytic Vegetation Indicators: -<
Prevalence Index is ≤3.0 ¹
2 - Dominance Test is >50% 3 - Prevalence Index is ≤3.0 ¹
3 - Prevalence Index is <3.0 ¹
Cover
over: data in Remarks or on a separate sheet)
S. C. A. D. D. A. M.
FACW - Problematic Hydrophytic Vegetation' (Explain)
FAC
Control Indicators of hydric soil and wetland hydrology must
FAALL be present, unless distribed of problematic.
<u><u>facu</u></u>
FAC Tree – Woody plants, excluding vines, 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of
NA height.
Saphing/Shrub - Woody plants, excluding vines, less
than 3 in. DBH and greater than or equal to 3.28 ft (1
m) tall.
Cover of size, and woody plants less than 3.28 ft tall.
over: 1.2. (a
Woody vine – All woody vines greater than 3.28 ft in
height.
0.1.1.1.1.
Hydrophytic Vegetation
Descent2 Ver V
over:

SOIL								Sampling Po	pint: WTP-L
Profile Dese	cription: (Describe	e to the de	pth needed to docur			or confirm	n the absence	of indicators.)	
Depth	Matrix			x Feature			-		
(inches)	Color (moist)	%	Color (moist)	%	Type'	Loc ²	Texture	Remarks	
0-1	101R3 2	100					- SIL	Rootlets	
1-5	2.5131	95	7.5VR416	5	C	M.PL	SaCL		
5-7	2.51411	98	TSUPHILA	2	1	N	C MI		
7 12	E FIL		101KTIG	1.000		111	DALL		
1-12+	24511	85	IDYR516	15	6	_/Y)	Sec		
				_		-)	
C				-	-	_			
				_	_				
		pletion, RM	A=Reduced Matrix, MS	S=Masked	d Sand Gr	ains.	² Location: P	L=Pore Lining, M=Matrix.	
Hydric Soil					Y 12 2 1		Indica	ators for Problematic Hy	dric Solls ³ :
Histoso	I (A1)		Dark Surface	(S7)			2	cm Muck (A10) (MLRA 1	47)
	pipedon (A2)		Polyvalue Be		ce (S8) (N	ALRA 147,		Coast Prairie Redox (A16)	
	istic (A3)		Thin Dark Su					(MLRA 147, 148)	
Hydroge	en Sulfide (A4)		Loamy Gleye				P	Pledmont Floodplain Soils ((F19)
	d Layers (A5)		Depleted Ma	trix (F3)				(MLRA 136, 147)	
	uck (A10) (LRR N)		Redox Dark	Surface (F	-6)		V	ery Shallow Dark Surface	(TF12)
	d Below Dark Surfa	ce (A11)	Depleted Dar	rk Surface	e (F7)		_ 0	Other (Explain in Remarks))
	ark Surface (A12)		Redox Depre						
	Mucky Mineral (S1)	(LRR N,	Iron-Mangan		es (F12) (LRR N,			
	A 147, 148)		MLRA 13						
	Gleyed Matrix (S4)		Umbric Surfa					licators of hydrophytic vege	
	Redox (S5)		Piedmont Flo					etland hydrology must be p	
	d Matrix (S6)		Red Parent N	Naterial (F	21) (MLR	A 127, 147	7) unl	less disturbed or problema	atic.
Restrictive	Layer (if observed)):							
Type:	lay						- TO	1	
Depth (in	ches): 7"						Hydric Soil	Present? Yes	No
Remarks:									
i tomana.									

Wetland Function-Val	ue Evaluation Form
----------------------	--------------------

T . 1 . 0 05 oc th				. J.	N	Wetland I.D. WLQ
Total area of wetland 0.05 ac Human made?		s wetland		1		Latitude <u>39. 130527</u> Longitude <u>-77. 25085</u>
Adjacent land use_FOYEST			Distance to nearest	t roadway o	r other development $^{\sim}250'$	Prepared by: EB Date 4 16 2020
Dominant wetland systems present PFO	Wetland Impact: Type Area					
Is the wetland a separate hydraulic system?)	_ If not,	where does the wetland	lie in the dr	ainage basin? Mid	Evaluation based on: Office Field
How many tributaries contribute to the wetland?	Jon	<u>v</u> _w	ildlife & vegetation diver	ersity/abunda	ance (see attached list)	Corps manual wetland delineation completed? Y <u>N</u>
Function/Value		ability N	Rationale (Reference #)*	Princi Functi		Comments
Groundwater Recharge/Discharge						a chailean built and
	1				Within the floodplain.	, receives nin off from uplands
		~				
Sediment/Toxicant Retention	1				Residences upslope	
Nutrient Removal	1					
Production Export		1				
Sediment/Shoreline Stabilization	1	ų			Houts a stream, banks w.	thin wetland have minor
🐿 Wildlife Habitat	1				Within a county park, of cleer within wetland.	y park, adjacent to a
A Recreation	1				Wetland is whin a count Walking path	y park, adjacent to a
Educational/Scientific Value	/				See note above.	
Winqueness/Heritage	/				Within a county parks development.	wrounded by residential
Visual Quality/Aesthetics		/			4	
ES Endangered Species Habitat		/				
Other						

* Refer to backup list of numbered considerations.

.

. .. .

1

Notes:

CAE Milication	City/County Mar	lountains and Piedmont Region
ojecusite: <u>CA-5 Mitigation</u>	City/County	State: MD Sampling Point: MP-7
oplicant/Owner: MOOT SHA		
vestigator(s): <u>HT</u> <u>SP</u>	Section, Township, F	
andform (hillslope, terrace, etc.): bench	Local relief (concave, co	
ubregion (LRR or MLRA): MLRA 148_L	at: <u>39. 12.9680</u> L	
Dil Map Unit Name: Codorus Silt loam C)-3 percent slupes orrasingells	fitudec NWI classification: 151112
re climatic / hydrologic conditions on the site typica	for this time of year? Yes No	(If no, explain in Remarks.)
re Vegetation, Soil, or Hydrology _	significantly disturbed? N Ar	re "Normal Circumstances" present? Yes V No
re Vegetation, Soil, or Hydrology _		
re vegetation, son, or hydrology _		t locations transects important features, etc.
SUMMARY OF FINDINGS – Attach site	map showing sampling point	t locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes	No Is the Samp	Ind Area
Hydric Soil Present? Yes	No within a Wel	
Wetland Hydrology Present? Yes		
Remarks:		
photo 11 - NW		Flags WL7-1-WL7-7
prioto 11 - 1010		1 1ags W L/-1-W L/-/
HYDROLOGY		in the second second
Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; cl	neck all that apply)	Surface Soil Cracks (B6)
Şurface Water (A1)	True Aquatic Plants (B14)	Sparsely Vegetated Concave Surface (B8)
High Water Table (A2)	Hydrogen Sulfide Odor (C1)	Drainage Patterns (B10) Roots (C3) Moss Trim Lines (B16)
Saturation (A3)	Oxidized Rhizospheres on Living R	Dry-Season Water Table (C2)
Water Marks (B1)	Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Sol	
Sediment Deposits (B2)	Thin Muck Surface (C7)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Other (Explain in Remarks)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Iron Deposits (B5)		Geomorphic Position (D2)
Inundation Visible on Aerial Imagery (B7)		Shallow Aquitard (D3)
Water-Stained Leaves (B9)		Microtopographic Relief (D4)
Aquatic Fauna (B13)		FAC-Neutral Test (D5)
Field Observations:	1	
Surface Water Present? Yes No	Depth (inches):	
Water Table Present? Yes No	Depth (inches): 3"	
Saturation Present? Yes No	Depth (inches):O"	Wetland Hydrology Present? Yes V No
(includes capillary fringe) Describe Recorded Data (stream gauge, monitor	ing well, aerial photos, previous inspec	tions), if available:
Describe Recorded Data (stream gauge, memor		
Remarks:		
wetland banch a	1 thin will	
wetland conon a	isoning web	
	V	
9.5		
State of the state		

EGETATION (Four Strata) – Use scientific n	names of plants.	Sampling Point: WTP-7
	Absolute Dominant Indicat	
ree Stratum (Plot size:)	<u>% Cover</u> <u>Species?</u> <u>Statu</u>	
		to instruction 1
181		That Are OBL, FACW, or FAC: 100/ (A/B
		Prevalence Index worksheet:
·	= Total Cover	Total % Cover of:Multiply by:
50% of total cover:	20% of total cover:	OBL species x 1 =
Sapling/Shrub Stratum (Plot size:)		FACW species x 2 =
. Nork	and the second second	FAC species x 3 =
		FACU species x 4 =
		UPL species x 5 = (8
·		Column Totals: (A) (B
		Prevalence Index = B/A =
j		Hydrophytic Vegetation Indicators:
1		- Rapid Test for Hydrophytic Vegetation
В		— ✓ 2 - Dominance Test is >50%
9		3 - Prevalence Index is ≤3.0 ¹
	= Total Cover	4 - Morphological Adaptations ¹ (Provide supportin
	20% of total cover:	data in Remarks or on a separate sheet)
Herb Stratum (Plot size: X)	30. 4 01	Problematic Hydrophytic Vegetation ¹ (Explain)
1. Scirpus polyphyllus	- 50 Y FA	0
2. Microstegnion vinineum		Indicators of hydric soil and wellarly involution indicators
3. Junius effusius		De present, unless distance of problemator
4. Leersia Orizoides	- 30 Y 00 30 Y FA	Deminitions of Four Vegetation et etter
5. Arthraxon Thispidus		Tree – Woody plants, excluding vines, 3 in. (7.6 cm) more in diameter at breast height (DBH), regardless
7		height.
8.		
		Sapling/Shrub – Woody plants, excluding vines, les than 3 in. DBH and greater than or equal to 3.28 ft (1)
9		m) tall.
		Herb - All herbaceous (non-woody) plants, regardle
11	150 = Total Cover	of size, and woody plants less than 3.28 ft tall.
	20% of total cover: 3	Woody vine - All woody vines greater than 3.28 ft in
Woody Vine Stratum (Plot size:)		height.
1. Dorl		
2		
3		-
4		Hydrophytic
5		Vegetation
	= Total Cover	Present? Yes V No
	20% of total cover:	
Remarks: (Include photo numbers here or on a separat	te sheet.)	
* plot size is limited		sico.
the second second second	17-3 L P+ 17- 3	

Sampling Point: W1P - 7

Depth	ription: (Describe Matrix		Redox	Features						1
nches)	Color (moist)	%	Color (moist)	_%	Type ¹	Loc2	Texture	-	Remarks	
5-6	2.54412	90	7.547578	10	C	M	Fine SL	-		
- 12*	1042412	75	7.5435/6	25	C	M	Fire SL	w	gouvel	
			10 -010	-test.					0	-
								•	-	
			·				-			
-								1		
								1	-	
			- Contraction of the second se		1	-				
	A							10. 	and the second sec	
								• •		
						-	-			
			1	1						
no: C-C	oncontration D-Do	plation DM	=Reduced Matrix, MS	-Maskad	Sand Gr	ains	² Location:	PI = Pore Lin	ing, M=Matrix.	
	Indicators:	pieuon, Rivi	=Reduced Matrix, MIS	=IVIdSKEU		0113.			roblematic Hyd	tric Soils ³ :
Histosol			Dark Surface	(57)					(A10) (MLRA 14	
	pipedon (A2)		Polyvalue Bel		(S8) (M	MLRA 14	and a start of the		e Redox (A16)	
	istic (A3)		Thin Dark Su				and the second se	(MLRA 1		
	en Sulfide (A4)		Løamy Gleye					Piedmont F	oodplain Soils (I	F19)
	d Layers (A5)		Depleted Mat					(MLRA 1	36, 147)	
2 cm Mi	uck (A10) (LRR N)		Redox Dark S	Surface (F6)				w Dark Surface	(TF12)
_ Deplete	d Below Dark Surfa	ce (A11)	Depleted Dark					Other (Expla	ain in Remarks)	
	ark Surface (A12)		Redox Depres				1. 10			
	Mucky Mineral (S1)	(LRR N,	Iron-Mangane	ese Masses	s (F12) ((LRR N,				
_ Sandy M	Mucky Mineral (S1) A 147, 148)	(LRR N,	Iron-Mangane MLRA 136		s (F12) ((LRR N,				
Sandy M MLR Sandy C	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4)	(LRR N,	MLRA 136	6) ce (F13) (N	ILRA 13	36, 122)			nydrophytic vege	
Sandy M MLR Sandy C Sandy F	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5)	(LRR N,	MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w	etland hydr	ology must be p	resent,
Sandy M MLR/ Sandy C Sandy F Stripped	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) J Matrix (S6)		MLRA 136	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w	etland hydr		resent,
Sandy M MLRA Sandy C Sandy F Stripped	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5)		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w	etland hydr	ology must be p	resent,
Sandy M MLR/ Sandy C Sandy F Stripped estrictive	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr	ology must be pl bed or problema	resent,
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped estrictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped estrictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped estrictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLR/ Sandy C Sandy F Stripped estrictive	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped estrictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped estrictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped estrictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.
Sandy M MLRA Sandy C Sandy F Stripped Strictive Type: Depth (in	Mucky Mineral (S1) A 147, 148) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) Layer (if observed		MLRA 136 Umbric Surfac Piedmont Flo	6) ce (F13) (N odplain Soi	ILRA 1 3 Is (F19)	36, 122) (MLRA 1	148) w 47) u	etland hydr nless distur	ology must be pl bed or problema	resent, tic.

Wetland	Function-V	alue	Eva	luation	Form
othania	I unction v	unue	Lvu	iuation	I UIII

	1		A local sector and sector and	Wetland I.D. WL
Total area of wetland 6.008 are Human made?] Is wetland p	part of a wildlife corrido	or? <u>465</u> or a "habitat island"?	NG Latitude 39.12 968 Longitude 77.25738
Adjacent land use Forest, residen	tia	Distance to nearest	roadway or other development >10	Prepared by: H. SP Date 11/10/2020
				Wetland Impact: TypeArea
Dominant wetland systems present PEM		Contiguous undev	eloped buffer zone present <u>Yes</u>	TypeArea
Is the wetland a separate hydraulic system?	If not, v	where does the wetland	lie in the drainage basin? high	Evaluation based on:
			U	Office Field
How many tributaries contribute to the wetland?	Wil	dlife & vegetation dive	rsity/abundance (see attached list)	Corps manual wetland delineation
	Suitability	Rationale	Principal	completed? Y N
Function/Value	Y N	(Reference #)*	Eurotion(a)/Valua(a)	Comments
Groundwater Recharge/Discharge			Civil Standy Soi	harting asch with high twite table
- Floodflow Alteration			Abits web - Hora	ing and cartalling Variable +low
Fish and Shellfish Habitat				
K Sediment/Toxicant Retention				
Nutrient Removal				
Production Export	1			
Sediment/Shoreline Stabilization		-		
🖢 Wildlife Habitat		/		
A Recreation		•		
 Educational/Scientific Value 		/		
🛨 Uniqueness/Heritage				
Visual Quality/Aesthetics				
ES Endangered Species Habitat	1			
Other				

Notes:

* Refer to backup list of numbered considerations.

Sampling Date: 11/10/2020 Sampling Point: WTP8 Slope (%):0-1 29 Datum: Wad 83(2 assification: PEMIA n in Remarks.) ces" present? Yes No
Sampling Point: WTP 8 GVP Slope (%): 0-1 29 Datum: WaD 83(2) assification: PEMIA n in Remarks.)
ave slope (%):0-1 29 Datum: Wad 83(2 assification: PEMIA n in Remarks.)
29 Datum: <u>WaD 83C</u> 2 assification: <u>PEMIA</u> n in Remarks.)
29 Datum: Wad 83(2 assification: <u>PEMIA</u> n in Remarks.)
n in Remarks.)
n in Remarks.)
inswers in Remarks.)
ects, important features, etc.
cers, important reatilies, etc.
No
the second second
Indicators (minimum of two required)
e Soil Cracks (B6) Iy Vegetated Concave Surface (B8)
ge Patterns (B10)
rim Lines (B16)
ason Water Table (C2)
h Burrows (C8)
ion Visible on Aerial Imagery (C9)
d or Stressed Plants (D1)
rphic Position (D2)
v Aquitard (D3)
pographic Relief (D4)
eutral Test (D5)
/
resent? Yes No

VEGETATION (Four Strata) - Use scientific names of plants.

Sampling Point: WYP- 8

Ar	Absolute	Dominant	Indicator	Dominance Test worksheet:
Tree Stratum (Plot size:)	% Cover	Species?	Status	Number of Dominant Species (A)
2	_			Total Number of Dominant Species Across All Strata: (B)
4				
5				Percent of Dominant Species That Are OBL, FACW, or FAC: 160% (A/B)
6				
7		100		Prevalence Index worksheet:
		= Total Co	ver	Total % Cover of: Multiply by:
50% of total cover:				OBL species x 1 =
Sapling/Shrub Stratum (Plot size:)				FACW species x 2 =
1.120rl				FAC species x 3 ='
2				FACU species x 4 =
3				UPL species x 5 =
4				Column Totals: (A) (B)
5				
6				Prevalence Index = B/A =
7				Hydrophytic Vegetation Indicators:
8				- 1 Rapid Test for Hydrophytic Vegetation
9				2 - Dominance Test is >50%
		= Total Co		3 - Prevalence Index is ≤3.01
, 50% of total cover:				4 - Morphological Adaptations ¹ (Provide supporting
Herb Stratum (Plot size:)		total core.		data in Remarks or on a separate sheet)
1. Micro stegium ulmineum	80	Y	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
2. Dichon-thelium chindestim		_	FAC	
3. Allaria Potiolatu	10		FACU	¹ Indicators of hydric soil and wetland hydrology must
APerilla Frutescens			FACU	be present, unless disturbed or problematic.
5. Cinna acundiagen	3		FACW	Definitions of Four Vegetation Strata:
6. Scipus polyphyllus	10		OBL	Tree - Woody plants, excluding vines, 3 in. (7.6 cm) or
				more in diameter at breast height (DBH), regardless of
Buchmeria cylindiaca	-5-	-	EUCON	height.
B				Sapling/Shrub - Woody plants, excluding vines, less
9				than 3 in. DBH and greater than or equal to 3.28 ft (1
10		1		m) tall.
11				Herb - All herbaceous (non-woody) plants, regardless
-1	143	= Total Cov	ver 26(of size, and woody plants less than 3.28 ft tall.
50% of total cover: 7].	5 20% of	total cover	28.6	Woody vine - All woody vines greater than 3.28 ft in
Noody Vine Stratum (Plot size:)				height.
. Nore				
		-		
		-	- F	
·				Hadana karda
				Hydrophytic Vegetation
	1 M 1	Total Cov	/er	Present? Yes No
50% of total cover:				
emarks: (Include photo numbers here or on a separate :				
Plot Size is limited		Nett	and	Sire
10.000	J		1.1.1	
	*			
	20			

c	\sim		
э	U	ł	
-	-	-	-

Profile Desc	cription: (Describe	to the dep	th needed to docum	nent the ir	ndicator	or confirm	the absence	of indica	tors.)
Depth	Matrix	and the state of the state	Redo	x Features					· · · · · · · · · · · · · · · · · · ·
nches)	Color (moist)	%	Color (moist)		Type'	Loc	Texture	-	Remarks
>-2	54 572	70	7.541576	30	C	M.	X		
8	104R4/1	80	7.5424/6	20	C.	M/PL	SL		and the second s
3-12+	10424/1	40		and the second sec	C	M	SL	W	grivel
	10.169/1	<u> </u>	7.54446	30	-	· ·	0-		Autore
	-		7.547578	16_				-	•
				_					
					- X				
- N									-
	-	-			-				
_									
					1				~
	-								1 ·
Time: C	Concentration, D=De	- Di	A Deduced Metric M	C Maskas	Sand C		2 ocation: E	DI -Pore I	ining, M=Matrix.
	il Indicators:	epiedon, Riv	requiced matrix, in	IS=IVIdSKet	Sanu G	dii 15.	Indic	ators for	Problematic Hydric Soils
			Dark Surfac	0 (57)					(A10) (MLRA 147)
	ol (A1) Epipedon (A2)				(92) 00	MLRA 147,	A STATE OF A		rie Redox (A16)
	Histic (A3)		Thin Dark S						147, 148)
	gen Sulfide (A4)		Loamy Gley			147, 140,			Floodplain Soils (F19)
	ied Layers (A5)		Z Depleted M		/				136, 147)
	Muck (A10) (LRR N)		Redox Dark	the second second second	-6)			Very Shall	ow Dark Surface (TF12)
	ted Below Dark Surf		Depleted D	ark Surface	e (F7)		13.5 25.1	Other (Exp	lain in Remarks)
	Dark Surface (A12)		Redox Dep	ressions (F	8)				
Sandy	Mucky Mineral (S1)	(LRR N,	Iron-Manga	nese Mass	es (F12)	(LRR N,	1 J.		
ML	RA 147, 148)		MLRA 1	36)					
Sandy	Gleyed Matrix (S4)		Umbric Sur	1.1	1	A. 52.1			f hydrophytic vegetation an
	y Redox (S5)		and the second sec	•) (MLRA 14			drology must be present,
	ed Matrix (S6)		Red Parent	Material (F	21) (ML	RA 127, 147) u	nless dist	urbed or problematic.
Restrictiv	e Layer (if observe	d):					1		
Type: _	and the second second						200		-
Depth ((inches):	e anna E		8 8		÷	Hydric So	il Present	? Yes No
Remarks:	Alt Gl_Clerence	4				1			
									3
							de: La		
				251 10	1. 194				

Wetland Function-Value Evaluation Form

2				Wetland I.D. WLE
<u>O</u> Is	wetlar	nd part of a wildlife corrido	? 42> or a "habitat island"? NO	Latitude 39.129323 Longitude - 77.257129
il				Prepared by: 14,50 Date 11/10/2020
1				Wetland Impact: TypeArea
)	_ If no	t, where does the wetland li	e in the drainage basin? Winh	Evaluation based on:
١			0	Office Field Corps manual wetland delineation
			Principal Function(s)/Value(s)	completed? Y N
1			Wetland Sench/oxban ab	Hing web with Londy
			Abuts luck recieving cin. Writers	d combatting high flood
	~			
	1			
-	1			
	~		1 - 1 - 1	
	1		- /	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1			Within County Park, di	verse wildlife observed
1			Within County Park W adjoinent the wetlaw	hich Includes Wulking trails
	-	1.1 22	the note above	
	5		Within County park SU development	irranded by residential
	1			
5	1			and the second second
	 	 If no	Distance to nearest r Contiguous undevel If not, where does the wetland lie Wildlife & vegetation divers Suitability Rationale	Contiguous undeveloped buffer zone present <u>Yey</u> If not, where does the wetland lie in the drainage basin? <u>Nigh</u> Wildlife & vegetation diversity/abundance (see attached list) Suitability Rationale Principal Y N (Reference #)* Function(s)/Value(s) Co Wethand hench/oxbaw aba Skils Abub Wc6 Greieving Cine Waters United a grant wet law Collegent the wet law Wet have above

Notes:

* Refer to backup list of numbered considerations.

MEMORANDUM

25 Old Solomons Island Road Annapolis, MD 21401 410-956-9000 410-956-0566 (Fax)

Date: November 13, 2020

Subject:I-495/I-270 Stream and Floodplain Wetland Mitigation Site No.CA-5 Forest Stand Characterization and Tree Survey

Introduction

Coastal Resources, Inc. (CRI), under contract to the Maryland State Highway Administration (SHA), has completed a forest stand characterization and tree survey at the I-495/I-270 Stream and Floodplain Wetland Mitigation Site No. CA-5 project in Montgomery County, Maryland. Mitigation Site CA-5 is a stream and floodplain restoration project proposed by SHA in order to prepare Phase II Mitigation Documents with permit agency and landowner support, obtain PRD Concept Approval, and prepare the PRD Site Development Plan submittal. Field investigations were conducted on March 27th, April 9th, and November 10th, 2020.

Study Area Description

The study area consists of a buffer along the proposed restoration reach, which ranges in width from 50 to 200 feet along the stream channel and includes approximately 3,562 linear feet of an unnamed tributary to Great Seneca Creek and two tributaries. The study area is located in Gaithersburg, Maryland and is bound by Suffolk Terrace and Bradbury Lane to the north and a powerline ROW to the south (see **Appendix A** – Vicinity Map). Land use classifications within and adjacent to the study area include institutional, deciduous forest, and medium density residential. The proposed stream restoration occurs within the Seneca Creek watershed (MDE 8-digit 02140208), within the Piedmont Plateau physiographic province (MGS, 2008).

Methods

A forest stand characterization and specimen tree survey were conducted in the study area, in accordance with the Maryland Department of Natural Resources (MDNR) *State Forest Conservation Technical Manual* (MDNR 1997). Trees were measured using a diameter at breast height (DBH) tape at 4.5 feet above the ground. Specimen trees (with a 30-inch DBH or greater or within 75% of the current state champion) were tagged and their species, size, and condition recorded. The locations of all identified trees were traditionally surveyed. Forest stand boundaries were delineated on project mapping and stand characteristics were recorded on datasheets (**Appendix C**). Information collected for each identified forest stand included, but was not limited

to, successional stage, dominant and co-dominant species, common understory and herbaceous species, percent canopy closure, prevalence of downed woody debris, presence of invasive species, and basal area. Photographs of the forest stands were compiled in a photograph log (**Appendix D**).

Results

Forest Stands

A total of four forest stands were identified within the study area. The location of the forest stands is displayed on the Forest Stand Delineation and Specimen Tree Survey Map (Appendix B). The forest stands are described below.

Stand A

Stand A is a tuliptree - Eastern cottonwood forest occurring along the western floodplain of the CA-5 study area. The canopy of this early-mid successional forest is primarily in the 6-11.9" DBH size class and is dominated by tuliptree (Liriodendron tulipifera), ranging from 6-20" DBH and Eastern cottonwood (Populus deltoides), ranging from 10-18" DBH. Co-dominant species include red maple (Acer rubrum), American sycamore (Platanus occidentalis), ash-leaf maple (Acer negundo), and black cherry (Prunus serotina). Sixteen (16) specimen trees occur within this stand and canopy closure is approximately 70 percent. The understory contains saplings of red maple and ash-leaf maple, in addition to Japanese barberry (Berberis thunbergii), Autumn-olive (Elaeagnus umbellata), Japanese honeysuckle (Lonicera japonica), wine raspberry (Rubus phoenicolasius), rambler rose (Rosa multiflora), and Northern spicebush (Lindera benzoin). Dominant herbaceous species include Japanese stilt grass (Microstegium vimineum), crow garlic (Allium vineale), an unknown violet species (Viola sp.), and sweet wood-reed (Cinna arundinacea). Invasive species cover was moderate, with 40 percent invasive cover in the understory and 35 percent invasive ground cover. Downed woody debris is a common feature throughout this stand. Overall, Stand A is in good condition, as the stand is diverse with multiple canopy layers, and the moderate invasive cover that has not yet impacted the canopy.

Stand B

Stand B is a tuliptree-American sycamore forest occurring along the hillslopes of the CA-5 study area. The canopy of this mid-successional forest is primarily in the 12-19.9" size class and is dominated by tuliptree in the 1-30+" DBH range and American sycamore in the 8-30+" DBH range. Co-dominant species include red maple, black cherry, and Virginia pine (*Pinus virginiana*). Twenty-four (24) specimen trees occur within this stand and canopy closure is approximately 75 percent. The understory contains saplings of tuliptree, red maple, and black cherry, in addition to Japanese barberry, Autumn-olive, and wine raspberry. Infill plantings, including Eastern redbud (*Cercis canadensis*) and various oak species (*Quercus* sp.), were observed but not included in the forest characterization. Dominant herbaceous species include an unknown violet species, crow garlic, garlic mustard (*Alliaria petiolata*), sweet wood-reed, Japanese stilt grass, and Christmas fern (*Polystichum acrostichoides*). Invasive species cover was moderate, with 15 percent invasive understory cover and 60 percent invasive ground cover present in the stand. Downed woody debris is a common feature throughout this stand. Overall, Stand B is in good condition, as the stand is diverse and well structured, and has moderate invasive cover that has not yet impacted the canopy.

Stand C

Stand C is a red maple-ash-leaf maple forest occurring in the eastern floodplain of the CA-5 study area. The canopy of this early-successional forest is primarily in the 6-11.9" DBH size class and is dominated by red maple in the 1-16" DBH range and ash-leaf maple ranging from 1-22" DBH. Co-dominant species include black cherry, Callery pear (Pyrus calleryana), and river birch (Betula nigra). Other common species include tuliptree and American sycamore. One specimen tree occurs within this stand and canopy closure is approximately 60 percent. The understory contains saplings of the canopy species, except river birch, in addition to horsebrier (Smilax rotundifolia), wine raspberry, Southern arrow-wood (Viburnum dentatum), and European privet (Ligustrum vulgare). Dominant herbaceous species include an unknown speedwell species (Veronica sp.), an unknown violet species, an unknown bittercress species (Cardamine sp.), Japanese stilt grass, sweet wood-reed, garlic mustard, and crow garlic. Invasive species cover was moderate for the stand, with 3 percent invasive canopy cover, 10 percent invasive understory cover, and 75 percent invasive ground cover. Downed woody debris is an abundant feature throughout this stand. Overall, Stand C is in fair condition, as the stand is diverse with multiple canopy layers, but there is trash and evidence of disturbance from the surrounding development, as well as a high percentage of invasive species.

Stand D

Stand D is a tuliptree forest occurring along the floodplain in the southwestern portion of the CA-5 study area. The canopy of this mid-successional forest is primarily in the 20-29.9" DBH size class and is dominated by tuliptree in the 8->30" DBH range. Co-dominant species include red maple. Other common species include to black walnut (*Juglans nigra*), American elm (*Ulmus americana*), and black cherry. Eight (8) specimen trees occur within this stand and canopy closure is approximately 80 percent. The understory contains autumn olive, Japanese barberry and wine raspberry. Dominant herbaceous species include Japanese stilt grass, crow garlic, garlic mustard, deer-tongue rosette grass (*Dichanthelium clandestinum*), and Christmas fern. Invasive species cover was moderate for this stand with 35 percent invasive understory cover and 90 percent invasive ground cover. Downed woody debris is a common feature throughout this stand. Overall, Stand D is in good condition as most trees are healthy with no invasive cover in the canopy; however invasive groundcover is high, and the stand lacks a liberal shrub layer and overall species diversity.

Specimen Tree Survey

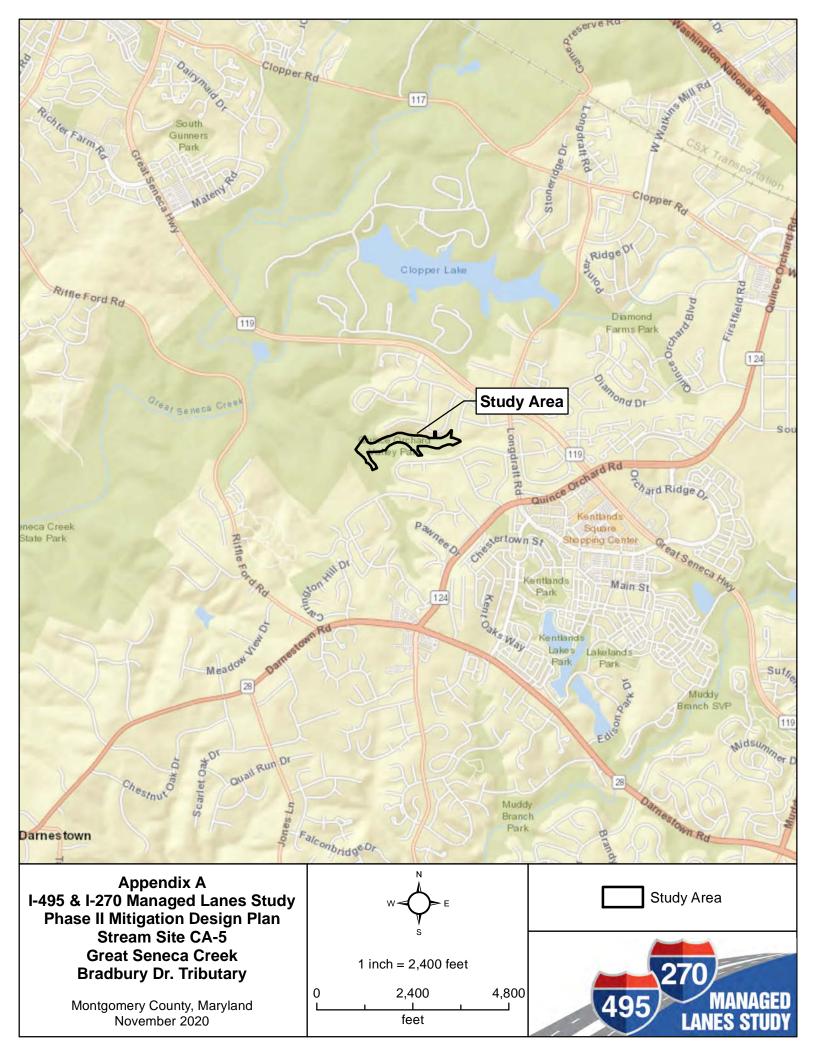
Forty-nine (49) specimen trees were identified within or adjacent to the CA-5 study area. These trees are listed below (**Table 1**) and displayed on the Forest Stand Delineation and Specimen Tree Survey mapping (**Appendix B**).

Table 1 Specimen Tree Summary Table								
Tree No.	Common Name	Scientific Name	DBH	Comments				
1	White Oak	Quercus alba	39	Fair, dead, broken limbs				
2	White Oak	Quercus alba	31	Good				
3	Tuliptree	Liriodendron tulipifera	32	Good				
4	Tuliptree	Liriodendron tulipifera	41	Good				

Table 1 – Specimen Tree Summary Table

5	Tuliptree	Liriodendron tulipifera	30, 29	Good, double trunk, split below BH, vines
6	Tuliptree	Liriodendron tulipifera	32.5,29, 21.5	Good, slightly undercut by stream
7	Tuliptree	Liriodendron tulipifera	32, 9.5	Good, slightly undercut by stream
8	American sycamore	Platanus occidentalis	32.5	Good
9	American sycamore	Platanus occidentalis	31	Fair, broken limbs, bark damage/rot
10	American sycamore	Platanus occidentalis	31	Good, vines
11	American sycamore	Platanus occidentalis	30	Good
12	Tuliptree	Liriodendron tulipifera	32	Good, split above BH
13	American sycamore	Platanus occidentalis	65	Good, few dead limbs, triple trunk above BH
14	Tuliptree	Liriodendron tulipifera	32.5	Good
15	American sycamore	Platanus occidentalis	34	Fair, vines in canopy, trunk rot
16	Tuliptree	Liriodendron tulipifera	31	Good
17	Tuliptree	Liriodendron tulipifera	33	Good
18	Red maple	Acre rubrum	36	Fair, trunk rot
19	Tuliptree	Liriodendron tulipifera	37.5	Good
20	Tuliptree	Liriodendron tulipifera	33.5	Good
21	American sycamore	Platanus occidentalis	34	Good
22	Tuliptree	Liriodendron tulipifera	39	Good, slightly undercut, dead limbs
23	Tuliptree	Liriodendron tulipifera	36.5	Good
24	Tuliptree	Liriodendron tulipifera	48	Fair, trunk rot, vines
25	Tuliptree	Liriodendron tulipifera	37.5	Good
26	Tuliptree	Liriodendron tulipifera	32.5	Good
27	Tuliptree	Liriodendron tulipifera	45	Good, split above BH
28	Tuliptree	Liriodendron tulipifera	45	Good, vines
29	Tuliptree	Liriodendron tulipifera	43	Good

30	Tuliptree	Liriodendron tulipifera	30	Good
31	American sycamore	Platanus occidentalis	37	Good, vines
32	American sycamore	Platanus occidentalis	30	Poor, extensive trunk rot, missing leader
33	Tuliptree	Liriodendron tulipifera	35.5	Good, double trunk, split above BH
34	Tuliptree	Liriodendron tulipifera	31	Good
35	Tuliptree	Liriodendron tulipifera	30	Good
36	American sycamore	Platanus occidentalis	30	Fair, trunk damage
37	Tuliptree	Liriodendron tulipifera	32	Good, vines
38	Tuliptree	Liriodendron tulipifera	33.5	Good
39	Tuliptree	Liriodendron tulipifera	57	Fair, vines, hole in trunk
40	Tuliptree	Liriodendron tulipifera	34	Good
41	Tuliptree	Liriodendron tulipifera	32.5	Good
42	Tuliptree	Liriodendron tulipifera	30.5	Good
43	Tuliptree	Liriodendron tulipifera	44	Good
44	Tuliptree	Liriodendron tulipifera	39	Poor, trunk rot, dead limbs
45	Tuliptree	Liriodendron tulipifera	42.5	Good
46	Tuliptree	Liriodendron tulipifera	42	Good
47	Tuliptree	Liriodendron tulipifera	37	Good
48	Tuliptree	Liriodendron tulipifera	36.5, 28.5	Fair, dead limbs
49	Tuliptree	Liriodendron tulipifera	37	Good
		tulipifera		


Conclusions

Four forest stands and 49 specimen trees were identified within the CA-5 study area. Impacts to forest and/or specimen trees will require authorization from the MDNR.

References

- Maryland Department of Natural Resources (MDNR). 1997. *State Forest Conservation Technical Manual*. Third Edition. Annapolis, MD.
- Reger JP and ET Cleaves. 2008. *Physiographic Map of Maryland*. Maryland Geological Survey. <u>http://www.mgs.md.gov/geology/physiographic_map.html</u> [Accessed 30 March 2020].

Appendix A – Vicinity Map

Appendix B – Forest Stand Delineation and Specimen Tree Map

Appendix C – Datasheets

orest Association: <u>Tulipha</u>	ere - Eastern	Cottonwood		Photos: <u>1,<i>E</i>; 2,6</u>		Ē
uccessional Stage: <u>Carlu</u>	•	0		Slope/Aspect:	2./ W	
verage DBH Size Class (in):	□ 2-5.9	🖾 6-11.9				
condition: 🖉 good 🛛 fair				Hoodplain Pon	est, mode	M
invasine cover on gris	me, not in	санору	2			_
etention Potential: 🗆 good	□ fair □ poo	or Explain:				
					1	-
ransplant and Regenerative		<u></u>	-	Explain: <u>Species</u>		
recover, invasives sh	would be ma	anaged to	prevent	further inva	SIVE coner	_
ominant and Co-dominant T	ree M	lost Common	DBH	Approximate % o		_
pecies	<u> </u>	DBH (in)	Range	Canopy	Understor	y
1. Liviodendron tulipifera		10	6-20	60		
2. Prunus seroting		8	7-10			
Acer rubrum Populus dettoides		<u> </u>	<u>2-30+</u> 10-18		<u>15</u>	
Platanus occidentali	2	12	<u>10-18</u> 7-30+	<u> </u>	0	
5. Acer negundo	2	2	<u>+-90+</u>	20	10	
7.	1 7 -	<u> </u>	Q			
ther Common Tree Species:				- 2		
ommon Regenerating Species	: Acer near	indo, Acer	notrum			
ommon Shrub and Vine	Average Height (ft)	Approx. % Cover		on Herbaceous	Approx. Cover	
. Berberis Hunbergia	3	20		gillion vinineum	30	
2. Lonicera japonica	2	3	2. Allium	Jineale.	5	
	5	5	3. Viola			
Elacaansembellater	3	5		avendinacea	8	
Bubbs phoenicolasius			E			
Robus phoenicolasius Rara multiflora		_8	5			
B. <u>Elaeognis imbellatu</u> Rubus phoenicolasius Rara multiflora Lindera benzoin		<u> 8 </u>	6			
Bis Elacagas imbellate Rubus phoenicolasius Rasa multiflora Lindera benzoin		<u> 8 </u>	6. 7.		v v	-
B. <u>Eleengnis imbellatu</u> Rubus phoenicolasius Rasa multiflora Lindera benzoin			6 7 8			1.4
B. <u>Elaeagas imbellatu</u> <u>Rubus phoenicolasius</u> Rasa multiflora Lindera benzoin	ic invasive pla	ants (include "*	6 7 8 " next to inva	sives listed above)		
B. <u>Elaeagas imbellatu</u> <u>Rubus phoenicolasius</u> Rasa multiflora Lindera benzoin	ic invasive pla		6 7 8 " next to inva	sives listed above)		
B. <u>Elaeagas imbellatu</u> <u>Rubus phoenicolasius</u> Rasa multiflora Lindera benzoin	ic invasive pla	ants (include "*	6 7 8 " next to inva	sives listed above)		
B. <u>Elaeagas imbellatu</u> <u>Rubus phoenicolasius</u> <u>Raza multiflora</u> <u>Lindera benzoin</u> <u>stimate total % cover of exot</u> Canopy: <u>O</u> U	ic invasive pla	ants (include "* <u> /0</u> Grou	6 7 8 " next to inva nd Cover:	sives listed above)		

Project Area: CA-5 Mit	ightron		C	Date: 4/9/20	
Stand ID:	0		II	nvestigators: AM,	EM
Location: Upper slopes of	2 study av	yea	P	hotos: Ph 4, E	: PhS, W
Forest Association: Tulip					, , ,
Successional Stage:	A	1		lope/Aspect: _/()	141
Average DBH Size Class (in):		□ 6-11.9	D 12-19.9	7	□ ≥30
Condition: 12 good				ned fonest, no	
diversity, invasive				<u>e co no cur proc</u>	
Retention Potential: good	0				
Transplant and Regenerative to return quickly,				xplain: <u>Species</u> shi	ould be able
Dominant and Co-dominant T		lost Common DBH (in)	DBH Range	Approximate % of D Canopy	ominant Species Understory
1. Liniodendron tulipifera			1 - 30 +		
2. <u>Platanus occidentalis</u>		12	8-3D+		
_ / /			1-20	5	20
4. Phonus seronha			4-10	5	3
5. <u>Pinus nirginiana</u> 6. <u>Ponus nirginiana</u>		10	6-12	3	0
7.			·		
Other Common Tree Species: _					
Common Regenerating Species	Aver NB	nm, Linod	lendron	tulipfera	
Common Shrub and Vine Species	Average Height (ft)	Approx. % Cover	Commo Species	n Herbaceous	Approx. % Cover
1. Berbens Hunbergi	3	8	1. Allium	vineale	5
2. Clargonus unbellata	<i>ID</i>	5		petiolata	5
3. <u>Bubus phoenicolasius</u>		3	3. Viola sp)	3
4			-	nndinacea	
5				m acrosticoides	
6			_	egium vimineum	
7			7		
8			o	· · · · · ·	
Estimate total % cover of exot		-		•	
Canopy:() U	nderstory: <u> </u>	5 Grou	und Cover:	60	
Approximate % Cover:					
Canopy: <u>75</u> U	nderstory:	<u>5</u> Hert	baceous:	10	
Basal Area (ft² – taken in two lo	cations with 10	x prism): 1.	150 2.	160	
Downed Woody Debris (≥6" DE					
Additional Notes: Plantings					
	5D asses		- Soc L. I had	a vere q urves	1
	and the second s				

	M		ate: <u>4/9/</u>	20 WAA SAA
Stand ID:			vestigators:	
ocation: Eastern floolplum			hotos: <u>Ph (</u>	O,F
orest Association: <u>Red Map</u>	le - Ashileat M	V		
Successional Stage:		S	lope/Aspect:	70, W
verage DBH Size Class (in):] 2-5.9 Ø(6-11.9			□ ≥30
^ ·			st with som	
him smouding develop	ment, modent	re minisiw	r coner	7
Retention Potential: 🛛 good 🛛 🕁 fair	r □ poor Explain: _	:		
			1	
ransplant and Regenerative Poten	•	Δ	xplain: <u>Canopy</u>	
species, invasine species a	over is high an	nd may in	a case of the second	
Dominant and Co-dominant Tree	Most Common	DBH _		Dominant Species
Species	DBH (in)	Range	Canopy	Understory
1. Aver ubrom	<u>10</u> 12	1-16		
2. Acer regndo 3. Minus serotina		1-22 5-12		<u> </u>
4. Punis callenna		1 - 7		
5. Betula nigra	8	7-12	8	0
6.				
0				
7	<u></u>			
7				
7				
7	<u>ev Nbnm, Ácev</u> verage Approx. %	<u>negindo,</u> Commo	<u>Pros callery</u> n Herbaceous	ana Approx. %
7	er rubrum, Ácer verage Approx. % eight (ft) Cover	<u>negindo</u> , Commo Species	Pyrus callery, n Herbaceous	Approx. % Cover
7	ev rubrum, Ácev verage Approx. % eight (ft) Cover 2 5	Commo Species 1. Viola	Pyrus callery, n Herbaceous	Approx. % Cover
7. 2. Deter Common Tree Species: <u>Linio</u> Common Regenerating Species: <u>Acce</u> Common Shrub and Vine Ar Species He 1. <u>Smilar rotundifolia</u> 2. <u>Autus protundifolia</u>	ev rubrum, Ácev verage Approx. % eight (ft) Cover 2 5	Commo Species 1. Viola 2. Microst	Pyrus callery, n Herbaceous	Approx. % Cover 5 m 20 70
7	ev rubrum, Ácev verage Approx. % eight (ft) Cover 2 5	Commo Species 1. Viola 2. Microst 3. Veronic	Pyrus callery, n Herbaceous Sp. egum nininer a sp.	Approx. % Cover 5 m 20 70
7. Dether Common Tree Species: <u>Linic</u> Common Regenerating Species: <u>Acce</u> Common Shrub and Vine Ar pecies He 1. <u>Smilar rotundifolia</u> 2. <u>Autors phoenicolasius</u> 3. <u>Viburnim dentatum</u> 4. <u>Ligustum Vibane</u>	ev rubrum, Ácev verage Approx. % eight (ft) Cover 2 5	Commo Species 1. Viola 2. Microst 3. Veronic	Pyrus callery, n Herbaceous	Approx. % Cover 5 m 20 70
7	ev rubrum, Ácev verage Approx. % eight (ft) Cover 2 5	Commo Species 1. Viola 2. Microst 3. Veronic 4. Cinna a 5. Cardan 6. Alliance	Pyrus callery, n Herbaceous Sp. egum nininer a sp. nndinacea ine sp. a petiolata	Approx. % Cover 5 m 20 70
7	ev rubrum, Ácev verage Approx. % eight (ft) Cover 2 5	negindo, Commo Species 1. Viola 2. Microst 3. Veronic 4. Cinna a 5. Cardan 6. Alliano 7. Alliano	Pyrus callery, n Herbaceous Sp. egum nininer a sp. nndinacea ine sp. a petiolata	Approx. % Cover 5 m 20 70
7	ev rubrum, Ácev verage Approx. % eight (ft) Cover 2 5 3 5 8 4 2 3	Commo Species 1. Viola 2. Microst 3. Veronic 4. Cinna u 5. Curdan 6. Allianta 7. Allianta 8.	Pyrus callery, n Herbaceous sp. egum nininer ia sp. nndinarea ine sp. x petielata nineale	Approx. % Cover 5 m 20 70 5 3 3 3
7	ev rubrum, Ácev verage Approx. % eight (ft) Cover 2 5 3 5 8 4 2 3 2 3 asive plants (include "	Commo Species 1. Viola 2. Microst 3. Veronic 4. Cinna a 5. Cardan 6. Alliana 7. Alliana 8.	Pyrus callery, n Herbaceous Sp. egum n'miner a sp. nnainacea ine sp. a petiolata vineale sives listed above):	Approx. % Cover 5 m 20 70 5 3 3 3
7	ev rubrum, Ácev verage Approx. % eight (ft) Cover 2 5 3 5 8 4 2 3 2 3 asive plants (include "	Commo Species 1. Viola 2. Microst 3. Veronic 4. Cinna a 5. Cardan 6. Alliana 7. Alliana 8.	Pyrus callery, n Herbaceous Sp. egum n'miner a sp. nnainacea ine sp. a petiolata vineale sives listed above):	Approx. % Cover 5 m 20 70 5 3 3 3
7	ev rubrum, Ácer verage Approx. % eight (ft) Cover 2 5 3 5 8 4 2 3 asive plants (include " cory: _/O Gro	Commo Species 1. Viola 2. Microst 3. Veronic 4. Cinna a 5. Cardan 6. Alliante 7. Alliante 8 **** next to invas	Pyrus callery, n Herbaceous Sp. egum ninner ca sp. nndinacea nine sp. x petielata nineale sives listed above): 75	Approx. % Cover 5 m 20 70 5 3 3 3
7	ev rubrum, Ácer verage Approx. % eight (ft) Cover 2 5 3 5 8 4 2 3 asive plants (include " cory: _/O Gro	Commo Species 1. Viola 2. Microst 3. Veronic 4. Cinna a 5. Cardan 6. Alliante 7. Alliante 8 **** next to invas	Pyrus callery, n Herbaceous Sp. egum ninner ca sp. nndinacea nine sp. x petielata nineale sives listed above): 75	Approx. % Cover 5 m 20 70 5 3 3 3
7	ev vubrum, Ácev verage Approx. % eight (ft) Cover 2 5 3 5 8 4 2 3 asive plants (include " cory: _15_ Her	Commo Species 1. \iola 2. Microst 3. Veronic 4. Cinna a 5. Cardan 6. Alliante 7. Alliante 8 with next to invast baceous:	Pyrus callery, n Herbaceous Sp. egum ninner ca sp. nndinacea nine sp. x petielata nineale sives listed above): 75	Approx. % Cover 5 m 20 70 5 3 3 3
7.	ev vubrum, Ácev verage Approx. % eight (ft) Cover 2 5 3 5 8 4 2 3 asive plants (include " cory: _15_ Her	Negundo, Common Species 1. \liola 2. Microsta 3. Veronic 4. Cinna u 5. Cardam 6. Alliama 8.	Pyrus callery, n Herbaceous Sp. egum nininer a sp. nndinacea nine sp. petiolata vineale sives listed above): 75 85 80	Approx. % Cover 5 m 20 70 5 3 3 3

Project Area: <u>CA-5</u> Hitigo	ition		0	Date: 11/1	10/20:	20
itand ID: D	(1		II	nvestigators:	HI S	P
ocation: SW Particn of Study	Airos S.	of Power			'٤'	
orest Association: <u>Juliptre</u>	1			,		
uccessional Stage: Mrd			S	Slope/Aspect:	5%	W
	1 2-5.9	□ 6-11.9	□ 12-19.	• • / •] ≥30
] poor			realthy for		1, In an
wen understany and fine					kiba	
Retention Potential: good			- 1 / -		<u> </u>	Dlaip
of Papased Stream (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Fransplant and Regenerative Poten				Explain: Soed	e like	. 10
(Prank, grankar Invesu	22.00					9
			U		% of Dom	inant Species
Dominant and Co-dominant Tree Species		Common 3H (in)	DBH Range	Canopy		Understory
1. Liriadendran talipifera	0	4	8-730	80		6
2. Aler rubarn	12	2	8-24	10		0
- PILV NOODNA						
3.						
3		<u>.</u>				
3. 4. 5. 6. 7.	lun as	a Ula		irana Pru		rotina
3 4 5 6 7 Other Common Tree Species: Common Regenerating Species: Common Shrub and Vine A	verage A	king ; t	nus Cimer recuy des Comm	on Herbaceou	, is 1;	Approx. %
3.	gen kic	pprox. % Cover	Comm Specie	on Herbaceou	s s	hely proven
3.	verage A	king f Approx. % Cover	Comm Species	on Herbaceou s trgium uim	s s	Approx. %
3.	y <u>en kric</u> werage A eight (ft)	king , t Approx. % Cover 10 20	Comm Species *2. <u>Allium</u> *3. <u>Allium</u>	on Herbaceou s trgium uim vinzale	s intum	Approx. % Cover <u>80</u>
3.	yen kic Average A eight (ft) <u>8</u> ' <u>4</u> ' <u>3</u> '	king, r Approx. % Cover 10 20 5	Comm Specie *1. <u>Hicros</u> *2. <u>Allium</u> *3. <u>Allium</u> 4. <u>Dicha</u>	on Herbaceou on Herbaceou is trajium uim vinzale rico petiolat thelium chi	neun neun rdestinun	Approx. % Cover <u>80</u> 15 15
3.	gen loc werage A eight (ft) A 8' - 4' - 3' -	king, r Approx. % Cover 10 20 5	Comm Species *1. <u>HiCros</u> *2. <u>Allium</u> *3. <u>Allium</u> 4. <u>Dichan</u> 5. Poyst	on Herbaceou s trgium uim vinzale	neun neun rdestinun	Approx. % Cover <u>80</u> 15 15
3.	gen loc werage A eight (ft) - 3' -	king, h Approx. % Cover 10 20 5	Comm Specie *1. <u>Hicros</u> *2. <u>Allium</u> *3. <u>Allium</u> 4. <u>Dichar</u> 5. <u>Poryst</u>	on Herbaceou on Herbaceou is trajium uim vinzale rico petiolat thelium chi	neun s neun nelestinun ichodes	Approx. % Cover 80 15 15 10 5
3.	gen loc werage A eight (ft) - 3' -	king, h Approx. % Cover 10 20 5	Comm Specie *1. <u>Hicros</u> *2. <u>Allium</u> *3. <u>Allium</u> 4. <u>Dichar</u> 5. <u>Poryst</u>	on Herbaceou s tegium uim vinzale is petiolet thelium ch	neun neun ndestinun	Approx. % Cover 80 15 15 10 5
3.	verage A eight (ft) <u>8</u> ' <u>4</u> ' <u>3</u> ' vasive plant	king, h Approx. % Cover 10 20 5	Comm Specie *1. <u>HiCros</u> *2. <u>Allium</u> *3. <u>Allium</u> 4. <u>Dichan</u> 5. <u>Polysti</u> 6. 7. 8.	on Herbaceou s tegiun uin vinzale ia petiolat thelium chi ichun acest asives listed at	neun s neun ndestinun ichodes	Approx. % Cover <u>80</u> <u>15</u> <u>10</u> <u>5</u>
3.	verage A eight (ft) <u>8</u> ' <u>4</u> ' <u>3</u> ' vasive plant	king, h Approx. % Cover 10 20 5	Comm Specie *1. <u>HiCros</u> *2. <u>Allium</u> *3. <u>Allium</u> 4. <u>Dichan</u> 5. <u>Polysti</u> 6. 7. 8.	on Herbaceou s tegiun uin vinzale ia petiolat thelium chi ichun acest asives listed at	neun s neun ndestinun ichodes	Approx. % Cover <u>80</u> <u>15</u> <u>10</u> <u>5</u>
3.	verage A eight (ft) <u>8</u> ' <u>4</u> ' <u>3</u> ' vasive plant	king, h Approx. % Cover 10 20 5	Comm Specie *1. <u>HiCros</u> *2. <u>Allium</u> *3. <u>Allium</u> 4. <u>Dichan</u> 5. <u>Polysti</u> 6. 7. 8.	on Herbaceou s tegiun uin vinzale ia petiolat thelium chi ichun acest asives listed at	neun s neun ndestinun ichodes	Approx. % Cover <u>80</u> <u>15</u> <u>10</u> <u>5</u>
3.	verage A eight (ft) 8' 4' 3' vasive plants	king, f Approx. % Cover 10 20 5 5 s (include '	Comm Specie *1. <u>Hicros</u> *2. <u>Allium</u> *3. <u>Allium</u> 5. <u>Poky</u> 6. 7. 8. **" next to inv	on Herbaceou s trajium uim vinzale	neun s neun ndestinun ichodes	Approx. % Cover <u>80</u> <u>15</u> <u>10</u> <u>5</u>
3.	verage A eight (ft) <u>8</u> ' <u>4</u> ' <u>3</u> ' <u>4</u> ' <u>3</u> ' vasive plants story: <u>35</u>	s (include '	Comm Specie *1. <u>HiCros</u> *2. <u>Allium</u> *3. <u>Allium</u> 5. <u>Poys</u> 6. 7. 8. **" next to involut to involut Cover:	on Herbaceou s trajium uim vinzale	neun s neun ndestinun ichodes	Approx. % Cover <u>80</u> <u>15</u> <u>10</u> <u>5</u>
3.	verage eight (ft) 8' 4' 3' vasive plants story: 35 story: 35 hs with 10x p	s (include '	Comm Specie *1. <u>Micros</u> *2. <u>Allium</u> *3. <u>Allium</u> *3. <u>Allium</u> 5. <u>Polyst</u> 6. 7. 8. **" next to involut cover: baceous: 2. **********************************	on Herbaceou on Herbaceou tregium uim vinzale ici petiolat athelium chi ichun acest asives listed at 90 100 2.70	neun s neun ndestinun ichodes	Approx. % Cover <u>80</u> <u>15</u> <u>10</u> <u>5</u>
3.	verage A eight (ft) <u>8</u> ' <u>4</u> ' <u>3</u> ' <u>asive plants</u> story: <u>35</u> story: <u>35</u> ns with 10x p	s (include '	Comm Specie →	on Herbaceou s trajium uim vinzale	neun s neun ndestinun ichodes	Approx. % Cover <u>80</u> <u>15</u> <u>10</u> <u>5</u>

CRI 2019

Appendix D – Photo Log

Appendix D: Forest Stand Characterization Photograph Log

Photo 1. Looking west at Forest Stand A, located at the western end of the study area.

Photo 2. Looking east at Forest Stand B, located along the slopes of the study area.

Appendix D: Forest Stand Characterization Photograph Log

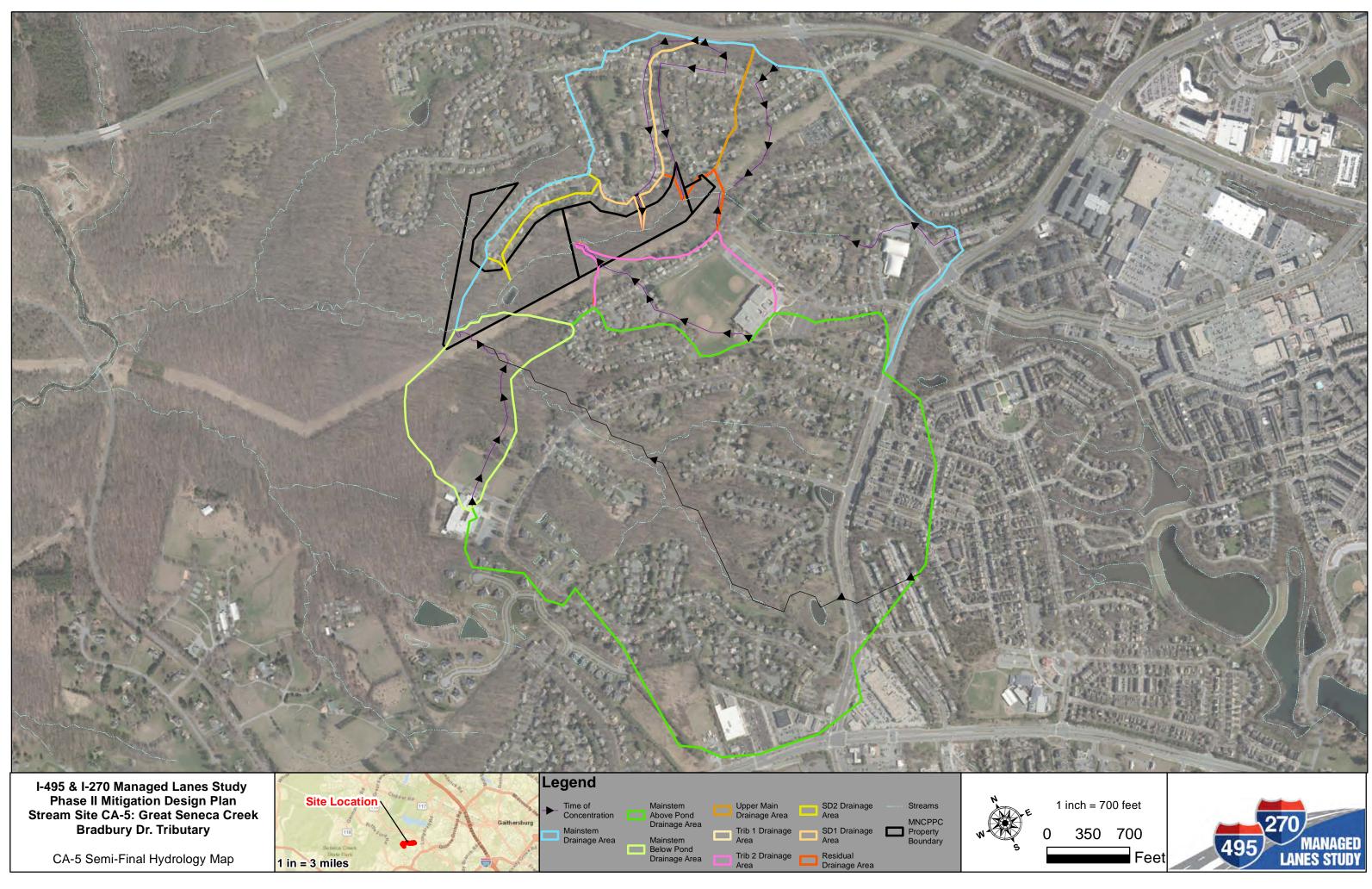
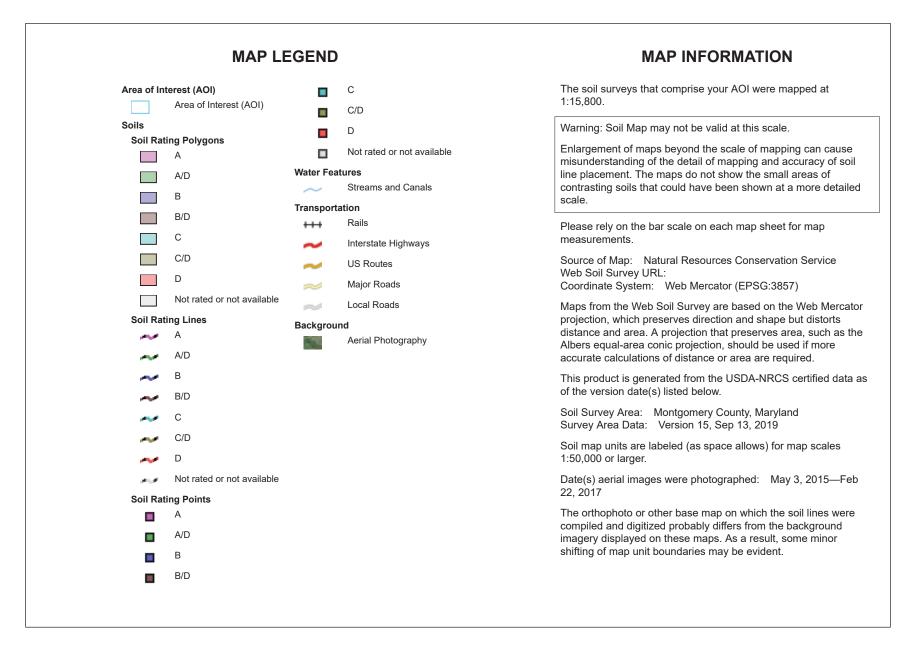


Photo 3. Looking east at Forest Stand C, located in the eastern floodplain of the study area.

Photo 4. Looking east at Forest Stand D, located in the southwestern portion of the study area.

APPENDIX D.1 EXISTING HYDROLOGIC ANALYSIS



USDA Natural Resources Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
1C	Gaila silt loam, 8 to 15 percent slopes	В	23.3	14.4%
2B	Glenelg silt loam, 3 to 8 percent slopes	В	55.8	34.5%
2C	Glenelg silt loam, 8 to 15 percent slopes	В	1.5	0.9%
6A	Baile silt loam, 0 to 3 percent slopes	C/D	6.9	4.2%
16D	Brinklow-Blocktown channery silt loams, 15 to 25 percent slopes	С	30.5	18.9%
37B	Travilah silt loam, 3 to 8 percent slopes	C/D	33.0	20.4%
53A	Codorus silt loam, 0 to 3 percent slopes, occasionally flooded	С	0.9	0.5%
65B	Wheaton silt loam, 0 to 8 percent slopes	В	10.1	6.2%
Totals for Area of Inter	est		161.8	100.0%

NOAA Atlas 14, Volume 2, Version 3 Location name: Gaithersburg, Maryland, USA* Latitude: 39.1179°, Longitude: -77.2525° Elevation: 436.83 ft** * source: ESRI Maps ** source: USGS

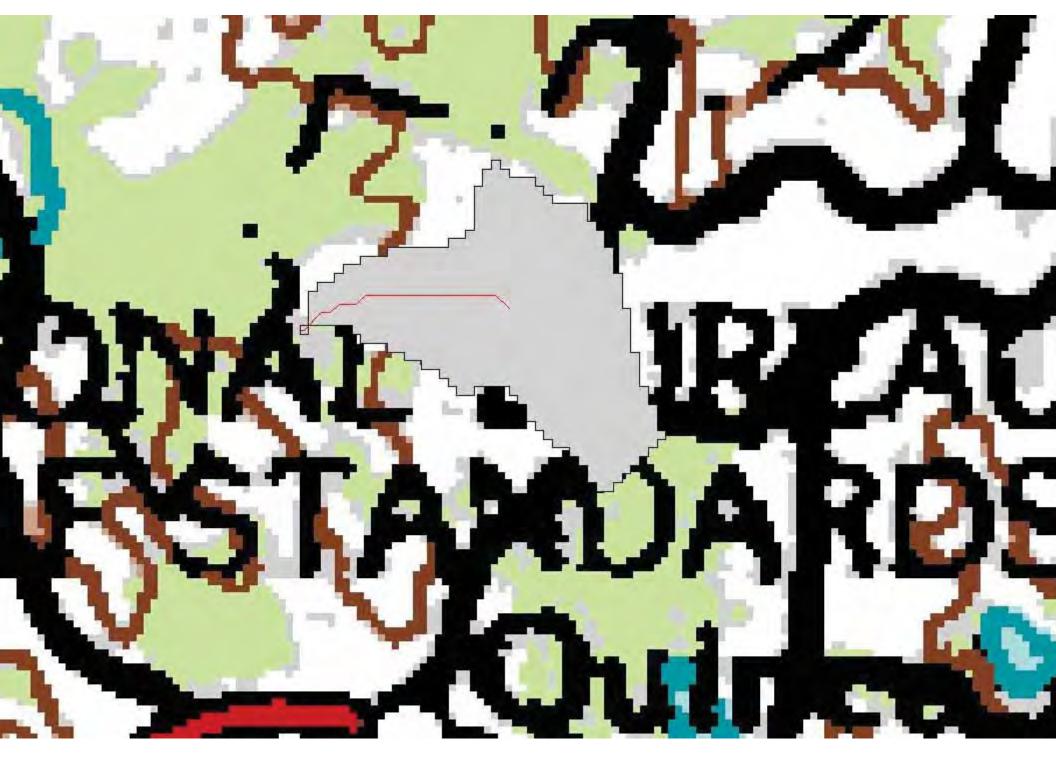
POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


PDS	-based po	oint preci	pitation fr	equency	estimates	with 90%	confiden	ce interva	als (in inc	hes) ¹
Duration				Averag	ge recurrend	e interval (y	vears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.340 (0.308-0.376)	0.407 (0.368-0.450)	0.485 (0.438-0.536)	0.543 (0.489-0.599)	0.616 (0.551-0.680)	0.671 (0.597-0.740)	0.725 (0.641-0.801)	0.778 (0.683-0.862)	0.846 (0.736-0.942)	0.899 (0.776-1.00)
10-min	0.544 (0.491-0.601)	0.651 (0.588-0.720)	0.777 (0.701-0.859)	0.868 (0.781-0.958)	0.982 (0.878-1.08)	1.07 (0.950-1.18)	1.15 (1.02-1.27)	1.23 (1.08-1.37)	1.34 (1.16-1.49)	1.42 (1.22-1.58)
15-min	0.680 (0.614-0.751)	0.819 (0.740-0.905)	0.983 (0.887-1.09)	1.10 (0.988-1.21)	1.24 (1.11-1.37)	1.35 (1.20-1.49)	1.46 (1.29-1.61)	1.56 (1.37-1.72)	1.68 (1.47-1.88)	1.78 (1.53-1.99)
30-min	0.932 (0.842-1.03)	1.13 (1.02-1.25)	1.40 (1.26-1.54)	1.59 (1.43-1.76)	1.84 (1.65-2.03)	2.04 (1.81-2.25)	2.23 (1.97-2.47)	2.42 (2.13-2.68)	2.68 (2.33-2.98)	2.88 (2.48-3.22)
60-min	1.16 (1.05-1.28)	1.42 (1.28-1.57)	1.79 (1.62-1.98)	2.07 (1.87-2.29)	2.45 (2.19-2.71)	2.76 (2.46-3.05)	3.07 (2.72-3.40)	3.40 (2.98-3.76)	3.85 (3.34-4.28)	4.20 (3.63-4.69)
2-hr	1.36 (1.23-1.51)	1.66 (1.50-1.84)	2.11 (1.90-2.33)	2.46 (2.21-2.71)	2.96 (2.65-3.26)	3.37 (3.00-3.72)	3.81 (3.36-4.21)	4.27 (3.74-4.72)	4.94 (4.28-5.49)	5.49 (4.70-6.12)
3-hr	1.46 (1.32-1.63)	1.78 (1.61-1.98)	2.26 (2.03-2.50)	2.64 (2.37-2.92)	3.19 (2.85-3.53)	3.65 (3.23-4.04)	4.14 (3.64-4.58)	4.66 (4.06-5.17)	5.42 (4.66-6.04)	6.05 (5.14-6.76)
6-hr	1.81 (1.64-2.02)	2.19 (1.98-2.43)	2.77 (2.50-3.07)	3.24 (2.91-3.59)	3.94 (3.51-4.37)	4.54 (4.01-5.03)	5.20 (4.55-5.76)	5.91 (5.12-6.56)	6.96 (5.94-7.77)	7.85 (6.61-8.79)
12-hr	2.20 (1.98-2.47)	2.65 (2.39-2.98)	3.36 (3.02-3.77)	3.97 (3.55-4.45)	4.90 (4.33-5.47)	5.71 (5.00-6.38)	6.61 (5.72-7.40)	7.62 (6.51-8.54)	9.16 (7.67-10.3)	10.5 (8.64-11.9)
24-hr	2.54 (2.31-2.83)	3.07 (2.80-3.42)	3.94 (3.58-4.38)	4.71 (4.27-5.22)	5.89 (5.29-6.49)	6.94 (6.18-7.61)	8.13 (7.17-8.88)	9.47 (8.26-10.3)	11.5 (9.91-12.5)	13.4 (11.3-14.5)
2-day	2.95 (2.68-3.27)	3.57 (3.24-3.96)	4.56 (4.15-5.07)	5.42 (4.91-6.02)	6.72 (6.04-7.43)	7.85 (7.01-8.65)	9.10 (8.06-10.0)	10.5 (9.21-11.5)	12.6 (10.9-13.8)	14.4 (12.3-15.8)
3-day	3.12 (2.84-3.46)	3.77 (3.44-4.19)	4.82 (4.39-5.35)	5.73 (5.20-6.35)	7.09 (6.38-7.83)	8.27 (7.40-9.11)	9.59 (8.50-10.5)	11.1 (9.71-12.1)	13.3 (11.5-14.6)	15.1 (13.0-16.7)
4-day	3.29 (3.00-3.65)	3.98 (3.63-4.42)	5.08 (4.63-5.64)	6.03 (5.48-6.68)	7.46 (6.73-8.23)	8.70 (7.79-9.57)	10.1 (8.95-11.1)	11.6 (10.2-12.7)	13.9 (12.1-15.3)	15.9 (13.6-17.5)
7-day	3.81 (3.49-4.19)	4.59 (4.21-5.05)	5.80 (5.32-6.37)	6.83 (6.24-7.49)	8.38 (7.61-9.16)	9.72 (8.77-10.6)	11.2 (10.0-12.2)	12.8 (11.4-14.0)	15.2 (13.4-16.7)	17.3 (15.0-18.9)
10-day	4.36 (4.00-4.78)	5.23 (4.81-5.74)	6.53 (6.00-7.15)	7.62 (6.98-8.33)	9.20 (8.39-10.0)	10.5 (9.55-11.5)	12.0 (10.8-13.0)	13.5 (12.1-14.7)	15.8 (13.9-17.2)	17.7 (15.5-19.3)
20-day	5.89 (5.46-6.38)	7.01 (6.50-7.58)	8.47 (7.85-9.15)	9.66 (8.93-10.4)	11.3 (10.4-12.2)	12.6 (11.6-13.6)	14.0 (12.8-15.1)	15.5 (14.1-16.7)	17.5 (15.8-18.8)	19.0 (17.1-20.6)
30-day	7.25 (6.78-7.78)	8.58 (8.02-9.21)	10.2 (9.52-10.9)	11.5 (10.7-12.3)	13.3 (12.4-14.2)	14.7 (13.7-15.8)	16.2 (15.0-17.3)	17.7 (16.3-19.0)	19.7 (18.0-21.2)	21.3 (19.4-22.9)
45-day	9.10 (8.54-9.70)	10.7 (10.1-11.4)	12.5 (11.8-13.3)	13.9 (13.1-14.8)	15.8 (14.8-16.8)	17.2 (16.0-18.3)	18.5 (17.3-19.7)	19.9 (18.5-21.2)	21.6 (20.0-23.1)	22.9 (21.1-24.5)
60-day	10.8 (10.2-11.5)	12.8 (12.0-13.5)	14.7 (13.9-15.6)	16.2 (15.3-17.2)	18.2 (17.1-19.3)	19.6 (18.4-20.8)	21.0 (19.6-22.2)	22.3 (20.8-23.7)	24.0 (22.3-25.5)	25.2 (23.3-26.8)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

basinstat Watershed Statistics for: GISHydro Release Version Date: January 8, 2011 Hydro Extension Version Date: January 8, 2011 Analysis Date: April 9, 2020 Data Selected: Quadrangles Used: germantown, gaithersburg, seneca DEM Coverage: NED DEMs Land Use Coverage: 2010 MOP Landuse Soil Coverage: SSURGO Soils Hydrologic Condition: (see Lookup Table) Impose NHD stream Locations: Yes Outlet Easting: 377753 m. (MD Stateplane, NAD 1983) Outlet Northing: 162453 m. (MD Stateplane, NAD 1983) Findings: Outlet Location: **Piedmont** Outlet State: Maryl and Drainage Area 0.3 square miles -Piedmont (100.0% of area) 130.5 feet/mile Channel Slope: Land Slope: 0.061 ft/ft Urban Area: 79.2% Impervious Area: 35.0% URBAN DEVELOPMENT IN WATERSHED EXCEEDS 15%. Calculated discharges from USGS Regression Equations may not be appropriate. **** Time of Concentration: 1.0 hours [W.O. Thomas, Jr. Equation] Time of Concentration: 0.9 hours [From SCS Lag Equation * 1.67] Longest Flow Path: 0.98 miles Basin Relief: 95.5 feet Average CN: 76 13.9 % Forest Cover: % Storage: 0.0 % Limestone: 0.0 Selected Soils Data Statistics: % A Soils: 0.0 % B Soils: 69.2 % C Soils: 26.9 3.9 % D Soils: SSURGO Soils Data Statistics (used in Regression Equations): % A Soils: 0.0 69.2 % B Soils: % C Soils: 26.9 % D Soils: 3.9 2-Year, 24-hour Prec.: 3.08 inches

Inputs:									
	Drainage Area:	0.252	sqmi						
	% Lime:	0.00							
% Impervious Area:		35.50		Estimated	from GISHy	/dro			
Maryland Hydrology Panel, 2016, Application of Hydrologic Methods in Maryland (4th Edition), July 2016									
Wilbert C). Thomas, Jr. and	Glenn E. Moglen							
Interval	Discharge (cfs)	Range		Cons	tants		Standard E	rror	
1.25	68.08	(31.93 - 104.22)	63	0.685	-0.09	0.284	53.1%		
1.5	88.73	(45.87 - 131.59)	89.8	0.669	-0.1	0.253	48.3%		
2	120.29	(67.84 - 172.73)	131.7	0.653	-0.112	0.225	43.6%		
5	232.38	(150.58 - 314.18)	283.7	0.625	-0.136	0.184	35.2%		
10	340.71	(233.05 - 448.37)	434.7	0.61	-0.148	0.166	31.6%		
25	518.90	(363.23 - 674.57)	683.3	0.599	-0.164	0.153	30.0%		
50	693.52	(479.91 - 907.12)	929.6	0.591	-0.174	0.145	30.8%		
100	914.18	(612.5 - 1215.86)	1240.1	0.584	-0.184	0.139	33.0%		
200	1180.36	(748.35 - 1612.37)	1616.8	0.578	-0.193	0.134	36.6%		
500	1630.58	(931.06 - 2330.1)	2252.2	0.571	-0.205	0.129	42.9%		

Inputs:									
	Drainage Area:	0.41	sqmi						
	% Lime:	0.00							
%	Impervious Area:	33.80		Estimated	from GISHy	′dro			
Maryland Hydrology Panel, 2016, Application of Hydrologic Methods in Maryland (4th Edition), July 2016									
Wilbert C). Thomas, Jr. and	Glenn E. Moglen							
Interval	Discharge (cfs)	Range		Cons	tants		Standard E	rror	
1.25	93.74	(43.96 - 143.51)	63	0.685	-0.09	0.284	53.1%		
1.5	121.41	(62.77 - 180.05)	89.8	0.669	-0.1	0.253	48.3%		
2	163.53	(92.23 - 234.82)	131.7	0.653	-0.112	0.225	43.6%		
5	312.25	(202.34 - 422.16)	283.7	0.625	-0.136	0.184	35.2%		
10	454.87	(311.13 - 598.61)	434.7	0.61	-0.148	0.166	31.6%		
25	689.49	(482.65 - 896.34)	683.3	0.599	-0.164	0.153	30.0%		
50	918.29	(635.46 - 1201.12)	929.6	0.591	-0.174	0.145	30.8%		
100	1206.71	(808.49 - 1604.92)	1240.1	0.584	-0.184	0.139	33.0%		
200	1553.88	(985.16 - 2122.6)	1616.8	0.578	-0.193	0.134	36.6%		
500	2139.79	(1221.82 - 3057.75)	2252.2	0.571	-0.205	0.129	42.9%		

October, 2020 GISHydro Release Version Date: Project Name: CA-5_Additional_Trib Analysis Date: November 10, 2020 Data Selected: DEM Coverage: NED DEM 201805 Land Use Coverage: 2010 MOP Soil Coverage: SSURGO 201805 Hydrologic Condition: Good Impose NHD stream Locations: Yes 377743 m (MD Stateplane, NAD 1983) Outlet Easting: Outlet Northing: 162438 m (MD Stateplane, NAD 1983) Findings: Outlet Location: Pi edmont Outlet State: Maryl and 0.41 square miles Drainage Area -Piedmont 100.00 percent of area Channel Slope: 143.36616295 feet/mile (0.02715268 feet/feet) Land Slope: 0.08255392 feet/feet Urban Area (percent): 69.9 Impervious Area (percent): 33.8 Time of Concentration: 1.07 hours [W.O. Thomas, Jr. Equation] Time of Concentration: 0.75 hours [From SCS Lag Equation * 1.67] Longest Flow Path: 0.97 miles Basin Relief: 95.59 feet Average CN: 76.9 Forest Cover (percent): 21.7 Storage (percent): 0.3 Limestone (percent): 0.0 Selected Soils Data Statistics Percent: A Soils: 0.0 B Soils: 57.2 C Soils: 26.1 D Soils: 16.5 SSURGO Soils Data Statistics Percent (used in Regression Equations): A Soils: 0.0 B Soils: 57.2 C Soils: 26.1 D Soils: 16.5 2-Year, 24-hour Prec. : 3.07 inches Mean Annual Prec.: 42.14 inches

Quince Orchard Upper Main plus channel to equal Mainstem 1 Montgomery NOAA_C County, Maryland

Sub-Area Summary Table

Sub-Area Identifier	Drainage Area (ac)	Time of Concentration (hr)	Curve Number	Receiving Reach	Sub-Area Description
Mainstem 1	161.50	0.298	79	Outlet	
Total Area:	161.50	(ac)			

Quince Orchard Upper Main plus channel to equal Mainstem 1 Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
Mainstem 1							
SHEET	58	0.0200	0.011				0.013
SHALLOW	898	0.0368	0.050				0.081
SHALLOW	299	0.0502	0.025				0.018
CHANNEL	1411	0.0716	0.035	6.00	7.00	10.314	0.038
CHANNEL	3636	0.0305	0.035	14.00	16.00	6.824	0.148
				Ti	me of Conce.	ntration	.298
						=	======

KAS

KAS

--- Identification Data ---

Date: 2/5/2021 Units: English User: KAS Project: CA-5 SubTitle: Mainstem 2 Areal Units: Acres State: Maryland County: Montgomery NOAA_C Filename: G:\Active\2017-29 BCS 2015-05A Design-Construction, WRA\Task 25 CA-5 Phase II design\Hydrology\T

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
Total		Outlet	262.4	77	0.425
Total area:	262.40 (ac)				

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	l-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.07	3.99	4.71	5.97	7.03	8.88	2.54

Storm Data Source:	User-provided custom storm data
Rainfall Distribution Type:	NOAA_C
Dimensionless Unit Hydrograph:	<standard></standard>

KAS

CA-5 Mainstem 2 Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
Total							
SHEET	100	0.0355	0.011				0.016
SHALLOW	97	0.0355	0.025				0.007
CHANNEL	1205	0.0898	0.035	2.00	6.28	5.977	0.056
CHANNEL	3859	0.0196	0.035	6.00	16.00	3.098	0.346
				Ti	me of Conce	ntration	0.425
						=	======

WinTR-55, Version 1.00.10 Page 1

2/18/2021 10:51:53 AM

WinTR-20 Printed Page File Beginning of Input Data List G:\Active\1 ASSOCIATES TEMP FILES\Katie\TR-20\CA5Total.inp									
	version 3 stem 1 and	.20 Mainstem	2	0	0	1.0			
SUB-AREA:	1 2	Outlet weir	GAGE GAGE	0.252 0.41	79. 77.	0.298 0.425			
STREAM RE	ACH: weir	Outlet		Weir					
STORM ANA	LYSIS: p1-06 p2-06 p10-12 100yrNOAA	GAGE GAGE GAGE CGAGE		1.81 2.19 3.97 8.88	rtp1-06 rtp2-06 rtp10-12 TYPE NO_C	2 2 2 2			
STRUCTURE	RATING: Weir	318.3 318.3 320. 322. 324. 325.12 325.5 326. 328.	0. 2.23 3.15 3.86 4.35 91.52 265.87 1455.620	0. .464 2.206 5.324 7.605 8.466 9.6643 15.0605					
RAINFALL	DISTRIBUTI rtp1-06 rtp2-06	CON: 0.0000 0.0323 0.0646 0.0969 0.1285 0.1871 0.5000 0.8129 0.8715 0.9031 0.9031 0.9354 0.9677 1.0000 0.0325 0.0650 0.0975 0.1284 0.1863 0.5000	0.1 0.0065 0.0388 0.0710 0.1032 0.1402 0.2113 0.6641 0.8247 0.8778 0.9096 0.9419 0.9742 0.1 0.0065 0.0390 0.0715 0.1037 0.1400 0.2111 0.6619	0.0129 0.0452 0.0775 0.1095 0.1519 0.2355 0.7258 0.8364 0.8842 0.9160 0.9483 0.9806 0.0130 0.0455 0.0780 0.1099 0.1515 0.2360 0.7244	0.0194 0.0517 0.0840 0.1158 0.1636 0.2742 0.7645 0.8481 0.8905 0.9225 0.9548 0.9871 0.0195 0.0520 0.0845 0.1160 0.1631 0.2756 0.7640	0.0258 0.0581 0.0904 0.1222 0.1753 0.3359 0.7887 0.8598 0.9290 0.9612 0.9935 0.0260 0.0585 0.0910 0.1222 0.1747 0.3381 0.7889			

rtp10-12	0.8137 0.8716 0.9025 0.9350 0.9675 1.0000 0.0000 0.0153 0.0306 0.0459	0.8253 0.8778 0.9090 0.9415 0.9740 0.1 0.0031 0.0184 0.0337 0.0489	0.8369 0.8840 0.9155 0.9480 0.9805 0.0061 0.0214 0.0367 0.0520	0.8485 0.8901 0.9220 0.9545 0.9870 0.0092 0.0245 0.0398 0.0551	0.86 0.92 0.96 0.99 0.01 0.02 0.04 0.05	63 85 10 35 22 75 28			
	0.0612 0.0765 0.0918 0.1178 0.1438 0.1698 0.1948 0.2461 0.5000 0.7539 0.8052 0.8302 0.8302 0.8562 0.8822 0.9082 0.9235 0.9388 0.9541 0.9694 0.9847 1.0000	0.0642 0.0795 0.0970 0.1230 0.1490 0.1748 0.2050 0.2692 0.6203 0.7642 0.8102 0.8354 0.8614 0.9113 0.9266 0.9419 0.9572 0.9725 0.9878	0.0673 0.0826 0.1022 0.1282 0.1542 0.1542 0.2153 0.2922 0.6726 0.7744 0.8152 0.8406 0.8666 0.8926 0.9143 0.9296 0.9449 0.9602 0.9755 0.9908	0.0704 0.0857 0.1074 0.1334 0.1594 0.1848 0.2256 0.3274 0.7078 0.7847 0.8202 0.8458 0.8718 0.9174 0.9327 0.9480 0.9633 0.9786 0.9939	0.07 0.08 0.11 0.13 0.16 0.18 0.23 0.37 0.73 0.79 0.82 0.85 0.85 0.85 0.87 0.90 0.92 0.93 0.95 0.96 0.98 0.99	34 87 26 86 46 98 58 97 08 50 52 10 70 30 05 58 11 63 16			
GLOBAL OUTPUT:	1.	0.1	YNNNN	YNNNNN					
WinTR-20 Printed Page File End of Input Data List CA-5 Mainstem 1 and Mainstem 2									
Name of printed page file: G:\Active\1 ASSOCIATES TEMP FILES\Katie\TR-20\CA5Total.out STORM p1-06									
Area or Drainage Reach Area Identifier (sq mi)	ID or	Amou	int Eleva		Peak Fl ime hr)	ow Rate (cfs)	Rate		
2 0.410) GAGE	0.35	50	3	.37	97.1	236.84		

weir weir 1 OUTLET				324.63	3.26		10.08 353.98		
				STORM p2-06					
Area or	Drainage	Rain Gage	Runoff		Peak	Flow			
		ID or		Elevation			Rate		
				(ft)					
2	0.410		0.553		3.36		399.60		
weir		Upstream	0.553		3.36		399.60		
weir		Downstream	0.544	325.23	4.30	28.5	69.55		
1	0.252		0.636		4.30	143.3	568.84		
OUTLET	0.662		0.579		3.24	146.0	220.57		
		STORM p10-12							
Area or	Drainage	Rain Gage	Runoff		Peak	Flow			
	Area		Amount				Rate		
				(ft)			(csm)		
	_								
2	0.410	GAGE	1.788		6.30	450.9			
weir	0.410	Upstream	1.788		6.30	450.9			
weir	0.410	Downstream	1.776	326.21	6.44	389.3	949.52		
1	0.252	GAGE	1.938		6.22	354.2	1405.46		
OUTLET	0.662		1.838		6.39	615.5	929.78		
				STORM 100yr	NOAAC				
Aros or	Drainago	Pain Caro	Pupoff		Dook	Flow			
Reach	Dres	Rain Gage ID or	Amount				Rate		
		Location	(in)	(ft)					
-401011101	(pd mt)	1000001011	(+++ /	(10)	(+++ /	(CED)			
2	0.410	GAGE	6.086		12.30	1225.8	2989.65		
weir	0.410		6.086		12.30	1225.8	2989.65		
weir	0.410		6.075	327.54	12.35	1181.6	2881.93		
1	0.252	GAGE	6.330		12.22	916.4	3636.51		
	0 (()		C 170		10 00	1056 1			

WinTR-20 Version 3.20

0.662

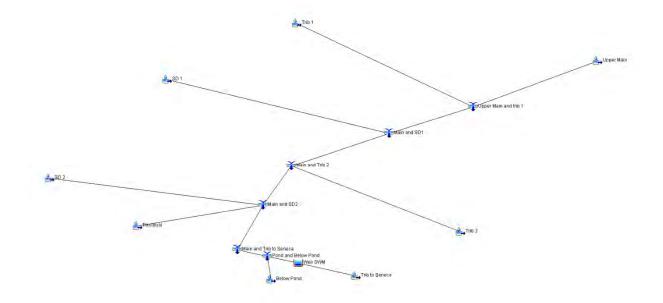
OUTLET

Page 1

6.172

02/12/2021 9:24

12.22916.43636.5112.281956.12954.86


Area or	Drainage	Flow by Sto	rm			
Reach	Area	p1-06	p2-06	p10-1210	0yrNOAAC	
Identifier	(sq mi)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
1	0.252	89.2	143.3	354.2	916.4	
2	0.410	97.1	163.8	450.9	1225.8	
weir	0.410	97.1	163.8	450.9	1225.8	
DOWNSTREAM		4.1	28.5	389.3	1181.6	
OUTLET	0.662	91.6	146.0	615.5	1956.1	

HEC-HMS Schematic Simple Model

Heimain and	1 Trib to Seneca	Mainstern 1		
			Trib to Senec:	a
	fRun: 26Oct2018, 0 Run: 26Oct2018, 0		odel: CA-5 logic Model: 1 yr NOAA C	
	ite Time: 15Feb2022, 1		Specifications:6 hour	ng: Hydrologic 🗸
Compu	ite Time: 15Feb2022, 1 S Vol Drainage Area	11:15:46 Control S ume Units:	Specifications:6 hour	Volume
Compu Show Elements: All Element Hydrologic Element	ite Time: 15Feb2022, 1 s Vol Drainage Area (MI2)	11:15:46 Control S ume Units: IN Peak Discharge (CFS)	Specifications:6 hour ACRE-FT Sorti Time of Peak	Volume (IN)
Compu Show Elements: All Element Hydrologic Element rib to Seneca	ite Time: 15Feb2022, 1 S Vol Drainage Area	11:15:46 Control S ume Units:	Specifications:6 hour ACRE-FT Sorti Time of Peak 26Oct2018, 03:22	Volume
Compu Show Elements: All Element Hydrologic Element rib to Seneca Jainstem 1	Ite Time: 15Feb2022, 1 Vol Drainage Area (MI2) 0.410	11: 15: 46 Control S ume Units: () IN () Peak Discharge (CFS) 98.3	Specifications:6 hour ACRE-FT Sorti Time of Peak	Volume (IN) 0.33
Compu Show Elements: All Elements Hydrologic Element rib to Seneca lainstem 1 lain and Trib to Seneca Start o End of Compu	Ite Time: 15Feb2022, 1 Vol Drainage Area (MI2) 0.410 0.252 0.662 Project: CA of Run: 26Oct2018, 1 f Run: 26Oct2018, ute Time: 15Feb2022,	11: 15: 46 Control S ume Units: IN Peak Discharge (CFS) 98.3 89.6 179.0 -5 Simple Simulation 00:00 Basin M 06:00 Meteoro	Specifications:6 hour ACRE-FT Sorti Time of Peak 26Oct2018, 03:22 26Oct2018, 03:15 26Oct2018, 03:19 n Run: 2 YR odel: CA-5 ologic Model: 2 yr NOAA C Specifications:6 hour	Volume (IN) 0.33 0.40 0.36
Compu Show Elements: All Elements Hydrologic Element rib to Seneca ainstem 1 ain and Trib to Seneca Start o End of Compu	Ite Time: 15Feb2022, 1 Vol Drainage Area (MI2) 0.410 0.252 0.662 Project: CA of Run: 26Oct2018, 1 f Run: 26Oct2018, ute Time: 15Feb2022,	11: 15: 46 Control S ume Units: IN Peak Discharge (CFS) 98.3 89.6 179.0 -5 Simple Simulation 00:00 Basin M 06:00 Meteoro 11: 15: 48 Control	Specifications:6 hour ACRE-FT Sorti Time of Peak 26Oct2018, 03:22 26Oct2018, 03:15 26Oct2018, 03:19 n Run: 2 YR odel: CA-5 ologic Model: 2 yr NOAA C Specifications:6 hour	Volume (IN) 0.33 0.40 0.36
Compu Show Elements: All Elements Hydrologic Element rib to Seneca lainstem 1 lain and Trib to Seneca Start of End of Compu Show Elements: All Element Hydrologic Element	Ite Time: 15Feb2022, 1 Vol Drainage Area (MI2) 0.410 0.252 0.662 Project: CA of Run: 26Oct2018, 0 f Run: 26Oct2018, 0 te Time: 15Feb2022, Vo Drainage Area (MI2)	11: 15: 46 Control S ume Units: IN Peak Discharge (CFS) 98.3 89.6 179.0 -5 Simple Simulation 00:00 Basin M 06:00 Meteoro 11: 15: 48 Control olume Units: IN Peak Discharge (CFS)	Specifications:6 hour ACRE-FT Sorti Time of Peak 26Oct2018, 03:22 26Oct2018, 03:15 26Oct2018, 03:19 n Run: 2 YR odel: CA-5 ologic Model: 2 yr NOAA C Specifications:6 hour) ACRE-FT Sort Time of Peak	Volume (IN) 0.33 0.40 0.36
Compu Show Elements: All Element Hydrologic Element rib to Seneca lainstem 1 lain and Trib to Seneca Start o End of Compu Show Elements: All Element Hydrologic	Ite Time: 15Feb2022, 1 Vol Drainage Area (MI2) 0.410 0.252 0.662 Project: CA of Run: 26Oct2018, 0 f Run: 26Oct2018, 0 f Run: 26Oct2018, 0 vol Drainage Area	11: 15: 46 Control S ume Units: IN Peak Discharge (CFS) 98.3 89.6 179.0 -5 Simple Simulation 00:00 Basin M 06:00 Meteorol 11: 15: 48 Control olume Units: IN C Peak Discharge	Specifications:6 hour ACRE-FT Sorti Time of Peak 26Oct2018, 03:22 26Oct2018, 03:15 26Oct2018, 03:19 n Run: 2 YR odel: CA-5 ologic Model: 2 yr NOAA C Specifications:6 hour) ACRE-FT Sort	Volume (IN) 0.33 0.40 0.36 ting: Hydrologic ~ Volume (IN)

End of	f Run: 26Oct2018, 0 Run: 26Oct2018, 1 te Time:15Feb2022, 1 s Vol	2:00 Meteorol	ogic Model: 10 yr NOAA C Specifications: 12 hour	ing: Hydrologic 🗸
Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Trib to Seneca	0.410	455.3	26Oct2018, 06:18	1.76
Aainstem 1	0.252	355.4	26Oct2018, 06:13	1.92
Main and Trib to Seneca	0.662	0.662 785.7 26Oct2018,		1.82
Start o	fRun: 26Oct2018, 0		del: CA-5 ogic Model: 100 yr NOAA C	
End of Compu Show Elements: All Elemen	te Time: 15Feb2022, 1		pecifications: 24 hour	ing: Hydrologic ~
Compu	te Time: 15Feb2022, 1	1:15:47 Control S	pecifications: 24 hour	ing: Hydrologic ~ Volume (IN)
Compu Show Elements: All Elemen Hydrologic Element	te Time: 15Feb2022, 1 ts Vo Drainage Area	1:15:47 Control S lume Units: IN C Peak Discharge	pecifications:24 hour) ACRE-FT Sorti	Volume
Compu Show Elements: All Elemen Hydrologic	te Time: 15Feb2022, 1 ts Vo Drainage Area (MI2)	1:15:47 Control S lume Units: IN O Peak Discharge (CFS)	pecifications:24 hour) ACRE-FT Sorti Time of Peak	Volume (IN)

HEC-HMS Schematic

Weir Stormwater Management Stage-Storage-Discharge

ired data functions for the con	bined table data		
Storage-Discharge Function:	Weir SWM	~	
Elevation-Storage Function:	Weir SWM	~	

	Discharge (CFS)	Storage (ACRE-FT)	Elevation (FT)
~	0.00	0.0000	318.30
	2.23	0.4640	320.00
	3.15	2.2059	322.00
	3.86	5.3240	324.00
	4.35	7.6050	325.12
	91.52	8.4660	325.50
	265.87	9.6640	326.00
	1455.62	15.0605	328.00
~			

Project: CA5_SWMUpdate Simulation Run: 1 YR Simulation Start: 25 October 2018, 24:00 Simulation End: 26 October 2018, 06:00

HMS Version: 4.7.1 Executed: 15 February 2021, 16:32

Global Results Summary

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Upper Main	0.1	47.91	26Oct2018, 03:09	0.4
Trib 1	0.03	7.04	26Oct2018, 03:20	0.33
Upper Main and trib 1	0.13	51.14	26Oct2018, 03:09	0.39
Sd 1	0.03	6.34	26Oct2018, 03:16	0.28
Main and SD1	0.16	55.64	26Oct2018, 03:10	0.37
Trib 2	0.04	12.5	26Oct2018, 03:18	0.43
Main and Trib 2	0.2	63.62	26Oct2018, 03:11	0.38
Residual	0.05	11.48	26Oct2018, 03:16	0.28
Sd 2	0.01	1.68	26Oct2018, 03:10	0.28
Trib to Seneca	0.35	89.24	26Oct2018, 03:19	0.33
Weir SWM	0.35	3.86	26Oct2018, 06:00	0.04
Below Pond	0.06	6.69	26Oct2018, 03:16	0.16
Pond and Below Pond	0.41	9.14	26Oct2018, 03:17	0.06
Main and SD2	0.25	74.36	26Oct2018, 03:12	0.36
Main and Trib to Seneca	0.66	82.11	26Oct2018, 03:12	0.17

Project: CA5_SWMUpdate Simulation Run: 2 YR Simulation Start: 25 October 2018, 24:00 Simulation End: 26 October 2018, 06:00

HMS Version: 4.7.1 Executed: 15 February 2021, 20:03

Global Parameter Summary - Subbasin

Area (MI2)			
Element Name	Area (MI2)		
Upper Main	0.1		
Trib 1	0.03		
Sd 1	0.03		
Trib 2	0.04		
Residual	0.05		
Sd 2	0.01		
Trib to Seneca	0.35		
Below Pond	0.06		

Downstream

Element Name	Downstream			
Upper Main	Upper Main and trib 1			
Trib 1	Upper Main and trib 1			
Sd 1	Main and SD1			
Trib 2	Main and Trib 2			
Residual	Main and SD2			
Sd 2	Main and SD2			
Trib to Seneca	Weir SWM			
Below Pond	Pond and Below Pond			

Loss Rate: Scs				
Element Name	Percent Impervious Area	Curve Number		
Upper Main	0	79		
Trib 1	0	77		
Sd 1	0	75		
Trib 2	0	80		
Residual	0	75		
Sd 2	0	75		

file:///cri-file-01/...struction, % 20WRA/Task% 2025% 20CA-5% 20Phase% 20II% 20design/Hydrology/HEC% 20HMS/CA5% 202YR% 20Report.html [2/18/2021 11:11:57 AM]

Trib to Seneca	0	77
Below Pond	0	70

Transform: Scs			
Element Name	Lag	Unitgraph Type	
Upper Main	5.4	Standard	
Trib 1	13.5	Standard	
Sd 1	10.15	Standard	
Trib 2	13.46	Standard	
Residual	10.26	Standard	
Sd 2	5.4	Standard	
Trib to Seneca	13.28	Standard	
Below Pond	8.28	Standard	

Global Results Summary

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Upper Main	0.1	115.13	26Oct2018, 03:09	0.93
Trib 1	0.03	19.06	26Oct2018, 03:18	0.8
Upper Main and trib 1	0.13	127.16	26Oct2018, 03:09	0.9
Sd 1	0.03	18.89	26Oct2018, 03:14	0.72
Main and SD1	0.16	142.23	26Oct2018, 03:09	0.87
Trib 2	0.04	29.98	26Oct2018, 03:17	0.96
Main and Trib 2	0.2	163.76	26Oct2018, 03:10	0.88
Residual	0.05	34.24	26Oct2018, 03:14	0.72
Sd 2	0.01	4.9	26Oct2018, 03:09	0.73
Trib to Seneca	0.35	241.39	26Oct2018, 03:17	0.8
Weir SWM	0.35	79.22	26Oct2018, 03:44	0.39
Below Pond	0.06	28.26	26Oct2018, 03:13	0.51
Pond and Below Pond	0.41	85.4	26Oct2018, 03:44	0.41
Main and SD2	0.25	198.11	26Oct2018, 03:10	0.85
Main and Trib to Seneca	0.66	227.94	26Oct2018, 03:11	0.57

Project: CA5_SWMUpdate Simulation Run: 10 YR Simulation Start: 25 October 2018, 24:00 Simulation End: 26 October 2018, 12:00

HMS Version: 4.7.1 Executed: 15 February 2021, 16:32

Global Parameter Summary - Subbasin

Area (MI2)		
Element Name	Area (MI2)	
Upper Main	0.1	
Trib 1	0.03	
Sd 1	0.03	
Trib 2	0.04	
Residual	0.05	
Sd 2	0.01	
Trib to Seneca	0.35	
Below Pond	0.06	

Downstream

Element Name	Downstream
Upper Main	Upper Main and trib 1
Trib 1	Upper Main and trib 1
Sd 1	Main and SD1
Trib 2	Main and Trib 2
Residual	Main and SD2
Sd 2	Main and SD2
Trib to Seneca	Weir SWM
Below Pond	Pond and Below Pond

Loss Rate: Scs			
Element Name	Percent Impervious Area	Curve Number	
Upper Main	0	79	
Trib 1	0	77	
Sd 1	0	75	
Trib 2	0	80	
Residual	0	75	
Sd 2	0	75	

 $file:///cri-file-01/...truction, \%20WRA/Task\%2025\%20CA-5\%20Phase\%20II\%20design/Hydrology/HEC\%20HMS/CA5\%2010YR\%20Report.html \cite{2.18}/2021\cite{2.11}/2021$

Trib to Seneca	0	77
Below Pond	0	70

Transform: Scs		
Element Name	Lag	Unitgraph Type
Upper Main	5.4	Standard
Trib 1	13.5	Standard
Sd 1	10.15	Standard
Trib 2	13.46	Standard
Residual	10.26	Standard
Sd 2	5.4	Standard
Trib to Seneca	13.28	Standard
Below Pond	8.28	Standard

Global Results Summary

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Upper Main	0.1	178.28	26Oct2018, 06:08	1.93
Trib 1	0.03	32.92	26Oct2018, 06:16	1.76
Upper Main and trib 1	0.13	201.57	26Oct2018, 06:09	1.89
Sd 1	0.03	33.76	26Oct2018, 06:13	1.62
Main and SD1	0.16	231.92	26Oct2018, 06:09	1.84
Trib 2	0.04	48.17	26Oct2018, 06:16	1.99
Main and Trib 2	0.2	269.58	26Oct2018, 06:09	1.87
Residual	0.05	61.26	26Oct2018, 06:13	1.62
Sd 2	0.01	8.32	26Oct2018, 06:08	1.63
Trib to Seneca	0.35	416.53	26Oct2018, 06:16	1.76
Weir SWM	0.35	328.13	26Oct2018, 06:25	1.35
Below Pond	0.06	58.48	26Oct2018, 06:11	1.3
Pond and Below Pond	0.41	358.68	26Oct2018, 06:25	1.34
Main and SD2	0.25	334.07	26Oct2018, 06:10	1.82
Main and Trib to Seneca	0.66	555	26Oct2018, 06:23	1.52

Project: CA5_SWMUpdate Simulation Run: 100 YR Simulation Start: 25 October 2018, 24:00 Simulation End: 26 October 2018, 24:00

HMS Version: 4.7.1 Executed: 15 February 2021, 16:32

Global Parameter Summary - Subbasin

Area (MI2)		
Element Name	Area (MI2)	
Upper Main	0.1	
Trib 1	0.03	
Sd 1	0.03	
Trib 2	0.04	
Residual	0.05	
Sd 2	0.01	
Trib to Seneca	0.35	
Below Pond	0.06	

Downstream

Element Name	Downstream	
Upper Main	Upper Main and trib 1	
Trib 1	Upper Main and trib 1	
Sd 1	Main and SD1	
Trib 2	Main and Trib 2	
Residual	Main and SD2	
Sd 2	Main and SD2	
Trib to Seneca	Weir SWM	
Below Pond	Pond and Below Pond	

Loss Rate: Scs			
Element Name	Percent Impervious Area	Curve Number	
Upper Main	0	79	
Trib 1	0	77	
Sd 1	0	75	
Trib 2	0	80	
Residual	0	75	
Sd 2	0	75	

file:///cri-file-01/...ruction, % 20 WRA/Task% 2025% 20 CA-5% 20 Phase% 20 II% 20 design/Hydrology/HEC% 20 HMS/CA5% 20100 YR% 20 Report.html [2/18/2021 11:14:57 AM]

Trib to Seneca	0	77
Below Pond	0	70

Transform: Scs						
Element Name	Lag	Unitgraph Type				
Upper Main	5.4	Standard				
Trib 1	13.5	Standard				
Sd 1	10.15	Standard				
Trib 2	13.46	Standard				
Residual	10.26	Standard				
Sd 2	5.4	Standard				
Trib to Seneca	13.28	Standard				
Below Pond	8.28	Standard				

Global Results Summary

Hydrologic Element	Drainage Area (MI2)	Peak Discharge (CFS)	Time of Peak	Volume (IN)
Upper Main	0.1	479.36	26Oct2018, 12:09	6.32
Trib 1	0.03	89.56	26Oct2018, 12:16	6.06
Upper Main and trib 1	0.13	548	26Oct2018, 12:09	6.26
Sd 1	0.03	97.53	26Oct2018, 12:13	5.82
Main and SD1	0.16	634.18	26Oct2018, 12:09	6.19
Trib 2	0.04	121.17	26Oct2018, 12:16	6.43
Main and Trib 2	0.2	727.98	26Oct2018, 12:09	6.23
Residual	0.05	176.9	26Oct2018, 12:13	5.82
Sd 2	0.01	24.84	26Oct2018, 12:09	5.83
Trib to Seneca	0.35	1132.92	26Oct2018, 12:16	6.06
Weir SWM	0.35	1083.36	26Oct2018, 12:19	5.65
Below Pond	0.06	198.67	26Oct2018, 12:11	5.21
Pond and Below Pond	0.41	1220.2	26Oct2018, 12:18	5.59
Main and SD2	0.25	912.4	26Oct2018, 12:10	6.14
Main and Trib to Seneca	0.66	1959.18	26Oct2018, 12:14	5.8

--- Identification Data ---

User:	KAS		Date:	2/12/2021	-					
Project:	Quince Orchard		Units:	English						
SubTitle:	Upper Main		Areal Units:	Acres						
State:	Maryland									
County:	Montgomery NOAA_C									
Filename:	G:\Active\2017-29 BCS	2015-05A	Design-Construction,	WRA\Task	25	CA-5	Phase	II	design\Hydrology	y∖T

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
Mainstem 1		Outlet	66.1	79	.15

Total area: 66.10 (ac)

KAS

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	l-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.07	3.99	4.71	5.97	7.03	8.13	2.54

Storm Data Source:	User-provided custom storm data
Rainfall Distribution Type:	NOAA_C
Dimensionless Unit Hydrograph:	<standard></standard>

Quince Orchard Upper Main Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
Mainstem 1							
SHEET	58	0.0200	0.011				0.013
SHALLOW	898	0.0368	0.050				0.081
SHALLOW	299	0.0502	0.025				0.018
CHANNEL	1411	0.0716	0.035	6.00	7.00	10.314	0.038
				Ti	me of Conce	ntration	.15
						=	=======

--- Identification Data ---

User:KASDate:2/12/2021Project:Quince OrchardUnits:EnglishSubTitle:Trib 1Areal Units:AcresState:MarylandMontgomery NOAA_CFilename:G:\Active\2017-29 BCS 2015-05A Design-Construction,WRA\Task 25 CA-5 Phase II design\Hydrology\Q

--- Sub-Area Data ---

Name	Descript	cion	Read	ch	Area(ac)	RCN	Тс
Total			Outle	et	17.9	77	.375
Total area:	17.90 (ac)						
			Storm Data				
	Rair	nfall Depth	n by Rainfa	ll Return	Period		
2-Yr (in)	5-Yr (in)	10-Yr (in)	25-Yı (in)	c 5 (0-Yr in)	100-Yr (in)	1-Yr (in)
3.07	3.99	4.71	5.97	7	.03	8.13	2.54
Storm Data S Rainfall Dis Dimensionles	s onic nyu		Scandaru>				
KAS	М	-	uince Orcha) Trib 1 NOAA_C Cour		land		
			ershed Peak				
Sub-Area	Pea	ak Flow by	Rainfall Re	eturn Per	iod		
Sub-Area or Reach Identifier	2-Yr (cfs)	10-Yr (cfs)	25-Yr (cfs)	100-Yr (cfs)	l-Yr (cfs)		
SUBAREAS Total							
	13.90	55105		10.72	10.55		
REACHES	10.00	55105		10.92	10.55		
REACHES OUTLET							
	15.98	35.05	50.83	78.92	10.55		
OUTLET	15.98	35.05	50.83	78.92	10.55		

Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
Total							
SHEET	99	0.0200	0.240				0.241
SHALLOW	292	0.0274	0.050				0.030
CHANNEL	580	0.0276	0.011	3.14	6.28	14.646	0.011
CHANNEL	1167					3.500	0.093
				Ti	me of Conce	ntration =	.375

Quince Orchard Trib 1 Montgomery NOAA_C County, Maryland

Sub-Area Land Use and Curve Number Details

Sub-Area Identifie		Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
Total	Residential districts (1/4 acre) Residential districts (1/4 acre)	B C	14.3 3.6	75 83
	Total Area / Weighted Curve Number		17.9 ====	77 ==

KAS

--- Identification Data ---

KAS Date: 9/23/2020 Units: English User: Project: SubTitle: CA-5 SD 1 Areal Units: Acres State: Maryland County: Montgomery NOAA_C Filename: G:\Active\2017-29 BCS 2015-05A Design-Construction, WRA\Task 25 CA-5 Phase II design\Hydrology\T

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
SD 1		Outlet	18	75	.282

Total area: 18 (ac)

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.07	3.99	4.71	5.97	7.03	8.13	2.54

Storm Data Source:	User-provided custom storm data
Rainfall Distribution Type:	NOAA_C
Dimensionless Unit Hydrograph:	<standard></standard>

KAS

CA-5 SD 1 Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
SD 1							
SHEET	100	0.0250	0.240				0.222
SHALLOW	430	0.0600	0.050				0.030
CHANNEL	1218	0.0210	0.011	3.14	6.28	12.531	0.027
CHANNEL	312	0.1350	0.011	3.14	6.28	28.889	0.003
				Ti	me of Conce	ntration	.282
						=	======

WinTR-55, Version 1.00.10 Page 1

2/18/2021 11:49:21 AM

--- Identification Data ---

User:KASDate:2/12/2021Project:Quince OrchardUnits:EnglishSubTitle:Trib 2Areal Units:AcresState:MarylandMontgomery NOAA_CFilename:G:\Active\2017-29 BCS 2015-05A Design-Construction,WRA\Task 25 CA-5 Phase II design\Hydrology\T

--- Sub-Area Data ---

Name	Descript	ion			Area(ac)		Тс
Total					22.97		.374
Total area: 2	2.97 (ac)						
		:	Storm Data				
	Rain	fall Depth	by Rainfa	ll Retur	n Period		
2-Yr (in)	5-Yr (in)	10-Yr (in)	25-Y (in)	ſr	50-Yr (in)	100-Yr (in)	1-Yr (in)
3.07	3.99	4.71	5.97		7.03	8.13	2.54
Storm Data So Rainfall Dist Dimensionless	-	5 1					
KAS	M	Qu ontgomery 1	uince Orch Trib 2 NOAA_C Cou		yland		
		Wate:	rshed Peak	Table			
Sub-Area or Reach Identifier	Pea 2-Yr (cfs)	k Flow by 1 10-Yr (cfs)	Rainfall R 100-Yr (cfs)	eturn Pe 1-Yr (cfs)	eriod		
SUBAREAS Total							
REACHES							
OUTLET	24.35	50.05	106.97	16.76			
		=========		========			
KAS		Qı	uince Orch Trib 2	lard			
WinTR-55, Vers	sion 1.00.	10	Page	1		2/12/202	12:42:54 P

Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
Total							
SHEET	100	0.0200	0.240				0.243
SHALLOW	775	0.0320	0.050				0.075
CHANNEL	397					8.000	0.014
CHANNEL	534					3.500	0.042
				Ti	me of Conce.	ntration :	.374

Quince Orchard Trib 2 Montgomery NOAA_C County, Maryland

Sub-Area Land Use and Curve Number Details

Sub-Area Identifie			Hydrologic Soil Group	Sub-Area Area (ac)	Curve Number
Total	Industrial Residential districts (1/4 acre) Woods Woods Woods	(good) (good) (good)) C	9.23 11.27 .15 2.21 .11	88 75 55 70 77
	Total Area / Weighted Curve Number			22.97	80 ==

KAS

--- Identification Data ---

User:	KAS	Date:	2/12/2021		
Project:	Quince Orchard	Units:	English		
SubTitle:	Residual Watershed	Areal Units:	Acres		
State:	Maryland				
County:	Montgomery NOAA_C				
Filename:	G:\Active\2017-29 BCS 2015-05A Design	-Construction,	WRA\Task 25 CA	4-5 Phase	II design\Hydrology\I

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
Residual		Outlet	66.1	79	.285

Total area: 66.10 (ac)

KAS

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	l-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.07	3.99	4.71	5.97	7.03	8.13	2.54

Storm Data Source:	User-provided custom storm data
Rainfall Distribution Type:	NOAA_C
Dimensionless Unit Hydrograph:	<standard></standard>

Quince Orchard Residual Watershed Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
Residual SHEET SHALLOW CHANNEL	40 255 2469	0.0100 0.1490 0.0217	0.240 0.050 0.035	14.00	16.00	5.715	0.154 0.011 0.120
				Ti	me of Conce	ntration	.285

========

--- Identification Data ---

Date: 9/23/2020 Units: English User: KAS Project: SubTitle: CA-5 SD 2 Areal Units: Acres State: Maryland County: Montgomery NOAA_C Filename: G:\Active\2017-29 BCS 2015-05A Design-Construction, WRA\Task 25 CA-5 Phase II design\Hydrology\T

--- Sub-Area Data ---

Name	Descripti	on	Reach	Area(ac)	RCN	Тс		
SD 2			Outlet	3.65	75	.15		
Total area: 3.65 (ac)								
		St	orm Data					
	Rainfall Depth by Rainfall Return Period							
2-Yr (in)	5-Yr (in)	10-Yr (in)	25-Yr (in)	50-Yr (in)	100-Yr (in)	1-Yr (in)		

(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.07	3.99	4.71	5.97	7.03	8.13	2.54

Storm Data Source:	User-provided custom storm data
Rainfall Distribution Type:	NOAA_C
Dimensionless Unit Hydrograph:	<standard></standard>

KAS

CA-5 SD 2 Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
SD 2							
SHEET	69	0.0250	0.150				0.113
SHALLOW	440	0.0600	0.025				0.025
CHANNEL	520	0.0210	0.011	3.14	6.28	12.037	0.012
				Ti	me of Conce	ntration	.15
						=	======

--- Identification Data ---

Date: 2/15/2021 Units: English User: KAS Project: CA-5 SubTitle: Mainstem 2 Pond Areal Units: Acres State: Maryland County: Montgomery NOAA_C Filename: G:\Active\2017-29 BCS 2015-05A Design-Construction, WRA\Task 25 CA-5 Phase II design\Hydrology\T

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
Total		Outlet	225.1	77	.369
Total area:	225.10 (ac)				

--- Storm Data --

Rainfall Depth by Rainfall Return Period

2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	l-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.07	3.99	4.71	5.97	7.03	8.88	2.54

Storm Data Source:	User-provided custom storm data
Rainfall Distribution Type:	NOAA_C
Dimensionless Unit Hydrograph:	<standard></standard>

CA-5 Mainstem 2 Pond Montgomery NOAA_C County, Maryland

Sub-Area Time of Concentration Details

Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
Total							
SHEET	100	0.0355	0.011				0.016
SHALLOW	97	0.0355	0.025				0.007
CHANNEL	1205	0.0898	0.035	2.00	6.28	5.977	0.056
CHANNEL	3234	0.0196	0.035	6.00	16.00	3.098	0.290
				Ti	me of Conce	ntration	.369
						=	======

WinTR-55, Version 1.00.10 Page 1

KAS

2/18/2021 2:22:11 PM

--- Identification Data ---

Date: 2/15/2021 Units: English User: KAS Project: CA-5 SubTitle: Mainstem 2 Below Pond Areal Units: Acres State: Maryland County: Montgomery NOAA_C Filename: G:\Active\2017-29 BCS 2015-05A Design-Construction, WRA\Task 25 CA-5 Phase II design\Hydrology\T

--- Sub-Area Data ---

Name	Description	Reach	Area(ac)	RCN	Тс
Total		Outlet	37.3	70	.23

Total area: 37.30 (ac)

KAS

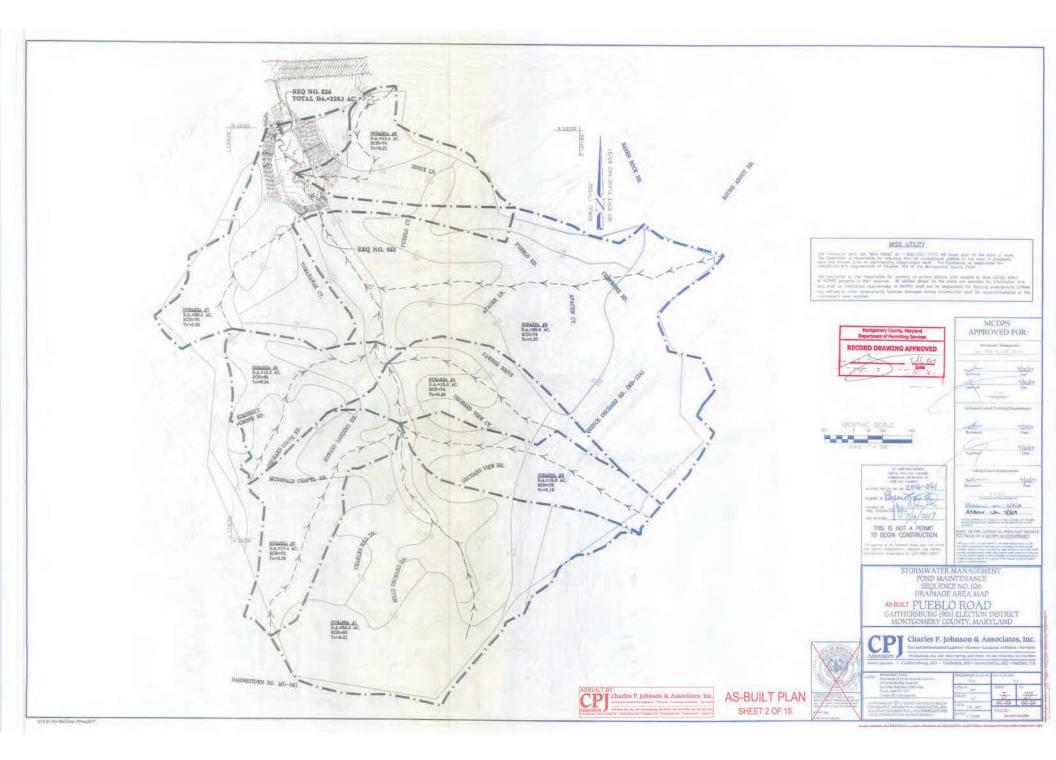
--- Storm Data --

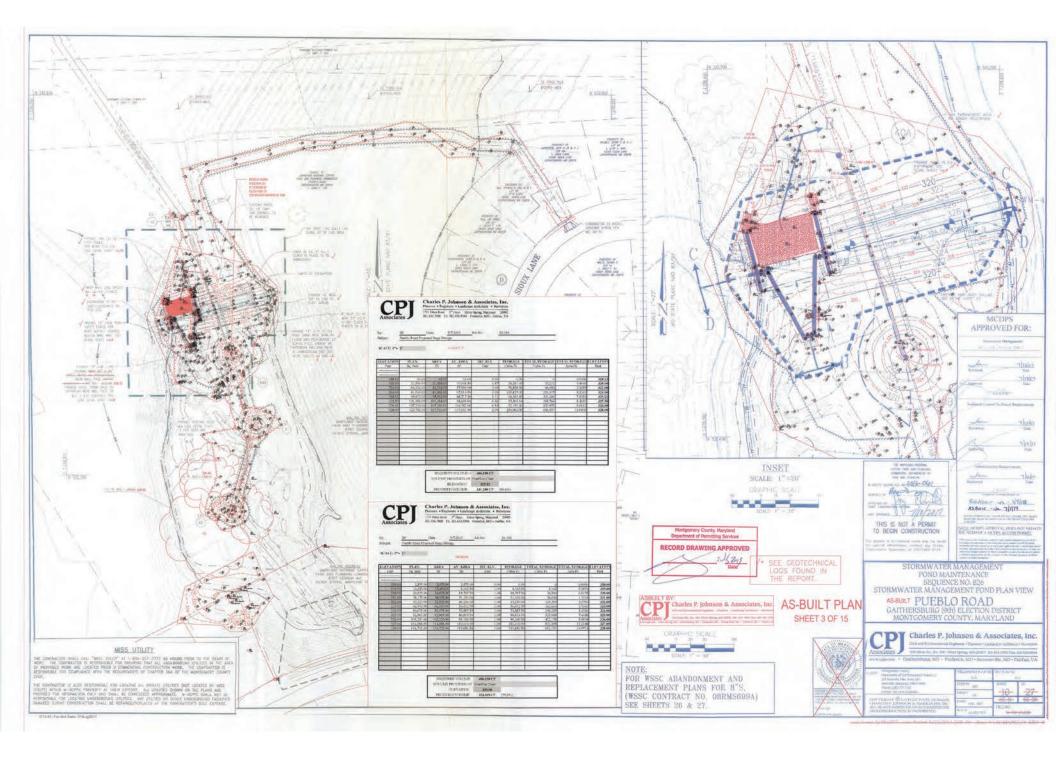
Rainfall Depth by Rainfall Return Period

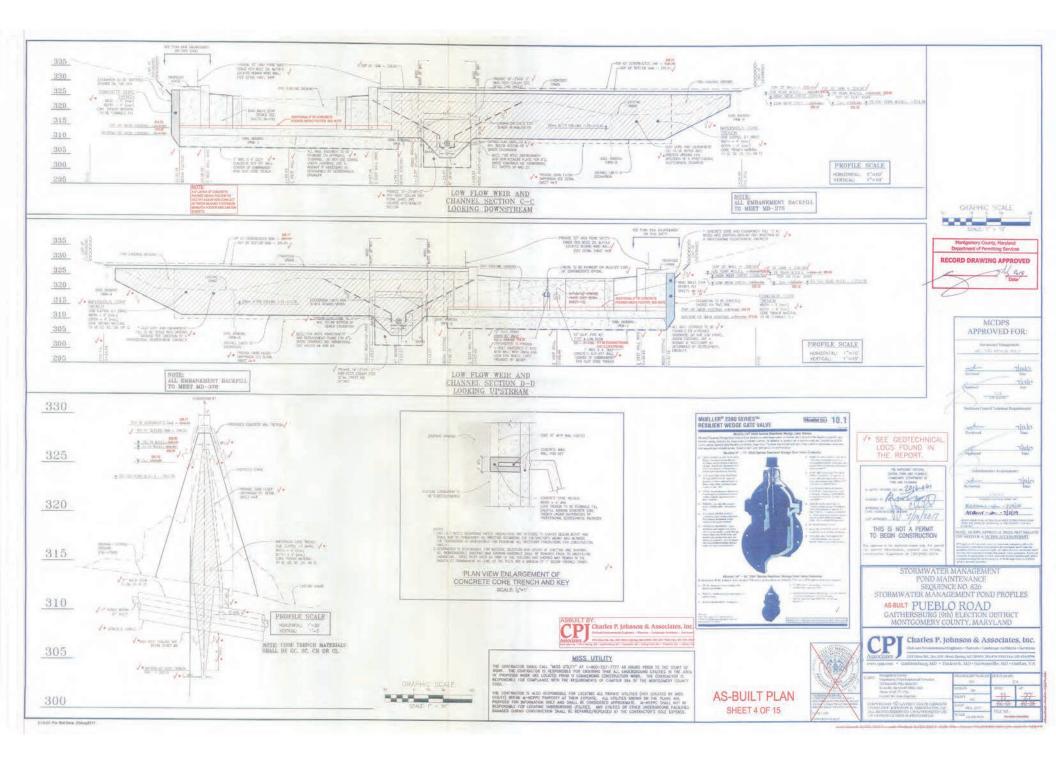
2-Yr	5-Yr	10-Yr	25-Yr	50-Yr	100-Yr	1-Yr
(in)	(in)	(in)	(in)	(in)	(in)	(in)
3.07	3.99	4.71	5.97	7.03	8.88	2.54

Storm Data Source:	User-provided custom storm data
Rainfall Distribution Type:	NOAA_C
Dimensionless Unit Hydrograph:	<standard></standard>

CA-5 Mainstem 2 Below Pond Montgomery NOAA_C County, Maryland

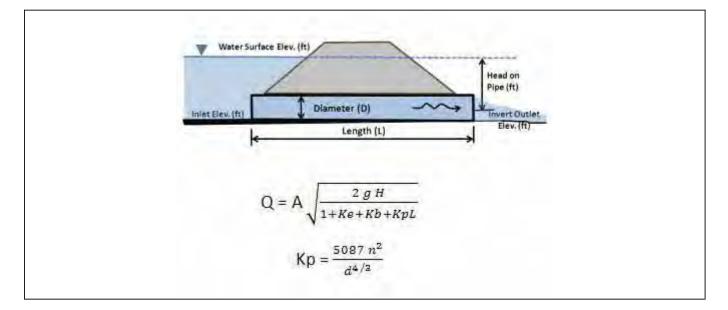

Sub-Area Time of Concentration Details


Sub-Area Identifier/	Flow Length (ft)	Slope (ft/ft)	Mannings's n	End Area (sq ft)	Wetted Perimeter (ft)	Velocity (ft/sec)	Travel Time (hr)
Total							
SHEET	90	0.0222	0.011				0.018
SHALLOW	339	0.0050	0.050				0.083
CHANNEL	759	0.0817	0.035	10.00	40.00	4.792	0.044
CHANNEL	796	0.0239	0.035	10.00	40.00	2.601	0.085
				Ti	me of Conce	ntration	.23
						=	



WinTR-55, Version 1.00.10 Page 1

2/18/2021 3:32:54 PM



Report Generated 12/07/2020 EFT Version 4.0.2.6

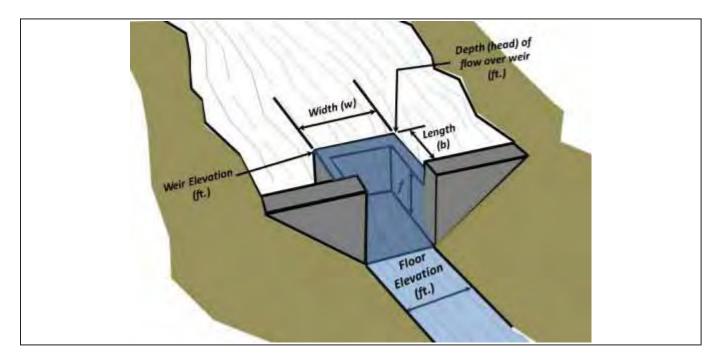
Pressure Flow

Project Name: CA-5 Low Flow Orifice 7.75	Location:
Project Description:	Practice:
Designed by:	Date:
Checked by:	Date:
Approved by:	Date:

Inputs

Water surface elevation : 328.00 ft Invert outlet elevation : 317.99 ft Diameter of pipe : 7.75 in Length of pipe : 2.50 ft Manning's Coefficient (n) : 0.011 Entrance Coefficient (Ke) : 0.20 Bend Coefficient (Kb) : 0.00

Outputs

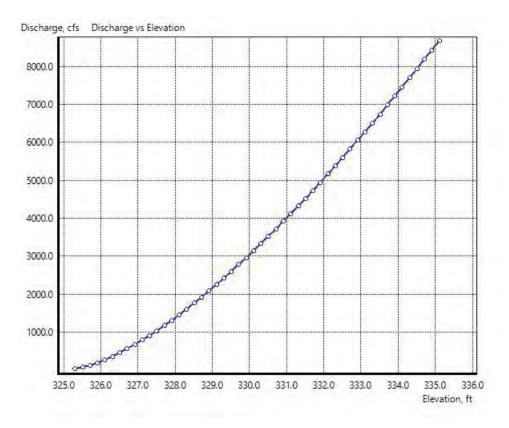

Flow Q : 7.17 cfs Velocity : 21.89 ft/sec Friction Coefficient (Kp) : 0.040 Max allowable fall in pipe when outlet is not submerged : 0.75 ft

Report Generated 12/07/2020 EFT Version4.0.2.6

Box Drop Inlet

Project Name: CA5 SWM Weir	Location:
Project Description:	Practice:
Designed by:	Checked by:
Date:	Date:

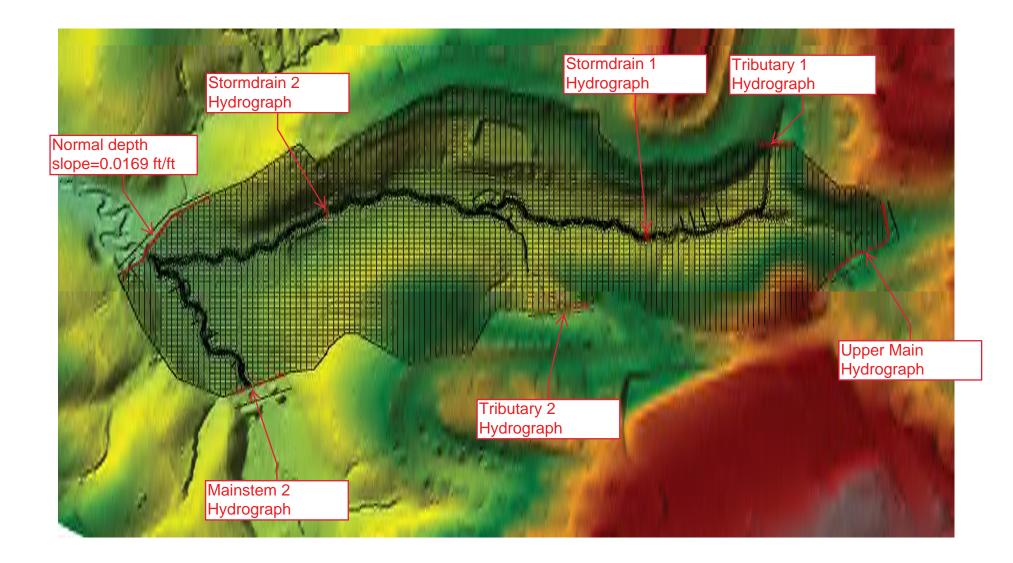
Inputs


Width of Weir : 5.00 ft Length of Weir : 50.00 ft Head on Weir : 10.00 ft Weir Elevation : 325.12 ft Floor Elevation : 318.00 ft

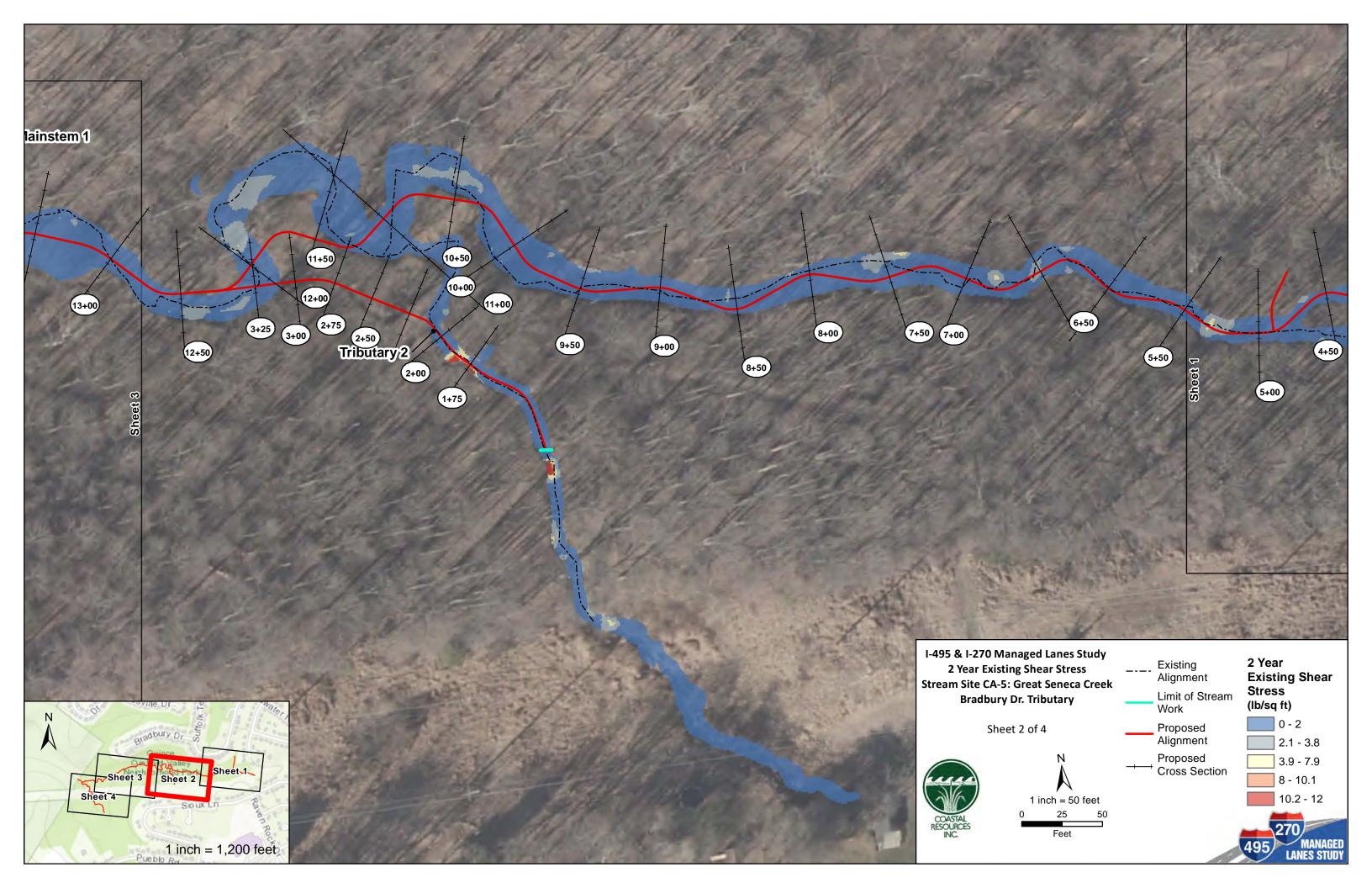
Outputs

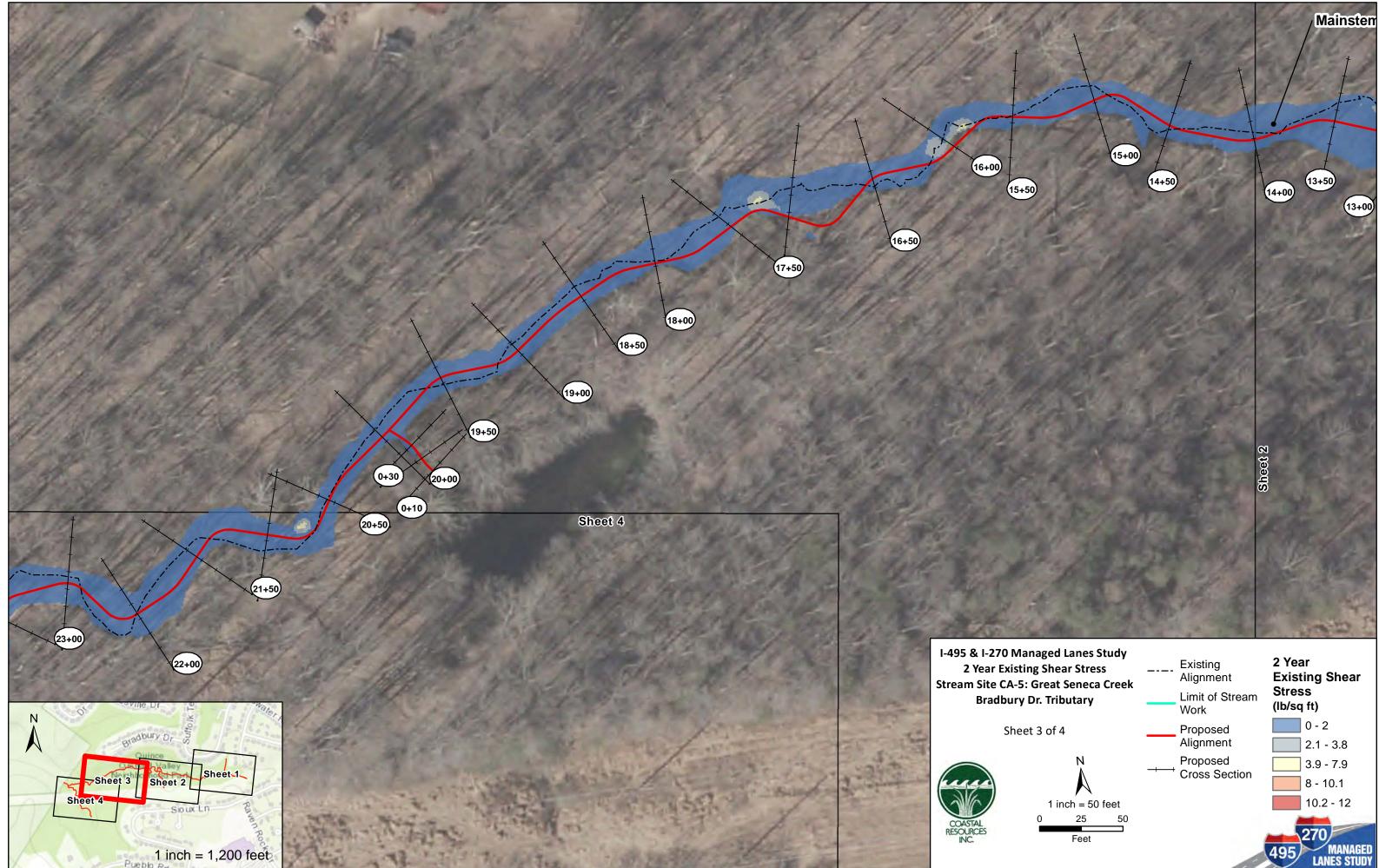
Flow Q : 8681.13 cfs Min Channel Width : 195.00 ft Top Elevation : 335.12 ft

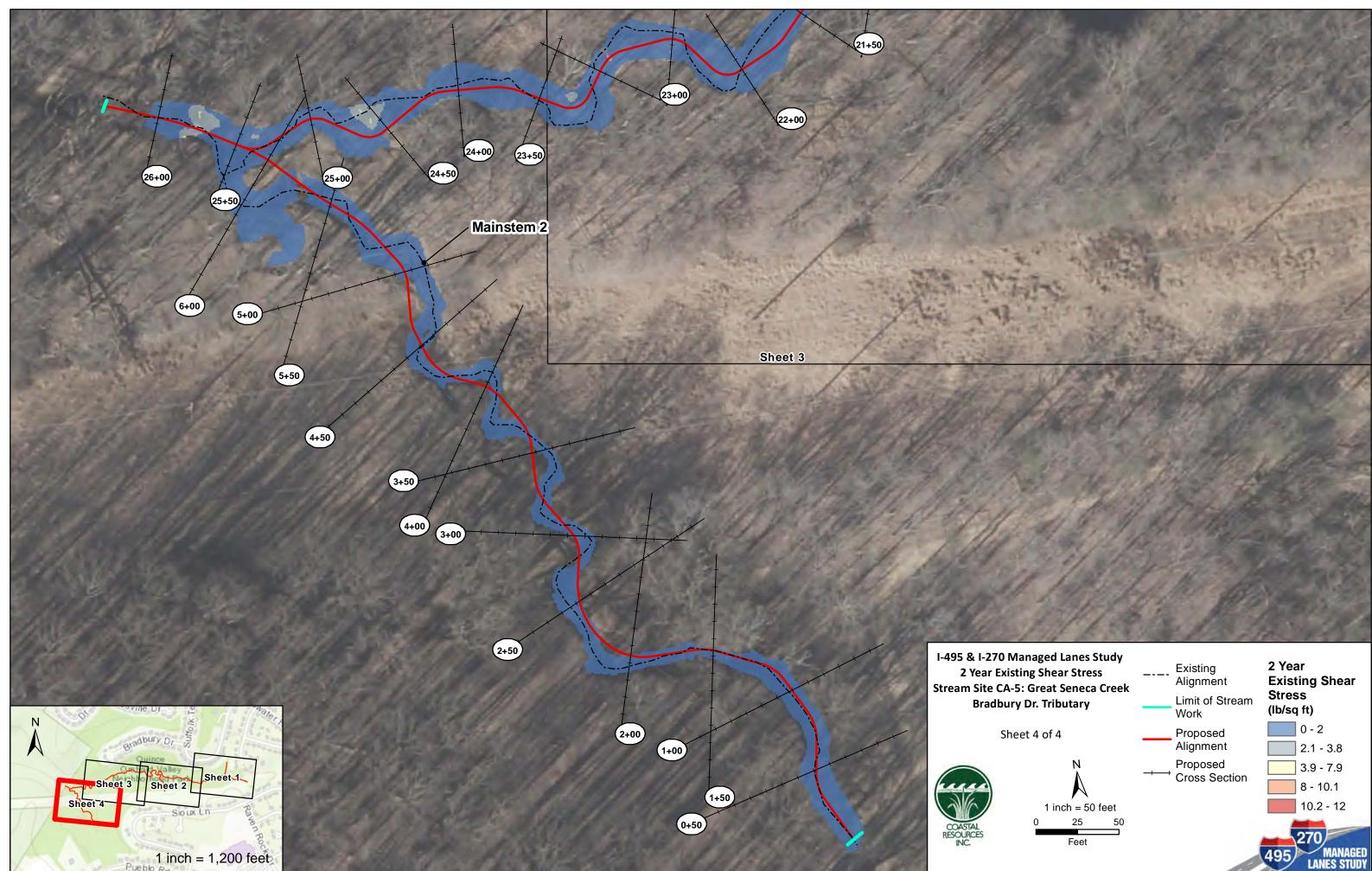
Box Drop Inlet

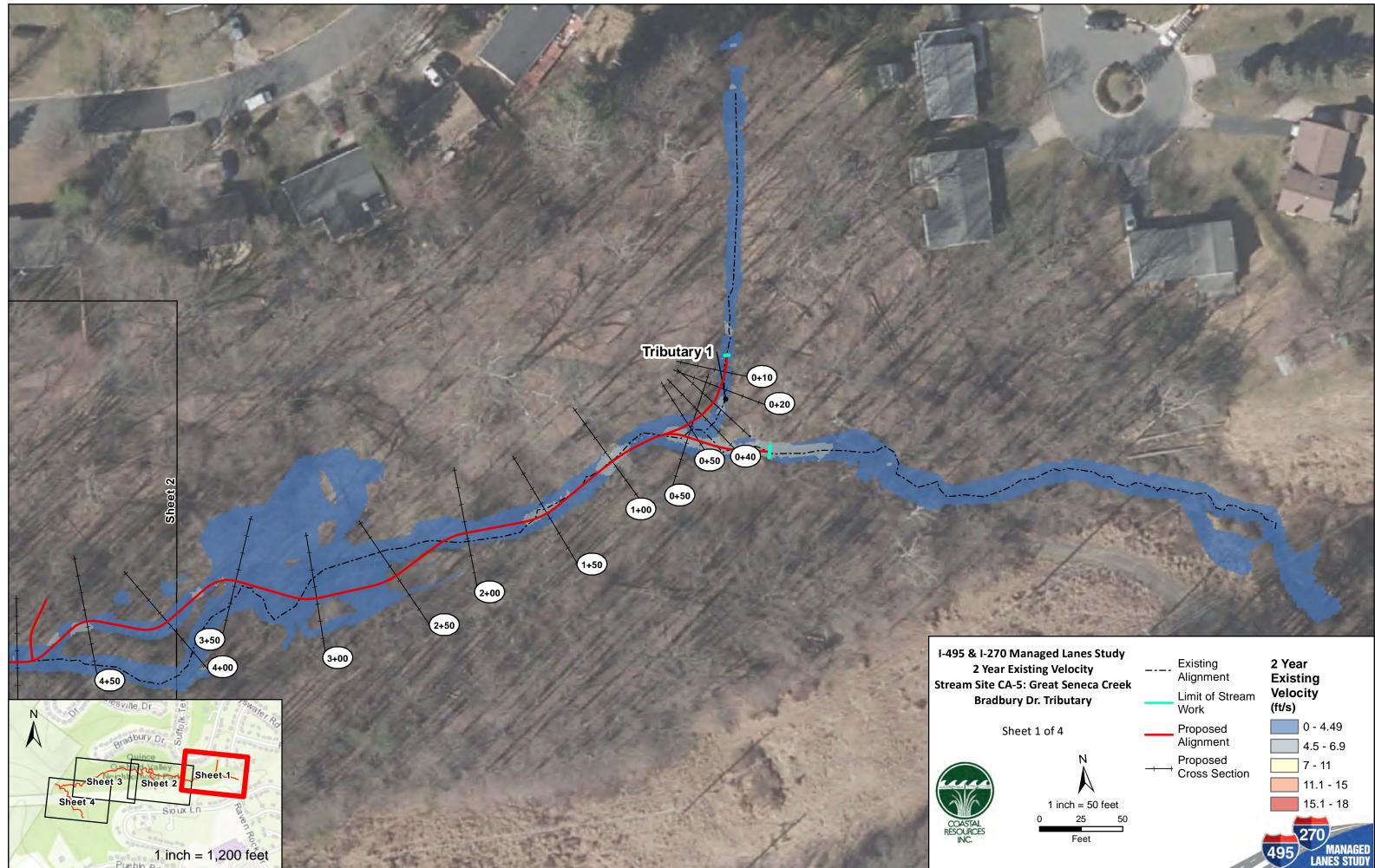

Stage, ft	Discharge, cfs
325.32	18.48
325.52	58.99
325.72	114.69
325.92	182.67
326.12	261.15
326.32	348.90
326.52	444.99
326.72	548.71
326.92	659.48
327.12	776.80
327.32	900.27
327.52	1029.53
327.72	1164.27
327.92	1304.23
328.12	1449.15
328.32	1598.82
328.52	1753.05
328.72	1911.65
328.92	2074.47
329.12	2241.35
329.32	2412.15
329.52	2586.75
329.72	2765.03
329.92	2946.88
330.12	3132.19
330.32	3320.87
330.52	3512.83
330.72	3707.98
330.92	3906.24
331.12	4107.54
331.32	4311.80
331.52	4518.96
331.72	4728.95
331.92	4941.70

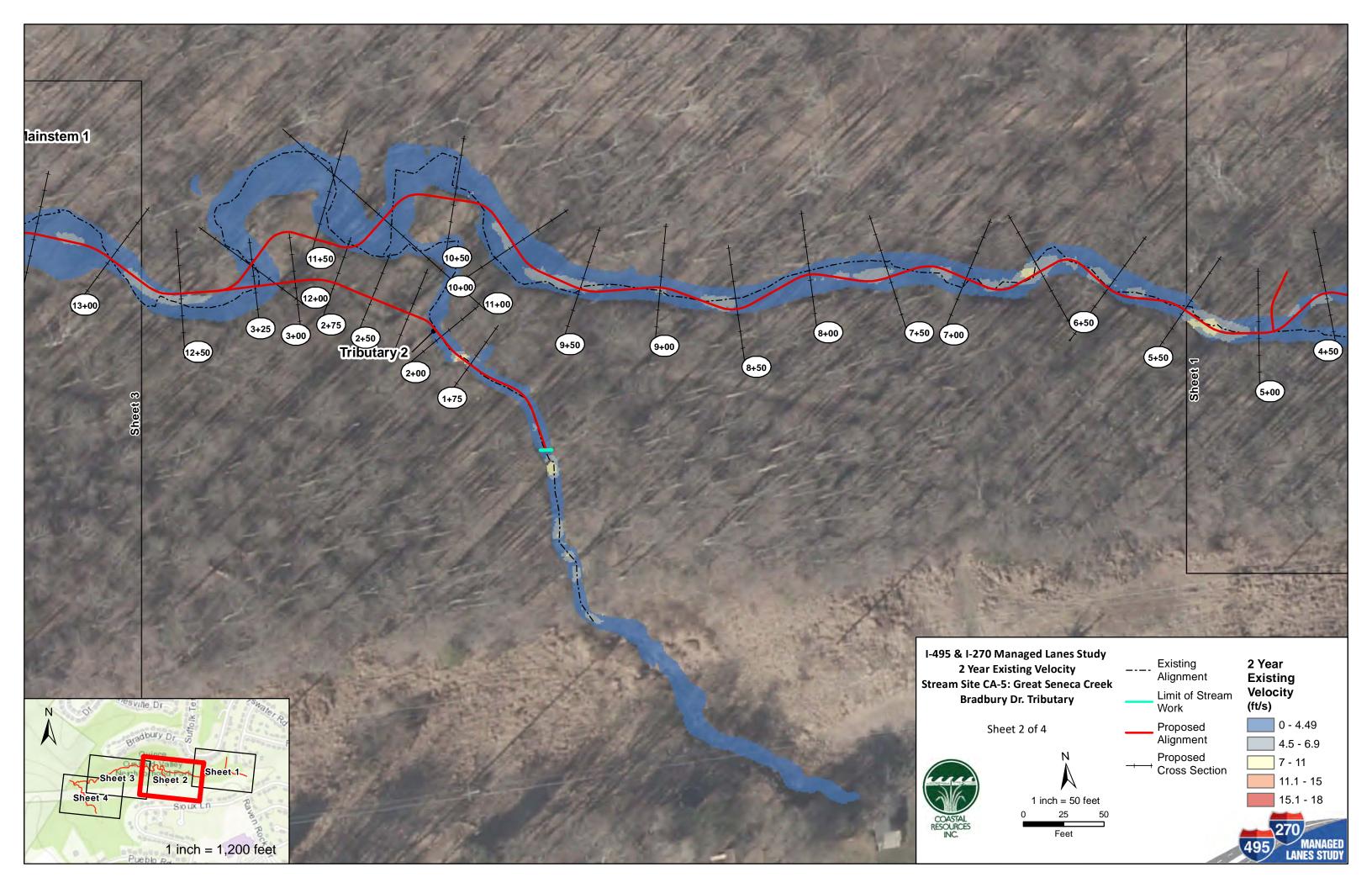

CA-5 Trib to Seneca Stormwater Management Pond Stage Storage Discharge

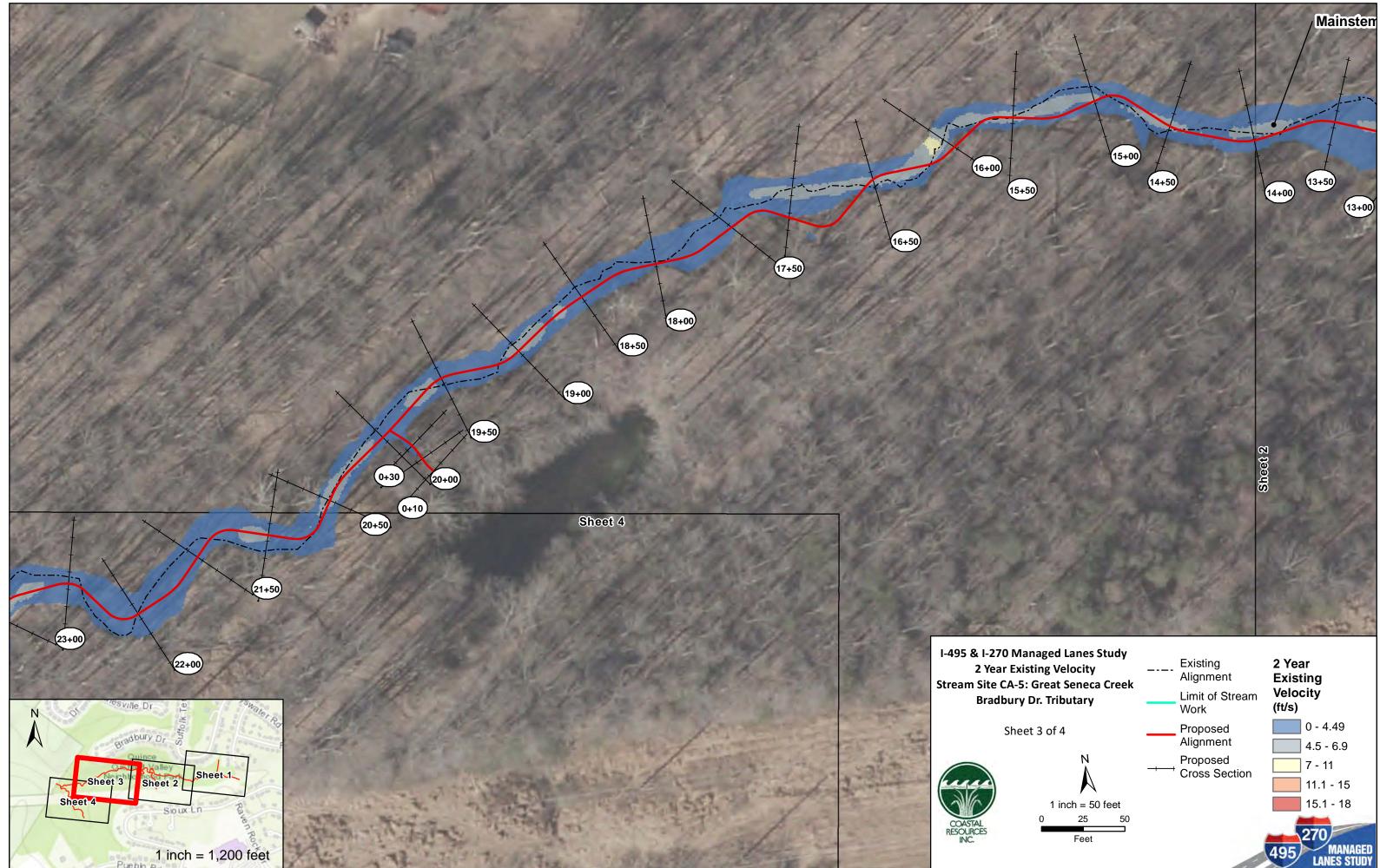

elev	vol ac-ft	Head, ft	7.75" orifice	weir	total							
318.3	0	0	0									
320	0.464	2.022917	2.23									
322	2.2059	4.022917	3.15									
324	5.3241	6.022917	3.86									
325.12	7.6052	7.142917	4.35	0	4.350	low weir c	rest	5-7 feet				
325.5	8.4661	7.522917	4.59	86.93	91.520	high weir o	crest	angled up	50' on both	sides and 5	' perpendic	ular
						110' total			approximate	ely		
326	9.6643	8.022917	4.47	261.4	265.870							
						100 yr WS	E	326.95				
328	15.0605	10.02292	4.99	1450.63	1455.620							

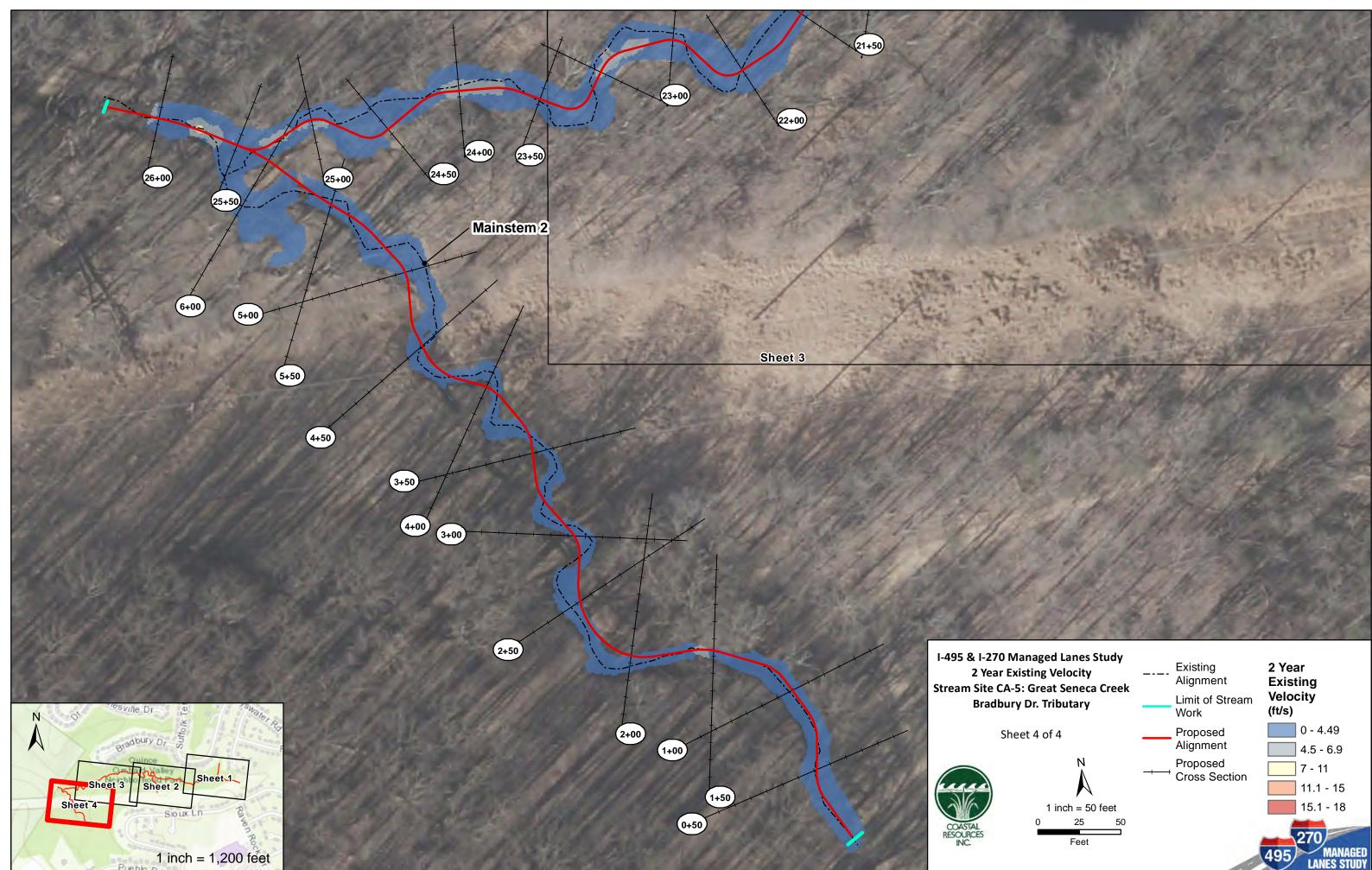

APPENDIX D.2 HECRAS ANALYSIS

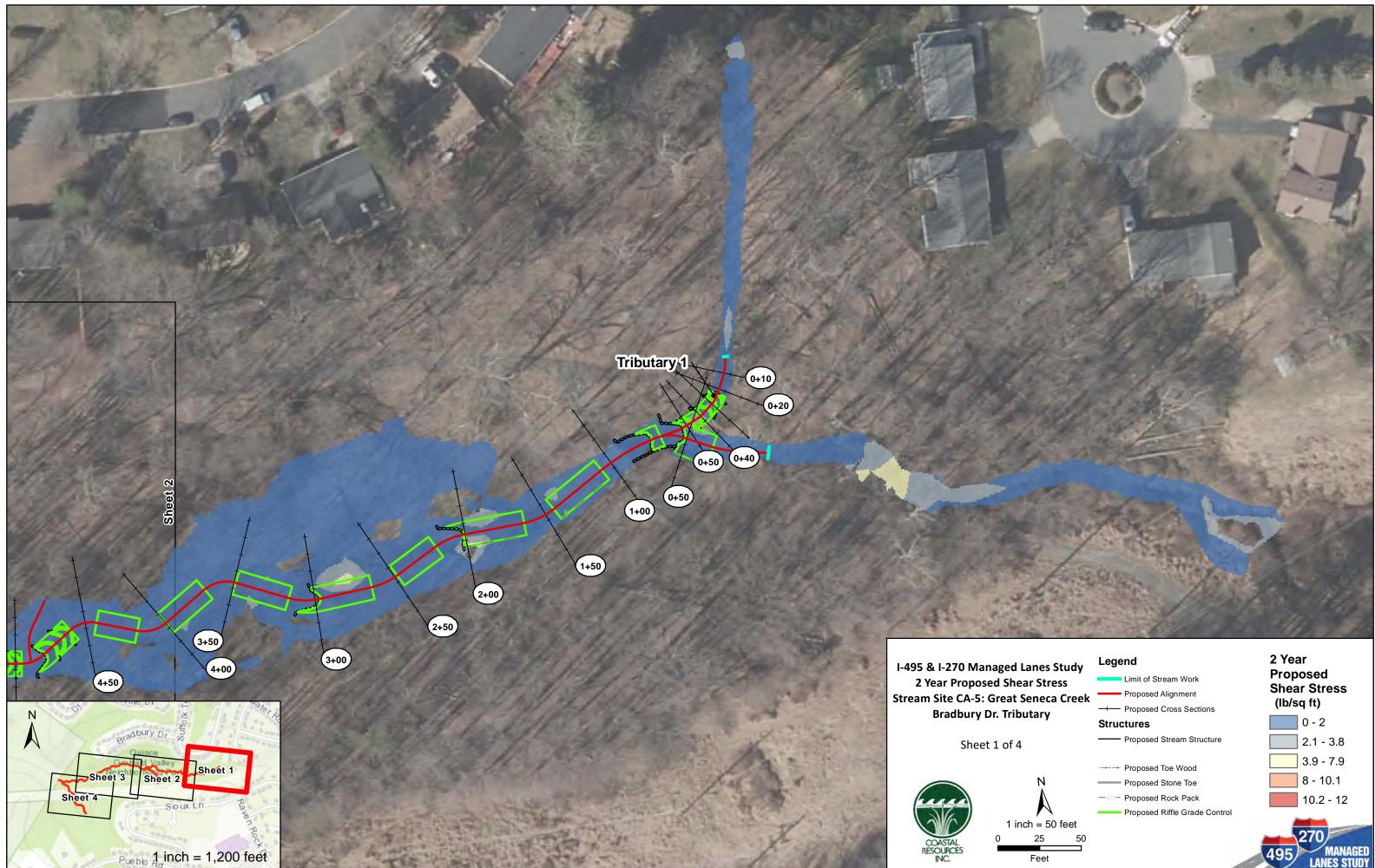

HEC RAS Geometry Schematic

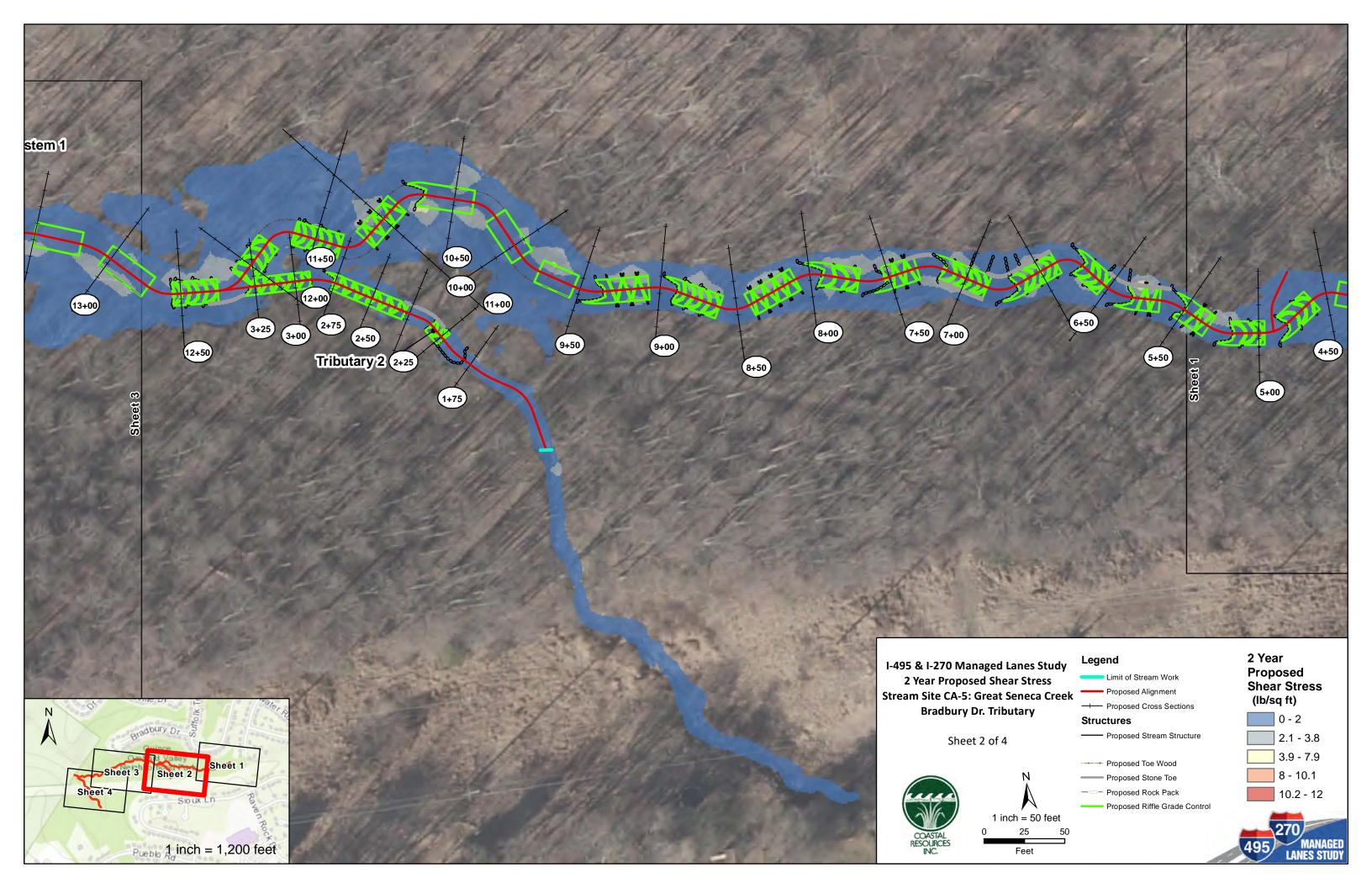


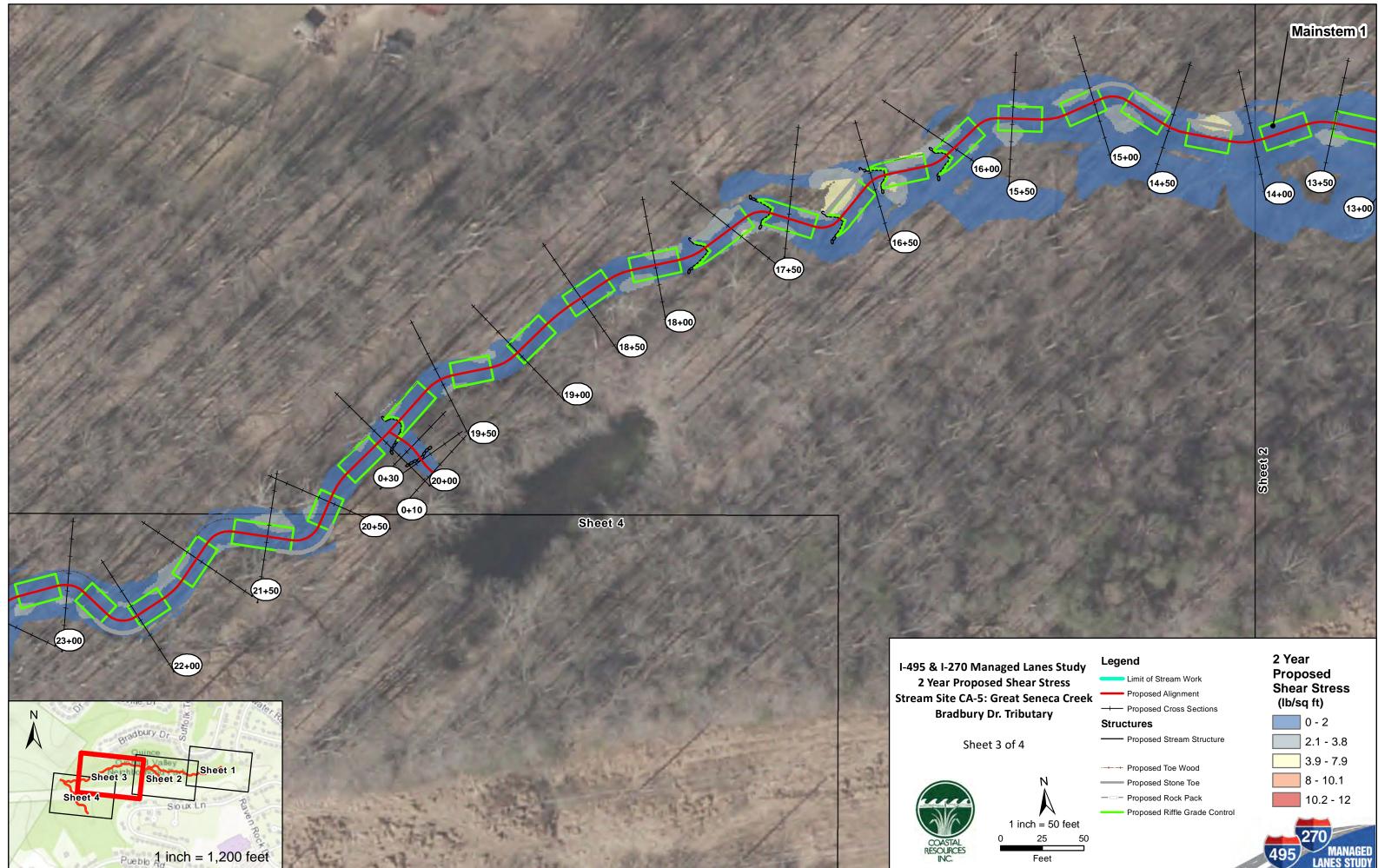






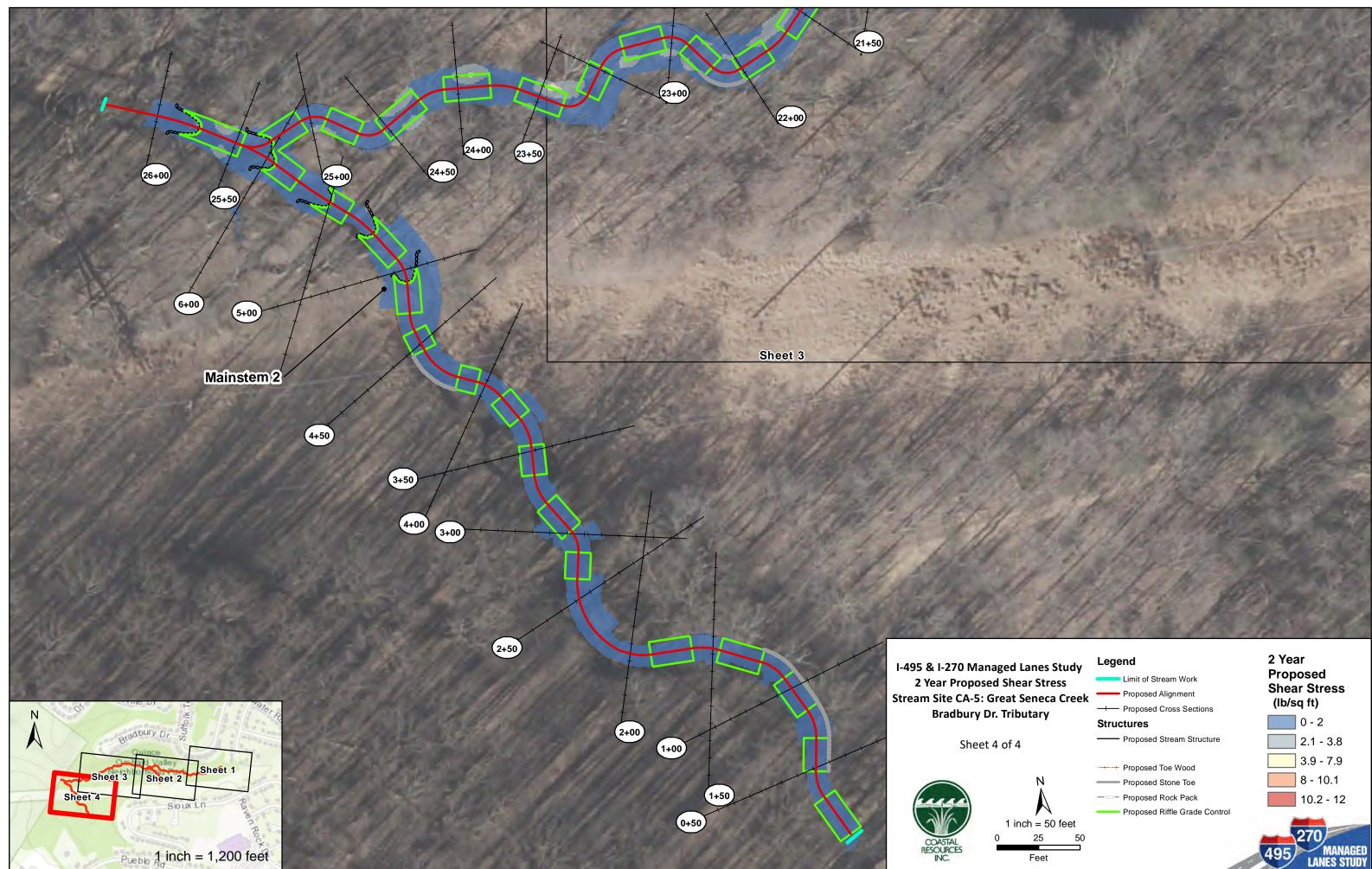




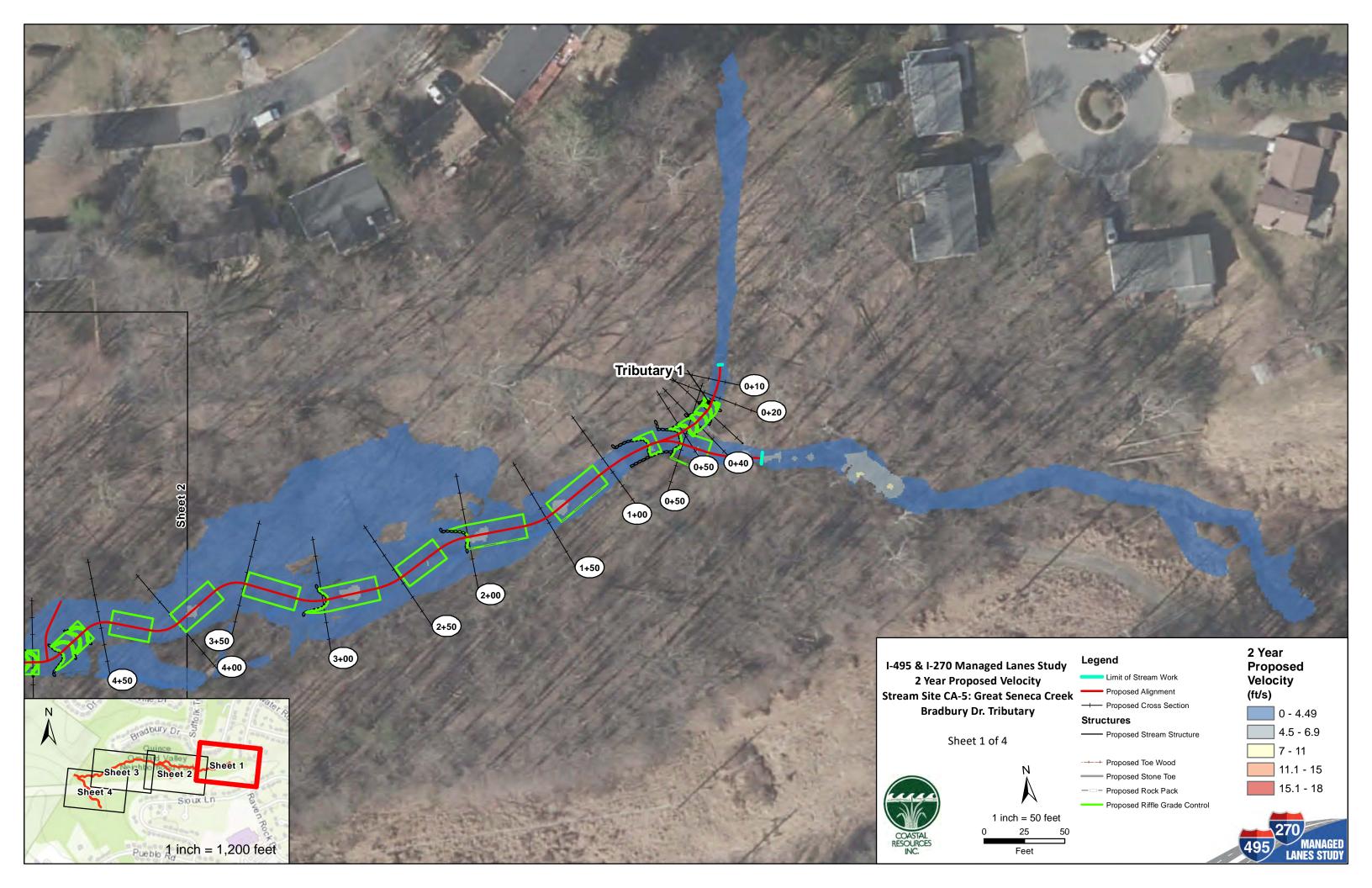


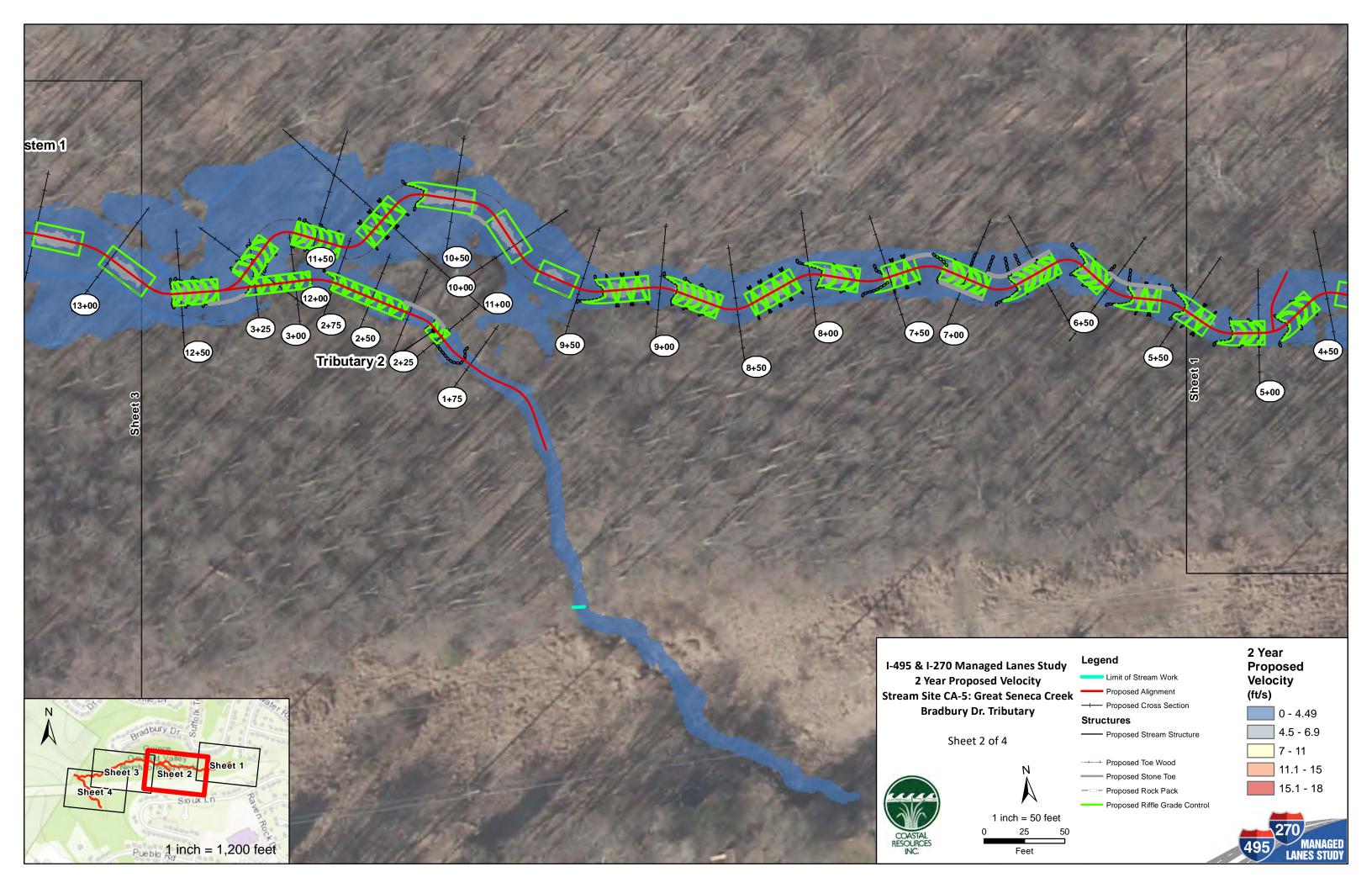
anes Study
ar Stress
Seneca Creek
utary

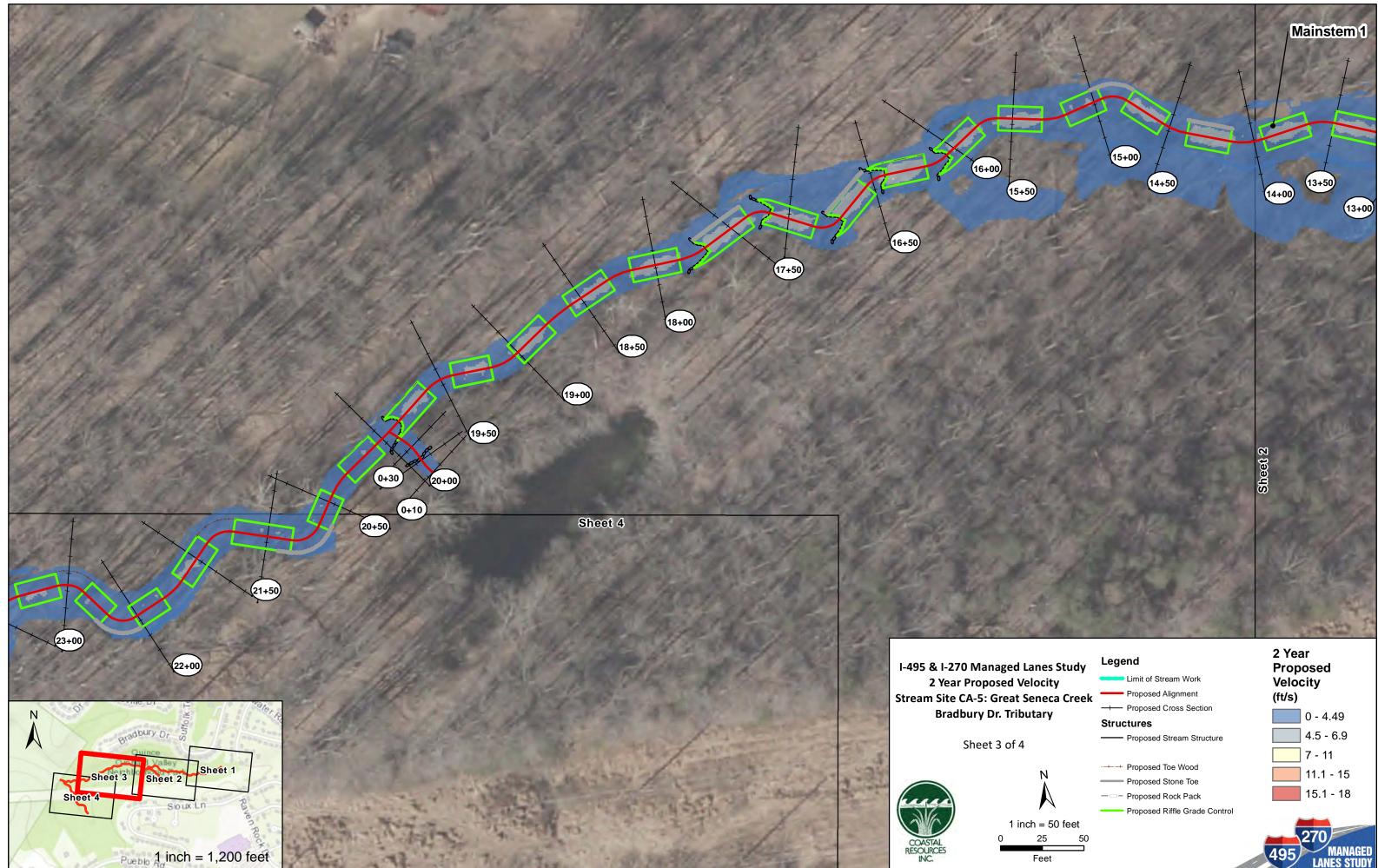
Legena
Limit of Stream Work
Proposed Alignment
Proposed Cross Sections
Structures
Proposed Stream Structure
Proposed Toe Wood
Proposed Stone Toe
Proposed Rock Pack
Proposed Riffle Grade Control


() - 2
	2.1 - 3.8
:	3.9 - 7.9
	3 - 10.1
	10.2 - 12

Legend
Limit of Stream Work
Proposed Alignment
Proposed Cross Sections
Structures
Proposed Stream Structure
Proposed Toe Wood
Proposed Stone Toe
Proposed Rock Pack
Proposed Riffle Grade Control

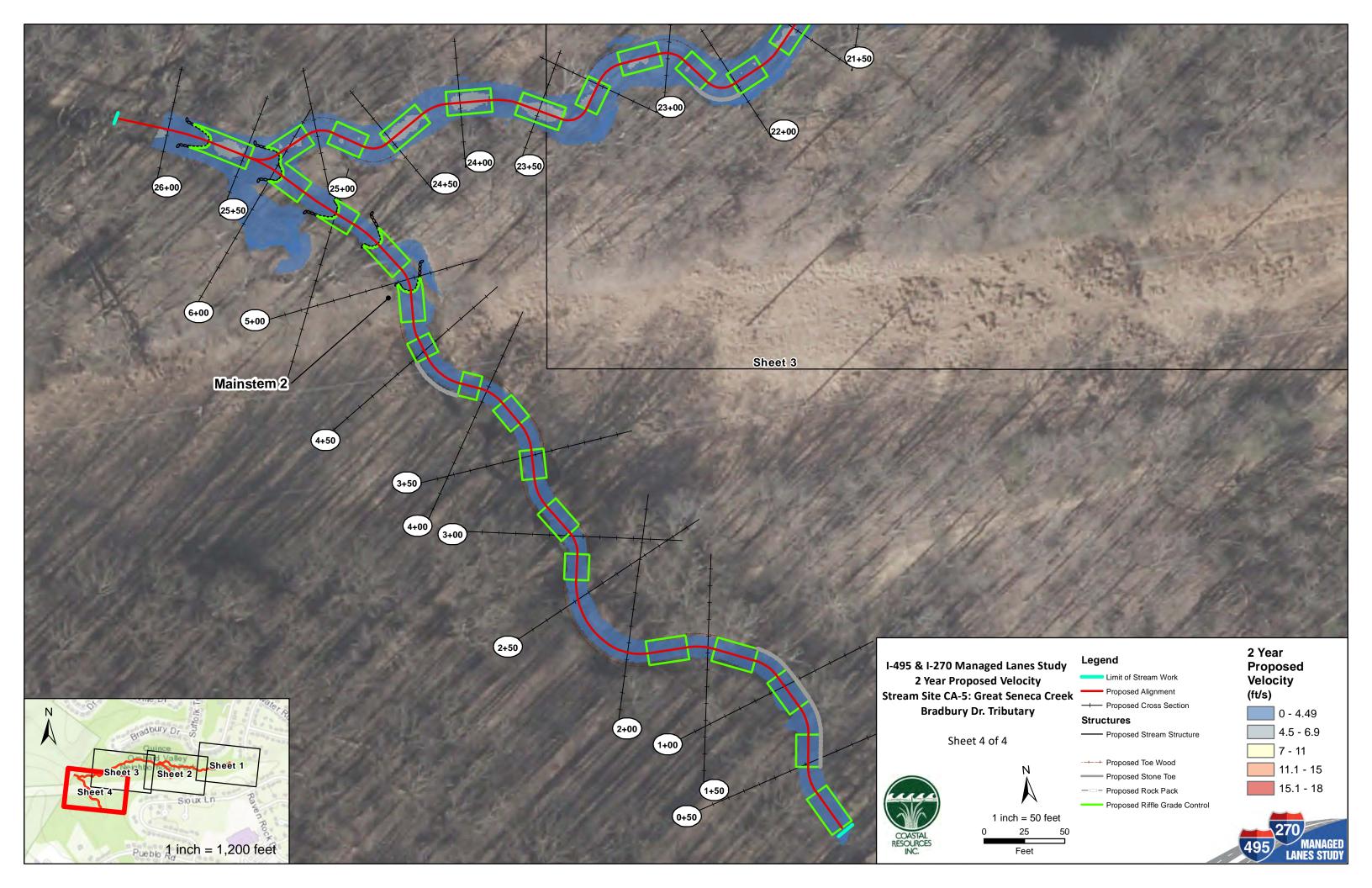

270
10.2 - 12
8 - 10.1
3.9 - 7.9
2.1 - 3.8
0 - 2



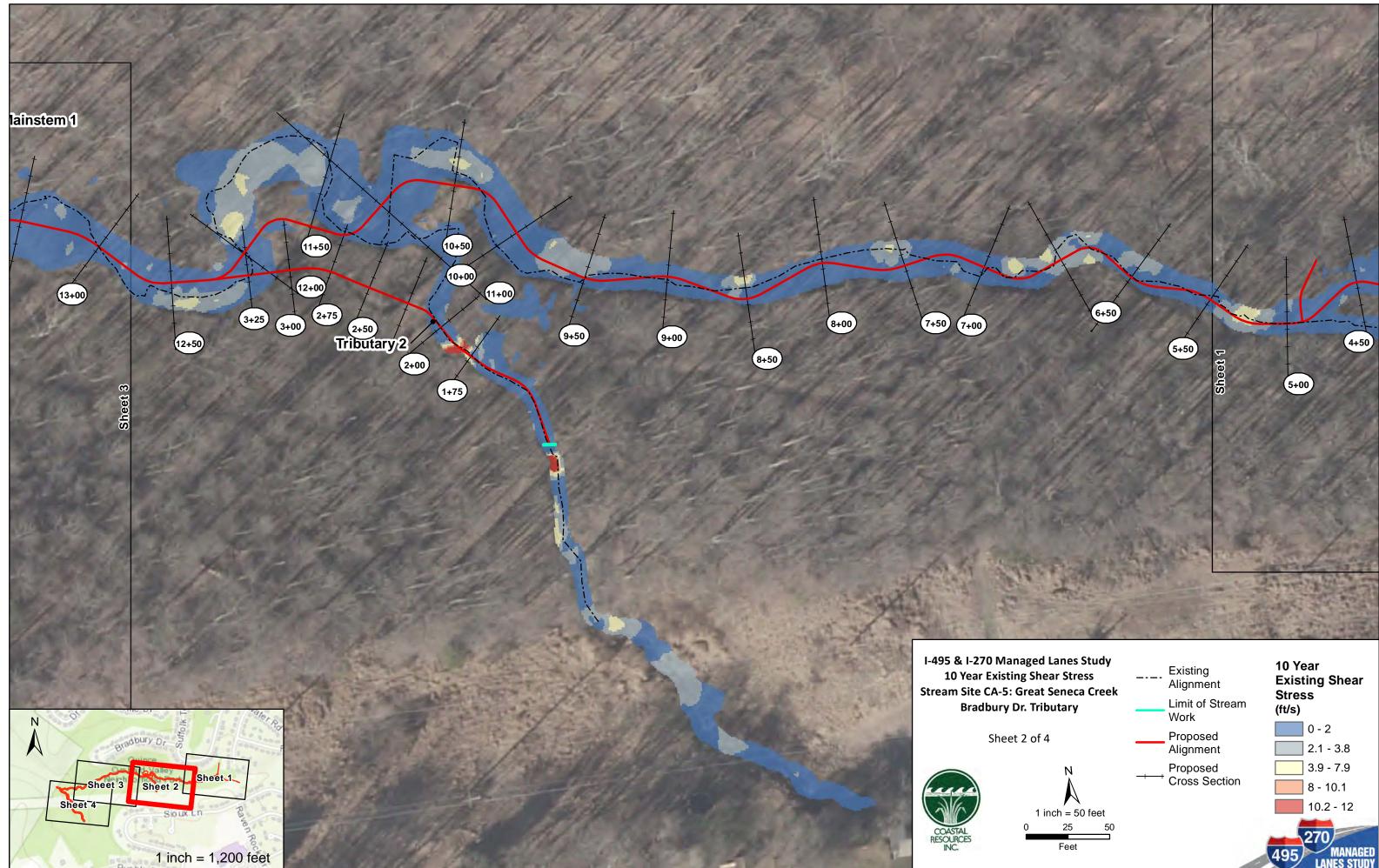

anes Study
ar Stress
Seneca Creek
utary

Legena
Limit of Stream Work
Proposed Alignment
Proposed Cross Sections
Structures
Proposed Stream Structure
Proposed Toe Wood
Proposed Stone Toe
Proposed Rock Pack
Proposed Riffle Grade Control

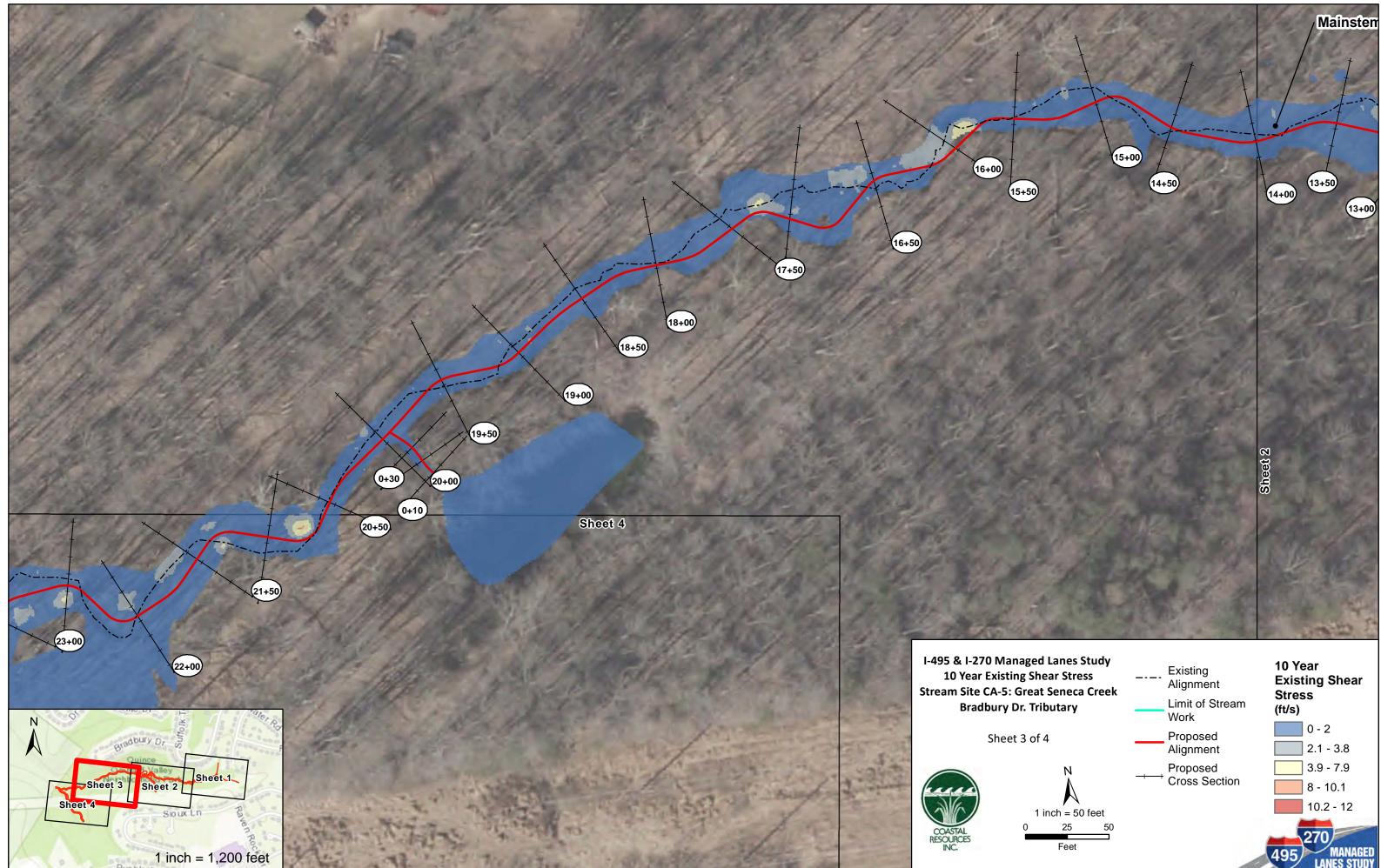
0 - 2
2.1 - 3.8
3.9 - 7.9
8 - 10.1
10.2 - 12
270

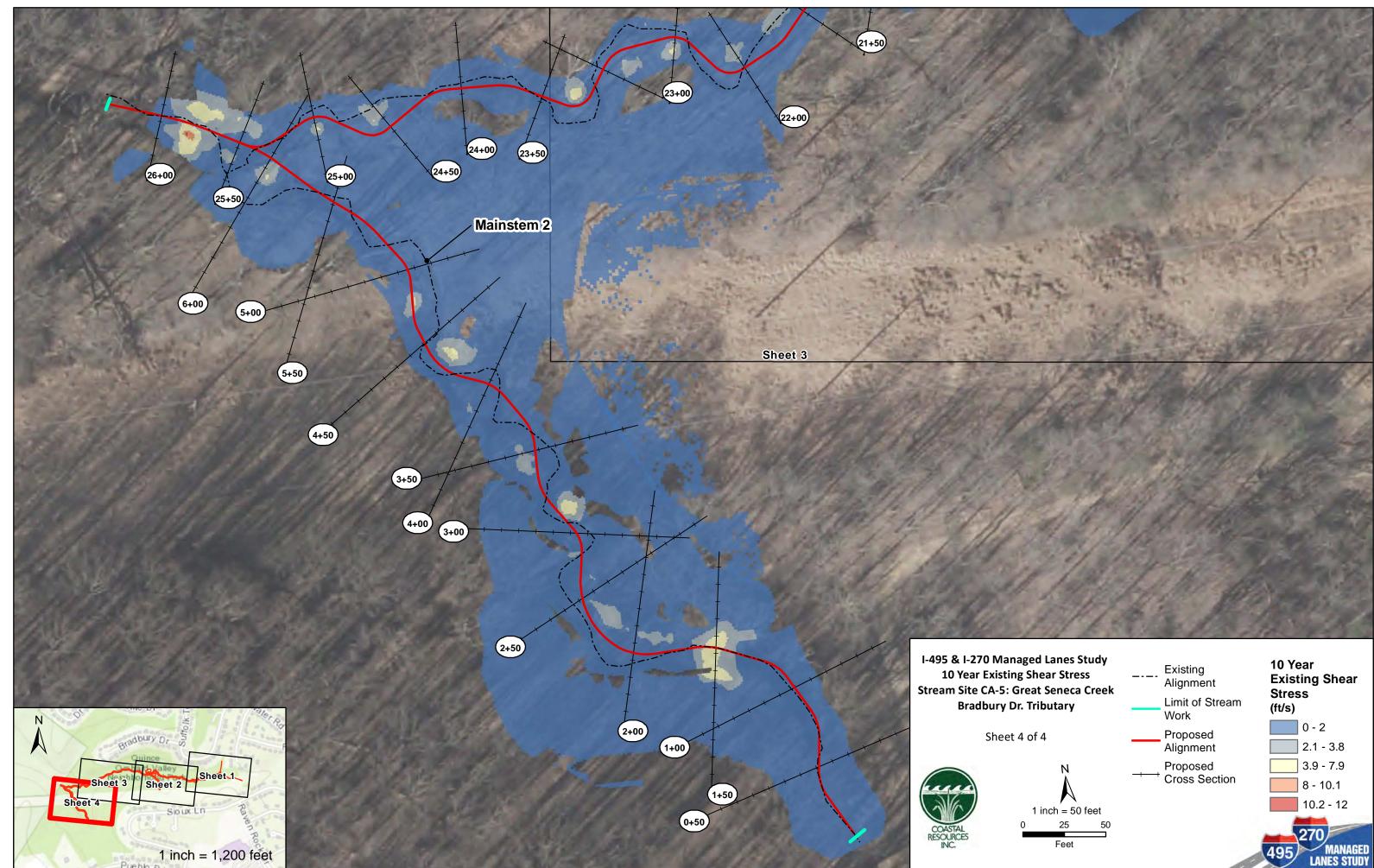


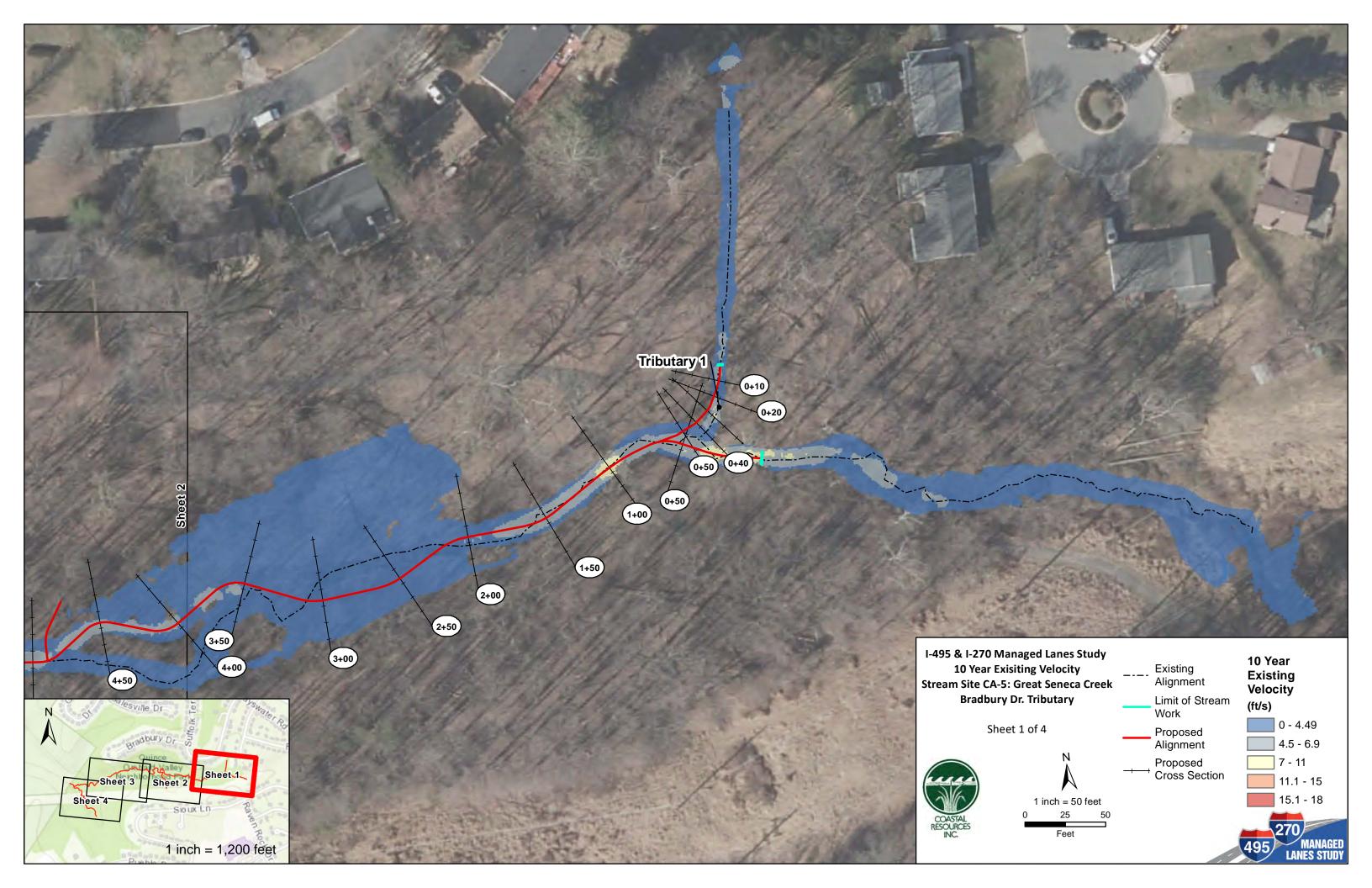


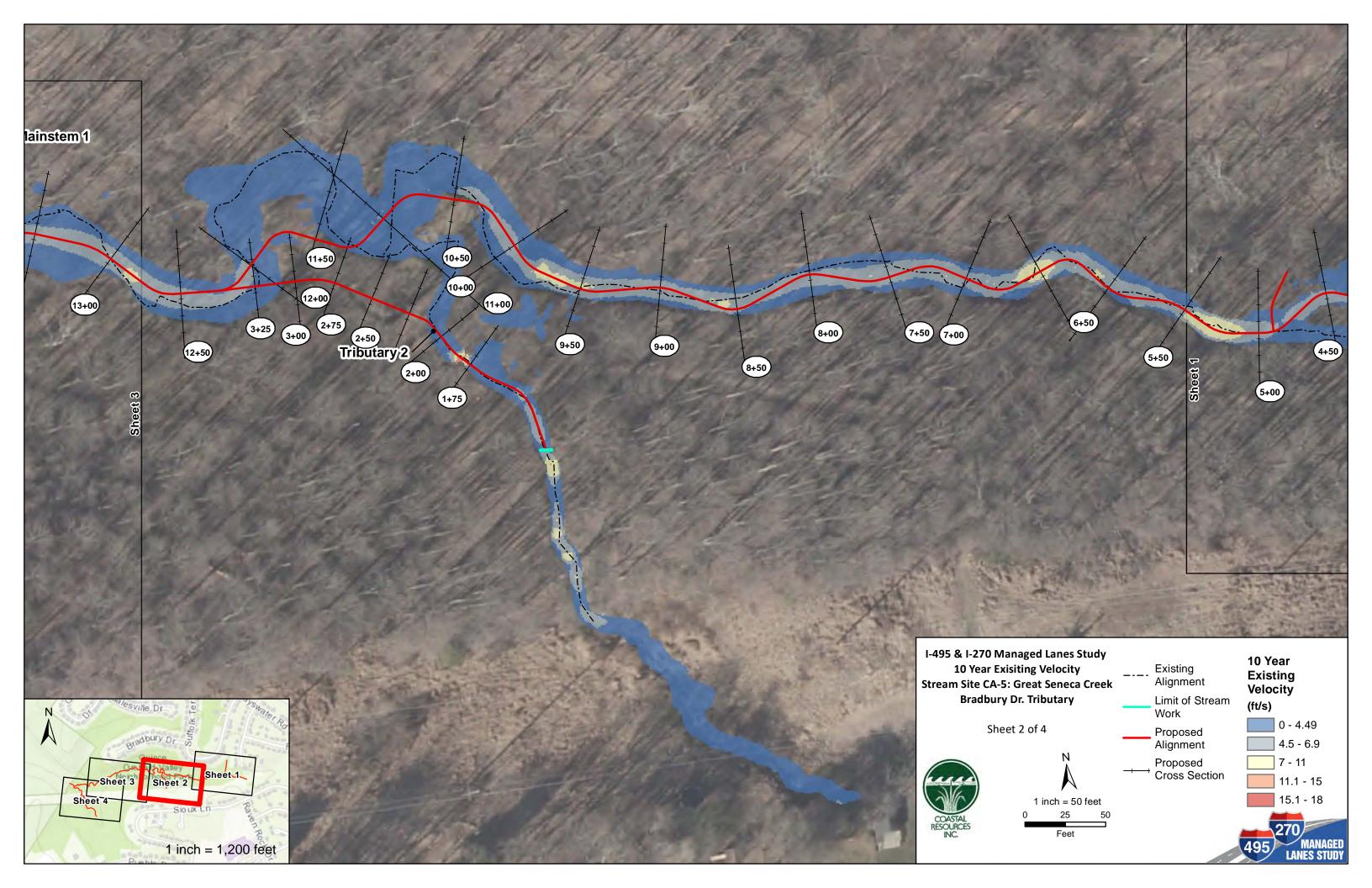


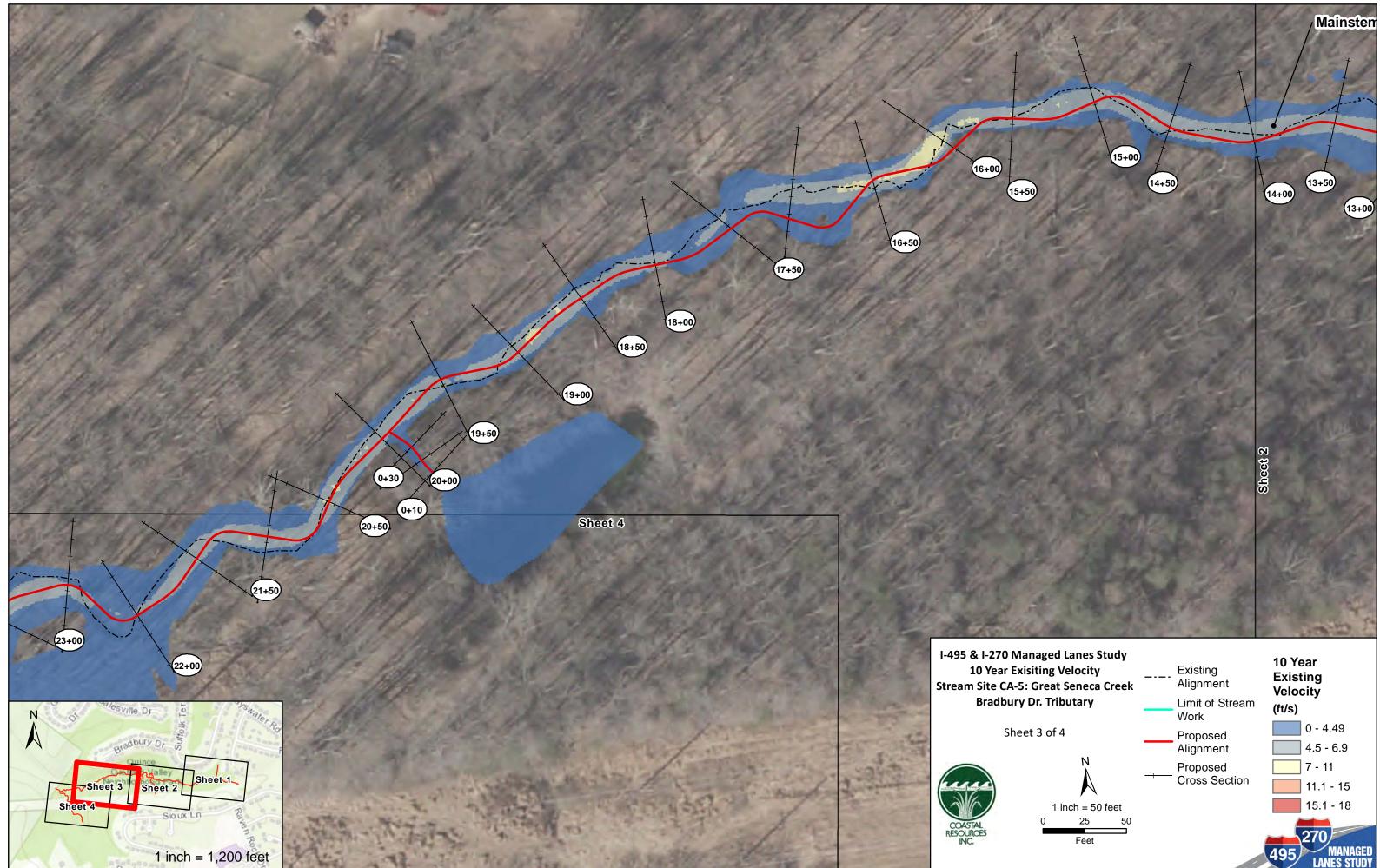
Legena
Limit of Stream Work
Proposed Alignment
Proposed Cross Section
Structures
Proposed Stream Structure
Proposed Toe Wood
Proposed Stone Toe
Proposed Rock Pack
Proposed Riffle Grade Control

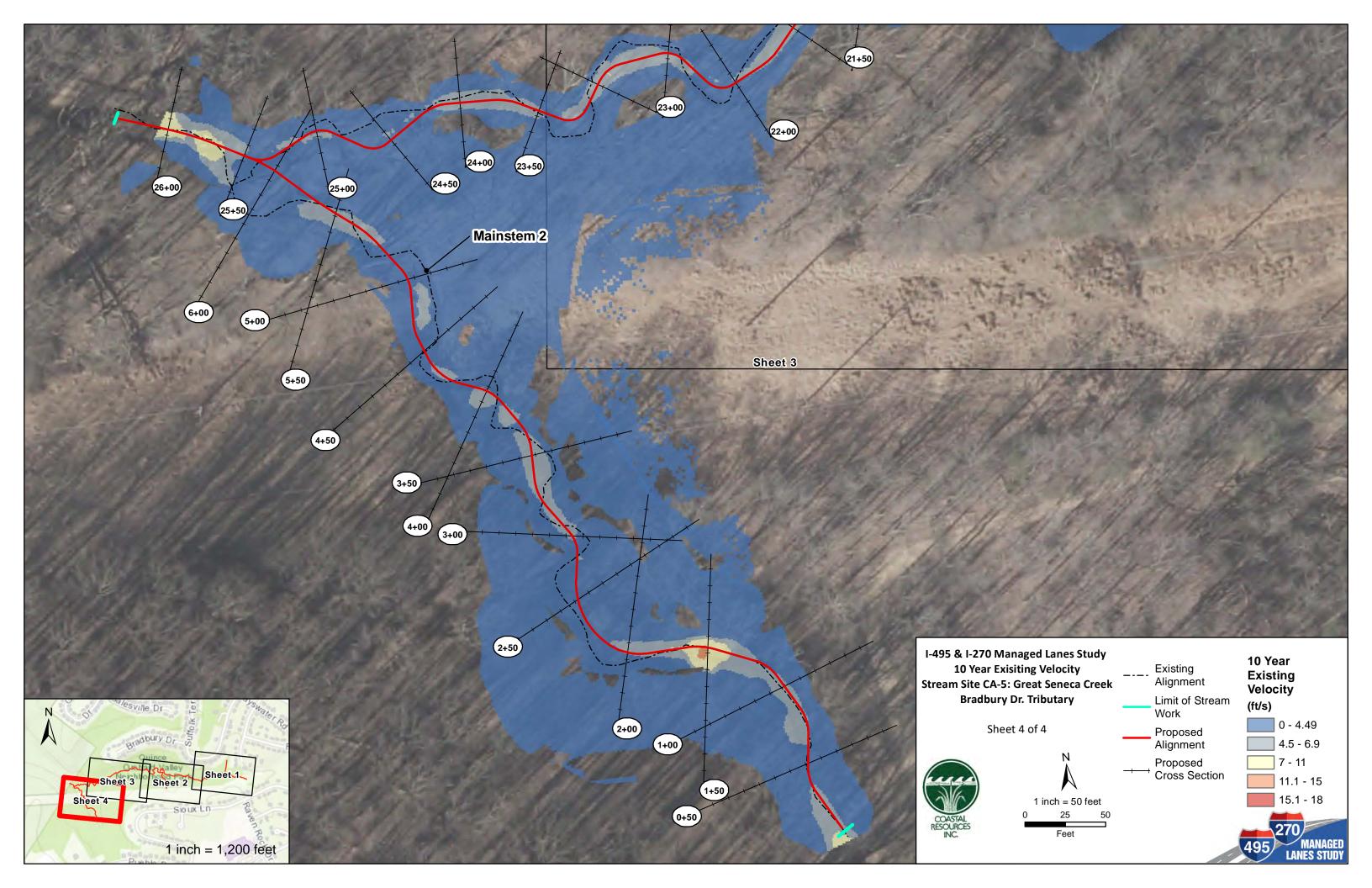

Proposed Velocity (ft/s)				
0 - 4.49				
4.5 - 6.9				
7 - 11				
11.1 - 15				
15.1 - 18				

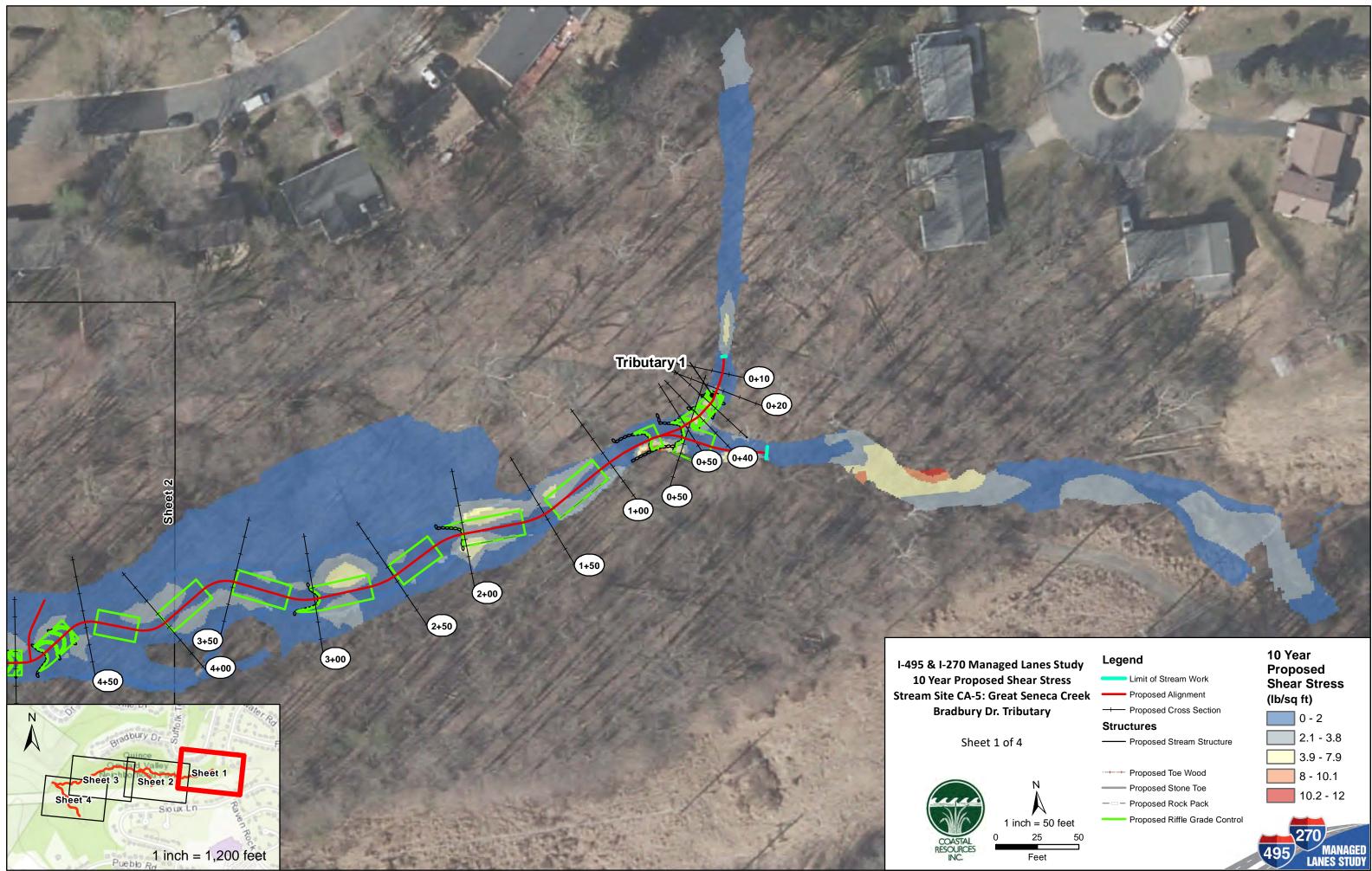


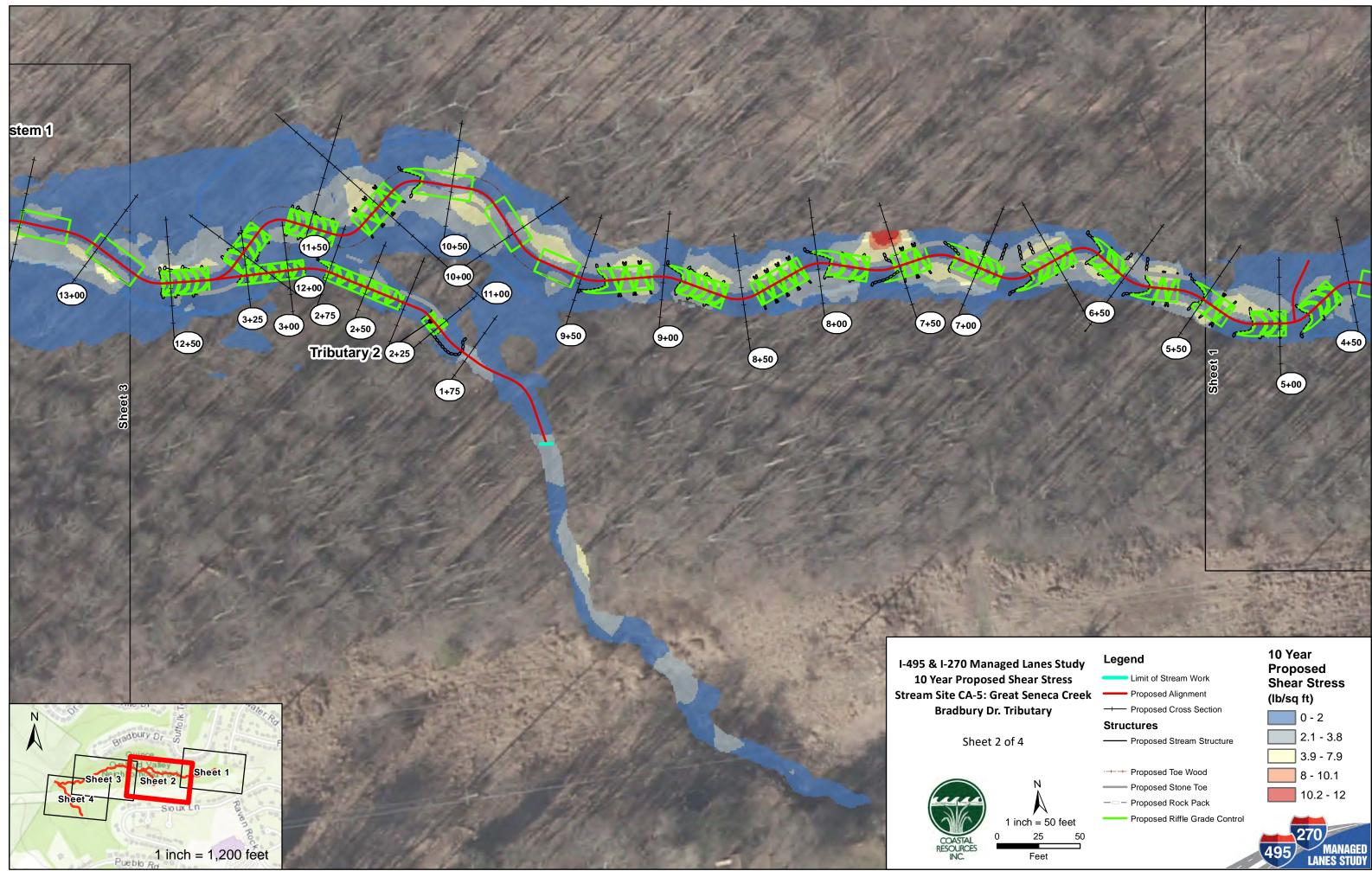


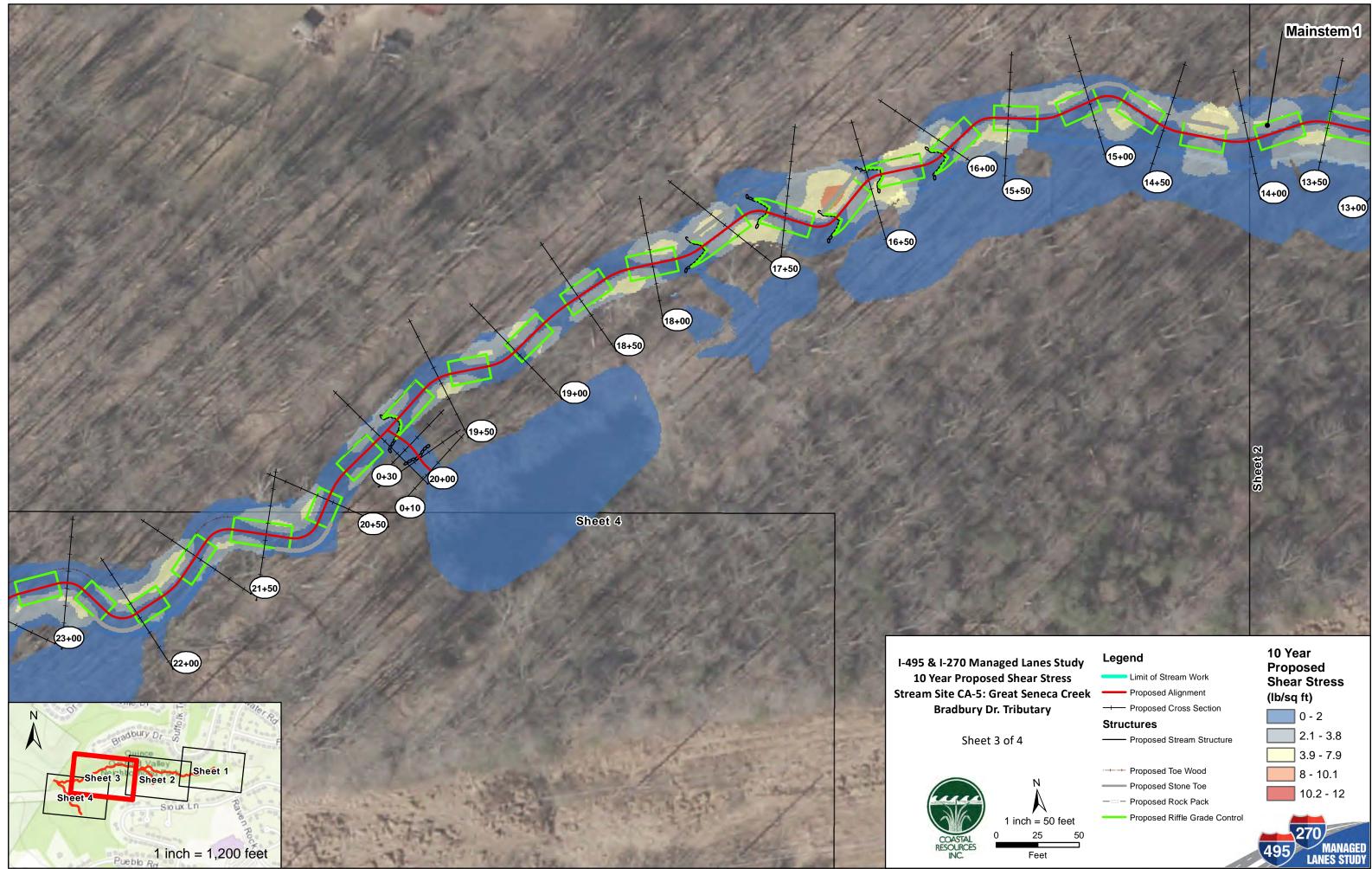


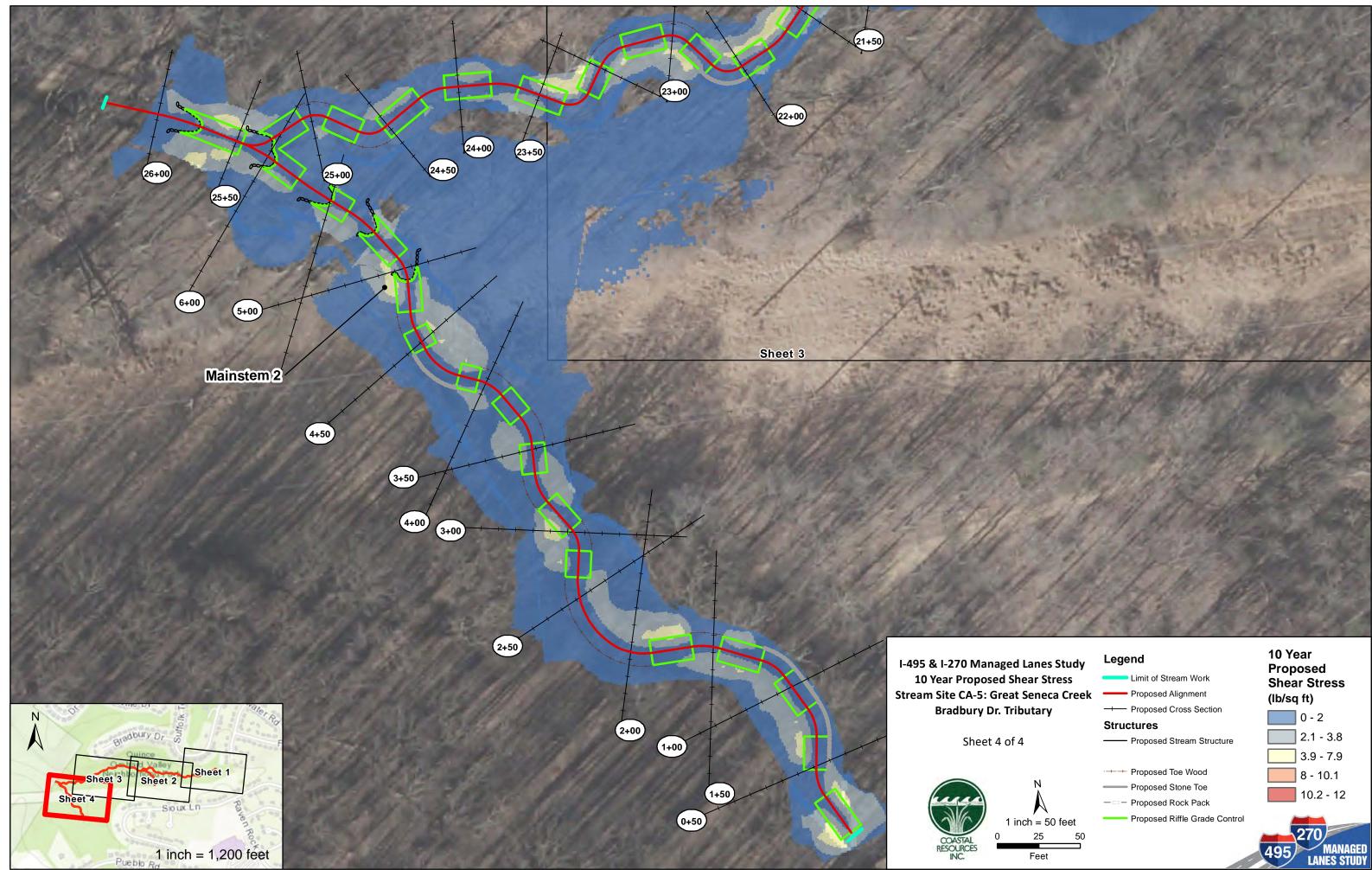

LANES STUDY

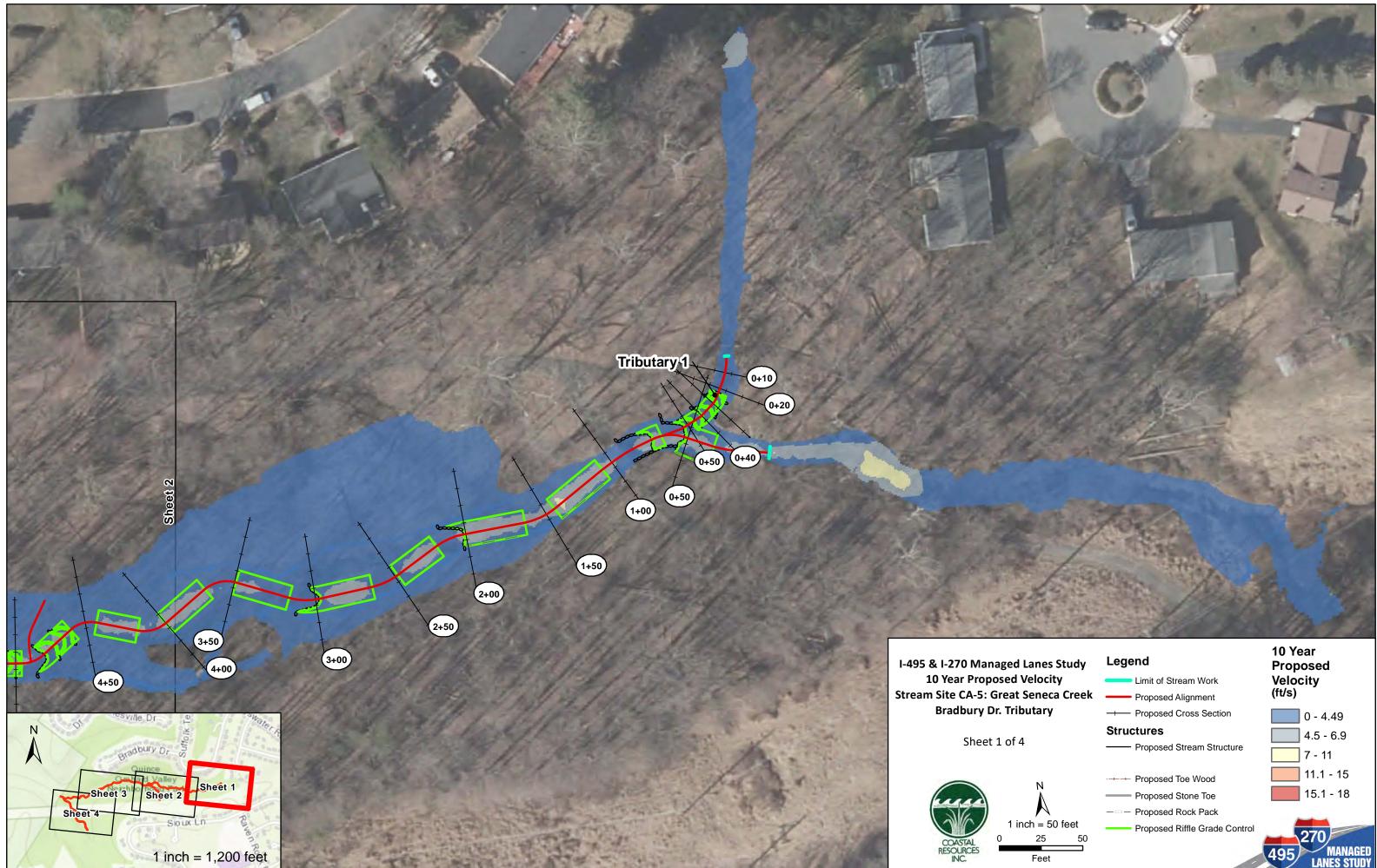




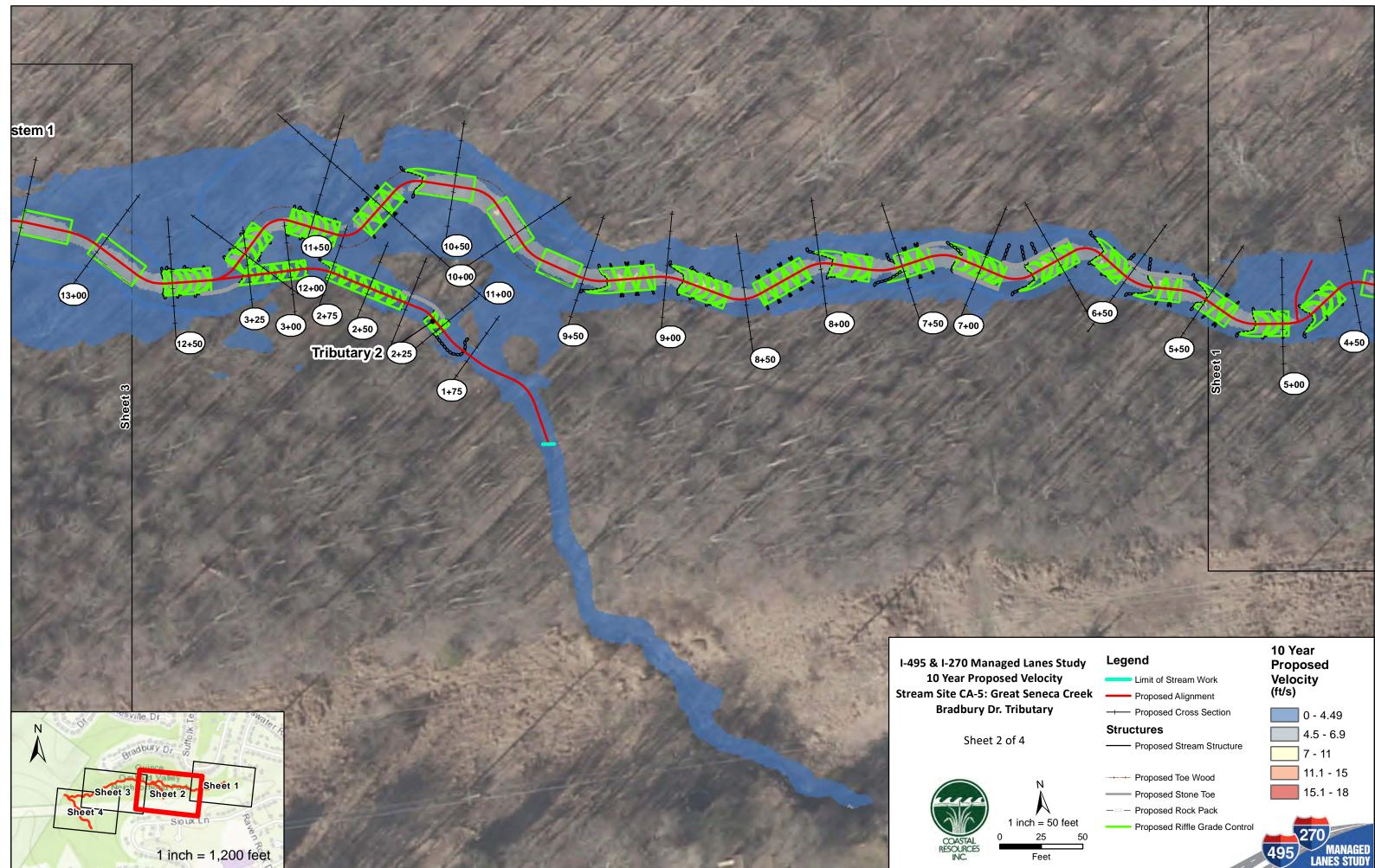


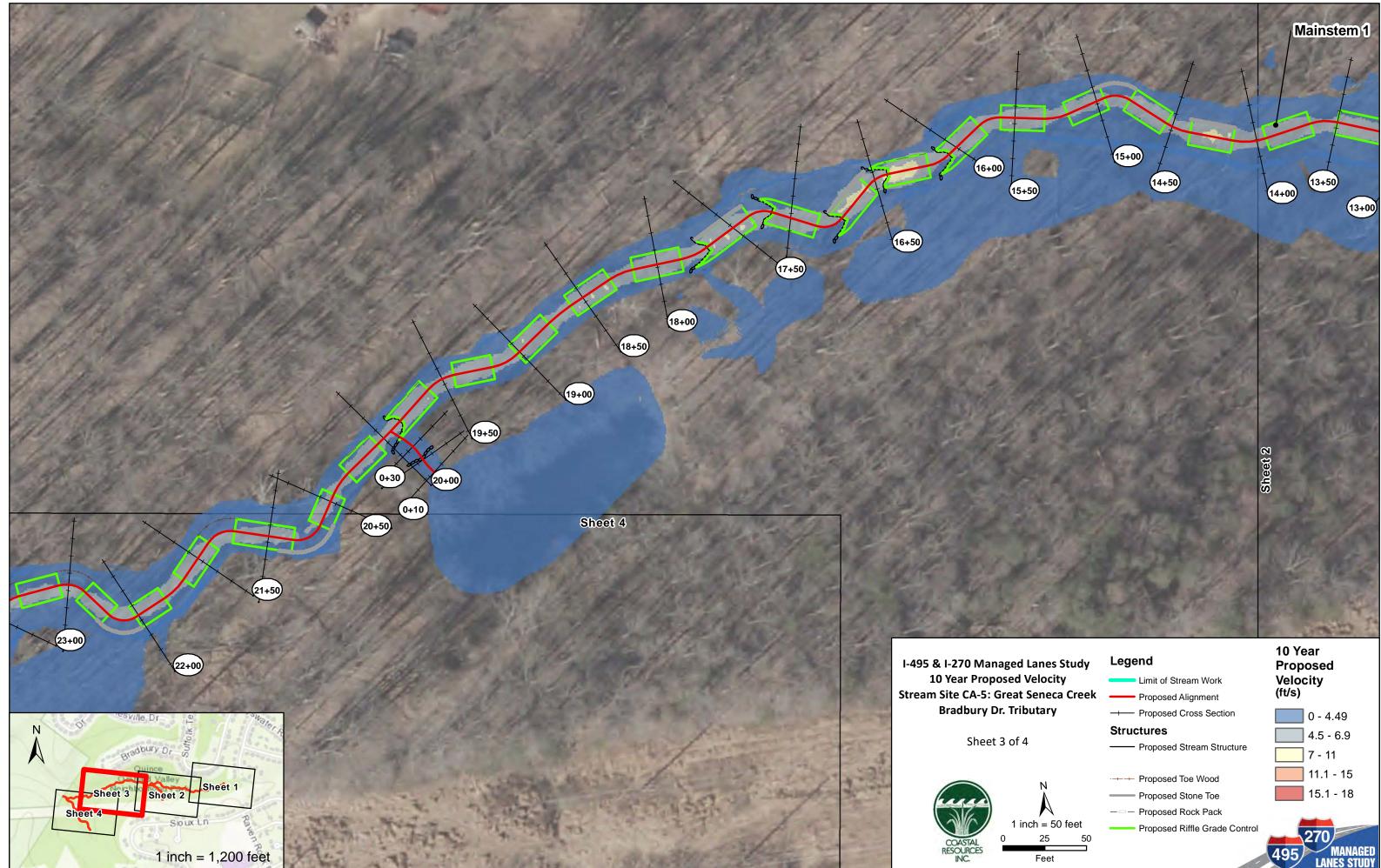

- 3-	
	Limit of Stream Work
	Proposed Alignment
+	Proposed Cross Section
Struc	ctures
	Proposed Stream Structure
++-	Proposed Toe Wood
	Proposed Stone Toe
	Proposed Rock Pack


0 - 2	
2.1 - 3.8	
3.9 - 7.9	
8 - 10.1	
10.2 - 12	


Lanes Study
ear Stress
Seneca Creek
outary

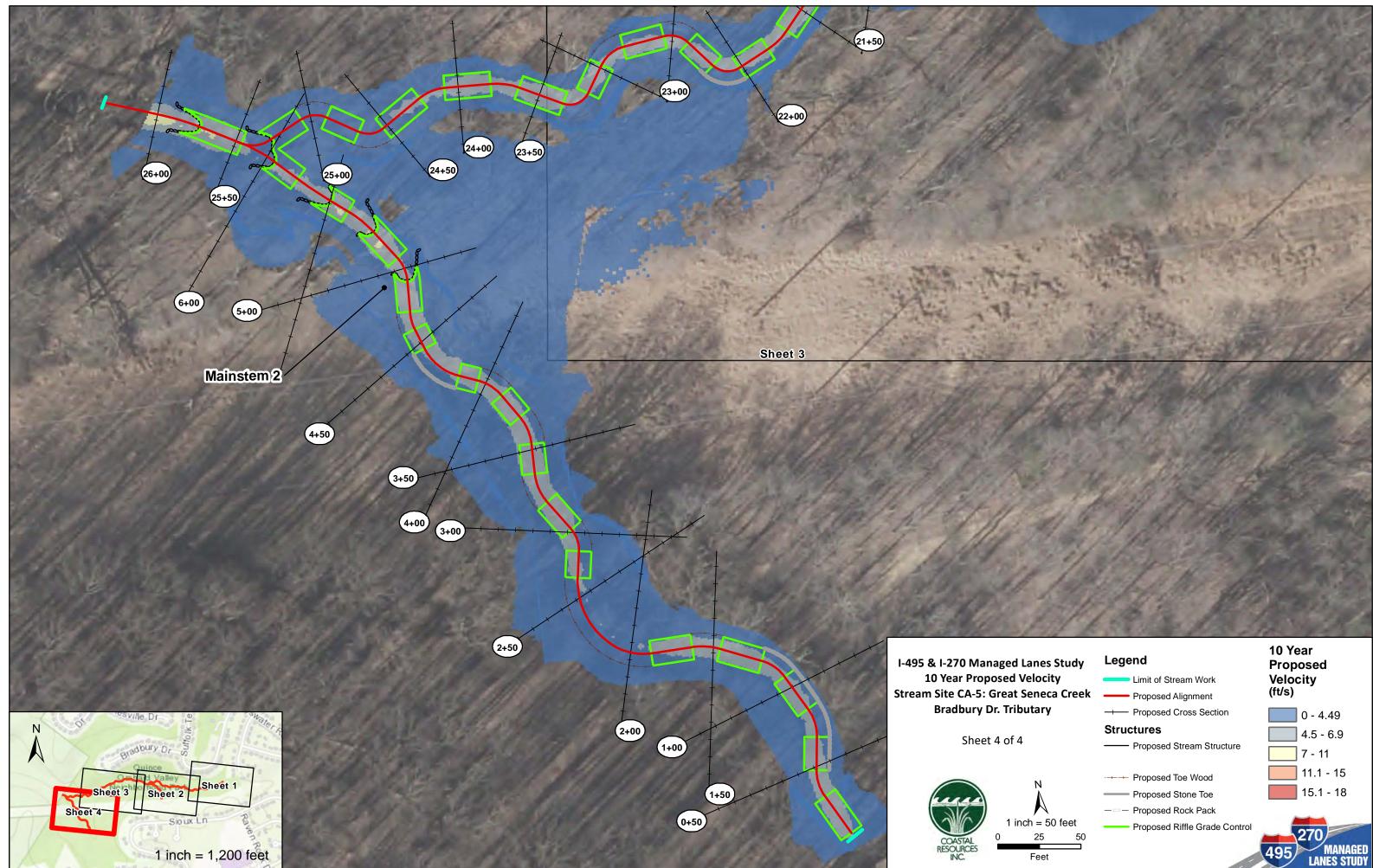
9-	
	Limit of Stream Work
	Proposed Alignment
+	Proposed Cross Section
Struc	ctures
	Proposed Stream Structure
	Proposed Toe Wood
	Proposed Stone Toe
	Proposed Rock Pack
	Proposed Riffle Grade Cont

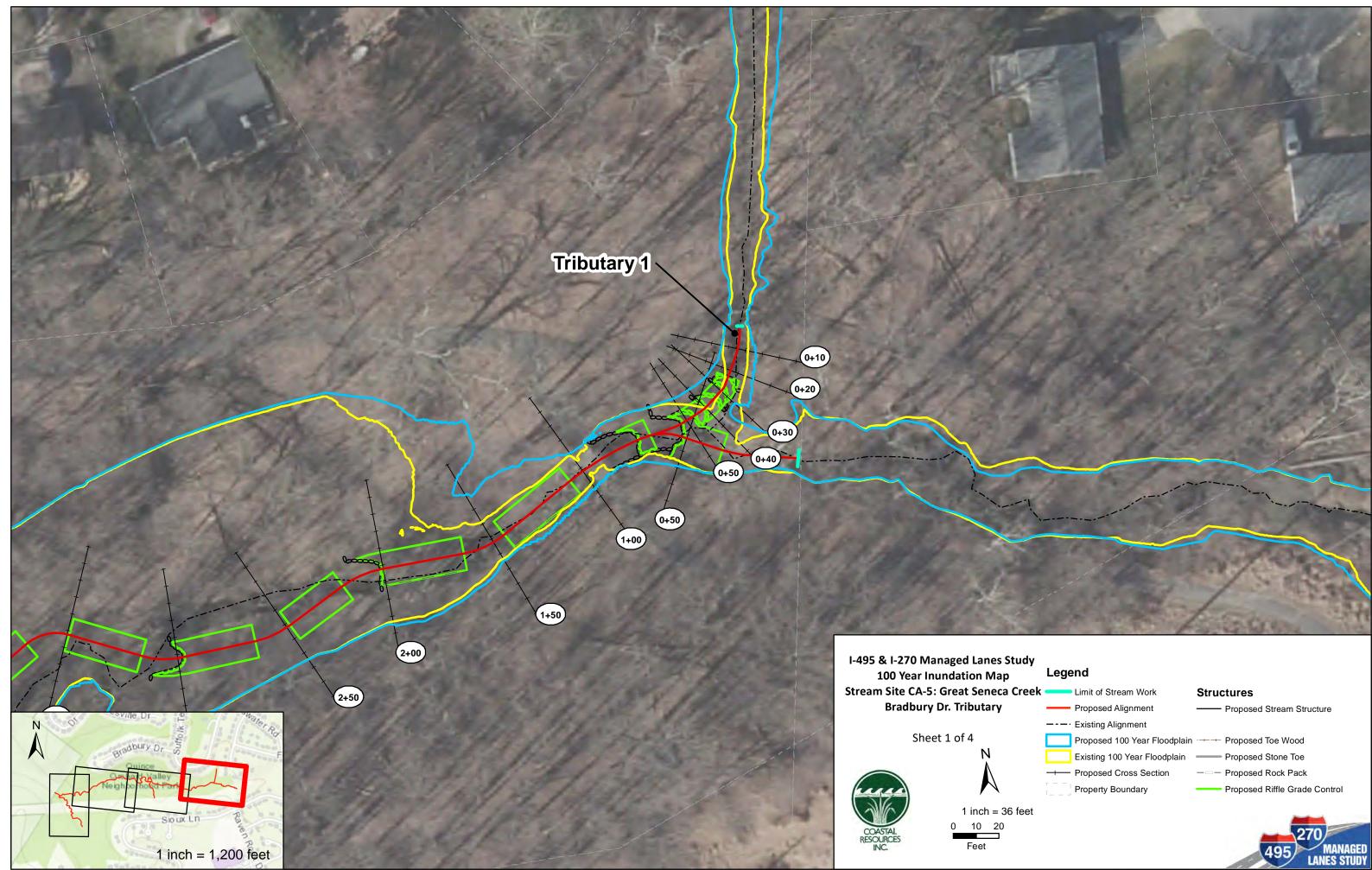

3-				
	Limit of St	ream \	Nork	
	Proposed	Alignm	nent	
	Proposed	Cross	Sectio	n
Struc	tures			
	Proposed	Strear	n Struc	ctur
	Proposed	Toe W	/ood	
	Proposed	Stone	Тое	
	Proposed	Rock	Pack	

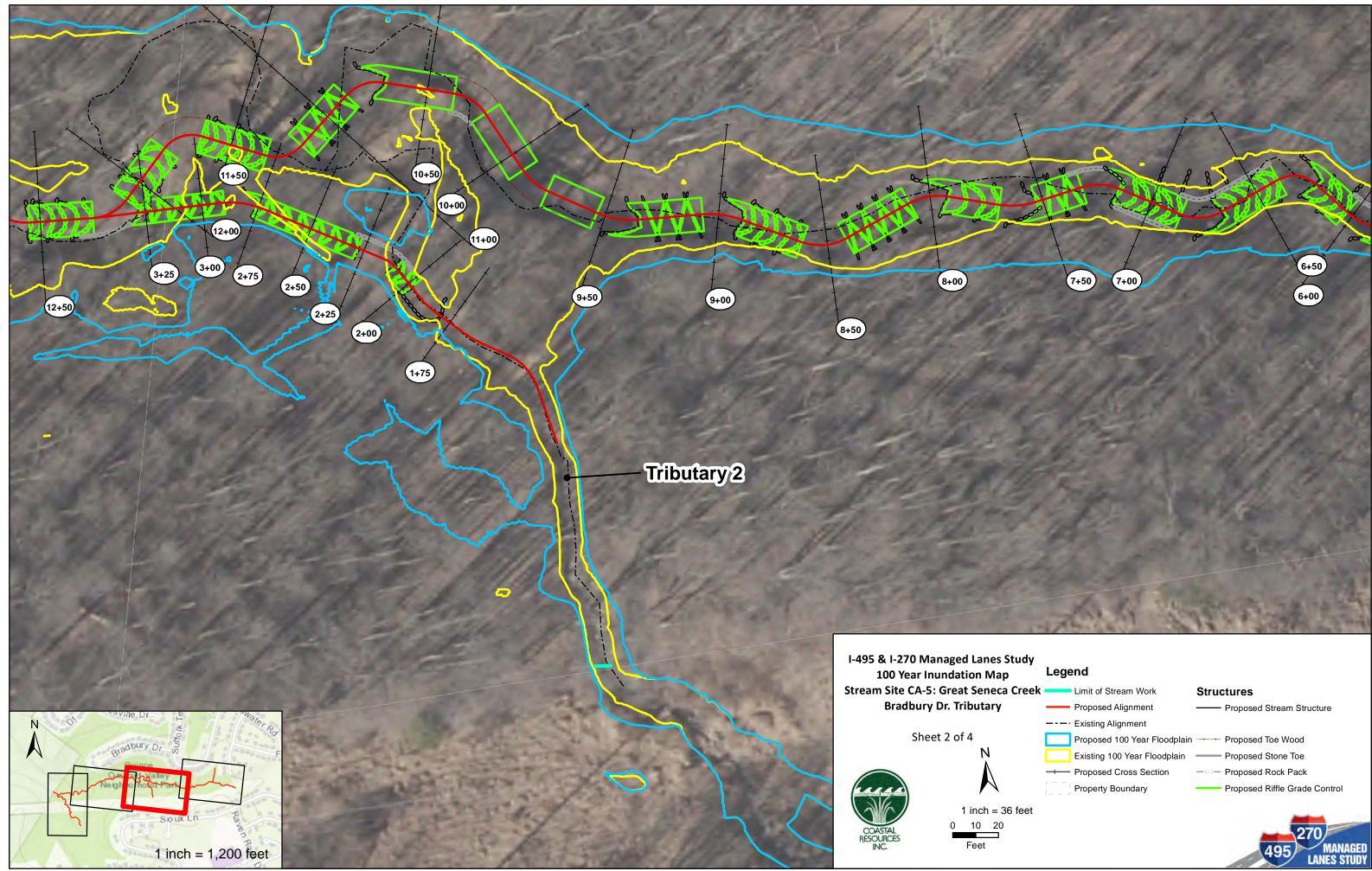

Lanes Study
/elocity
Seneca Creek
utary

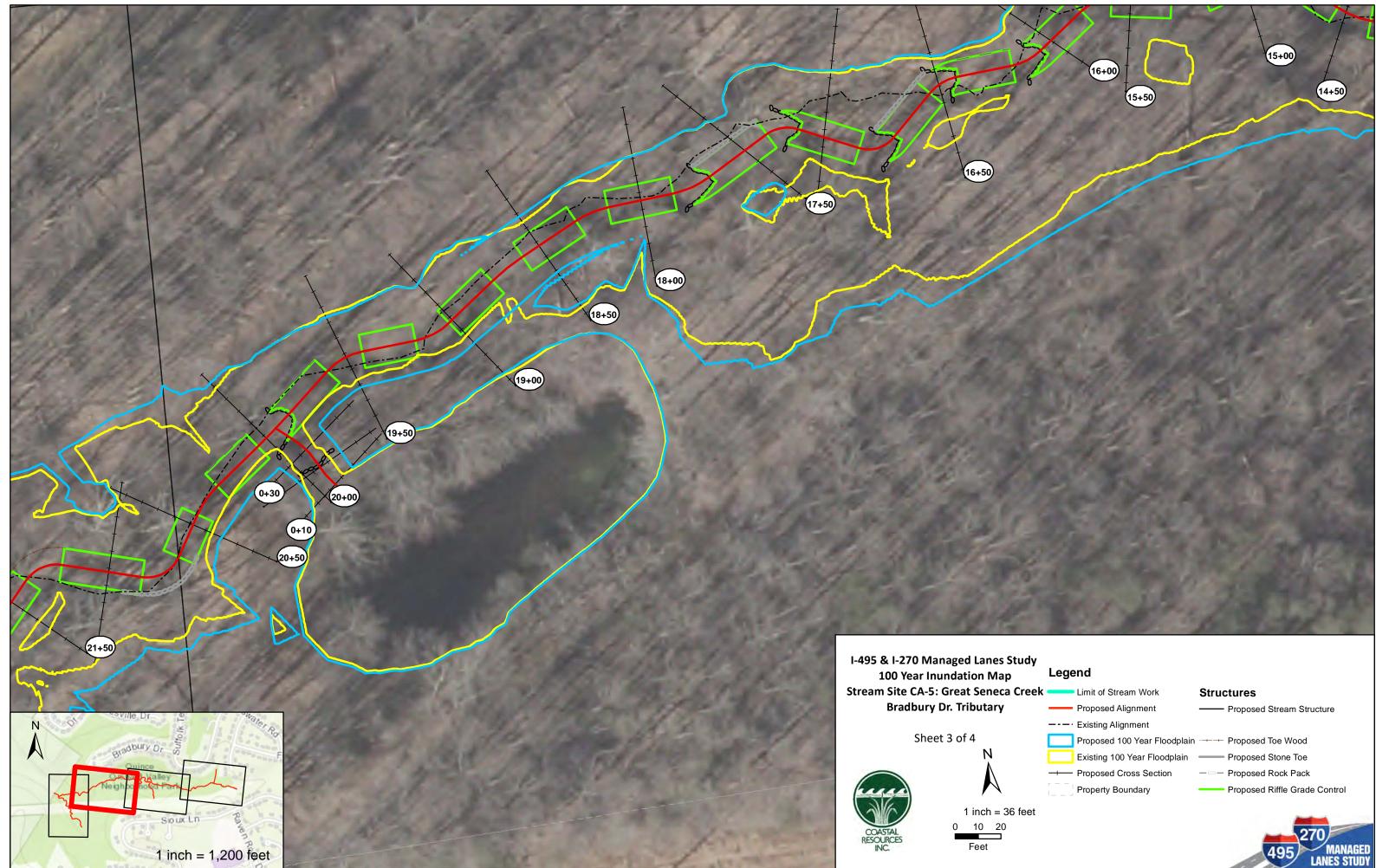
- J -	
	Limit of Stream Work
	Proposed Alignment
	Proposed Cross Section
Struc	tures
	Proposed Stream Structur
	Proposed Toe Wood
	Proposed Stone Toe
	Proposed Rock Pack
	Proposed Riffle Grade Co

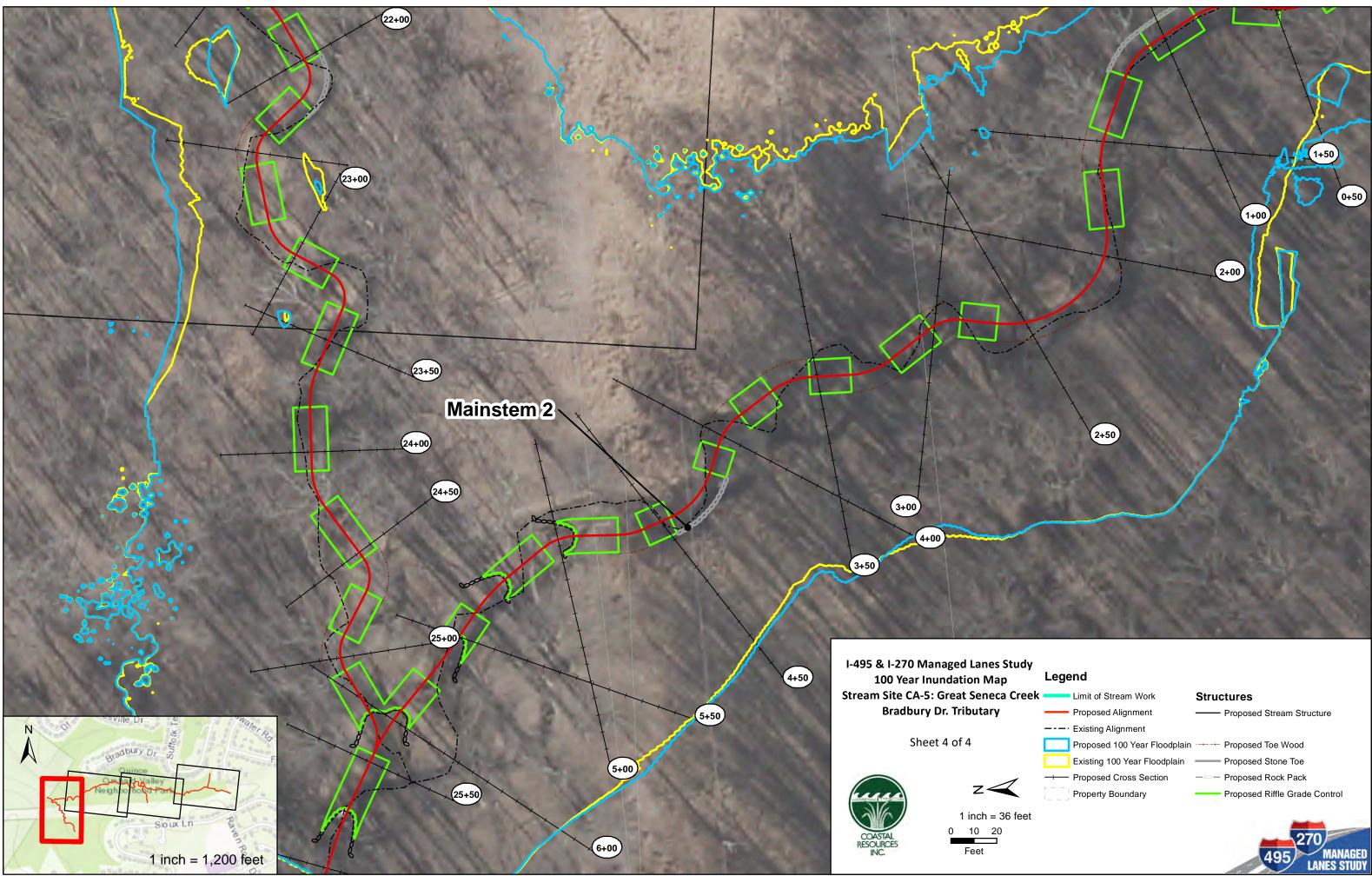
0 - 4.49		
4.5 - 6.9		
7 - 11		
11.1 - 15		
15.1 - 18		

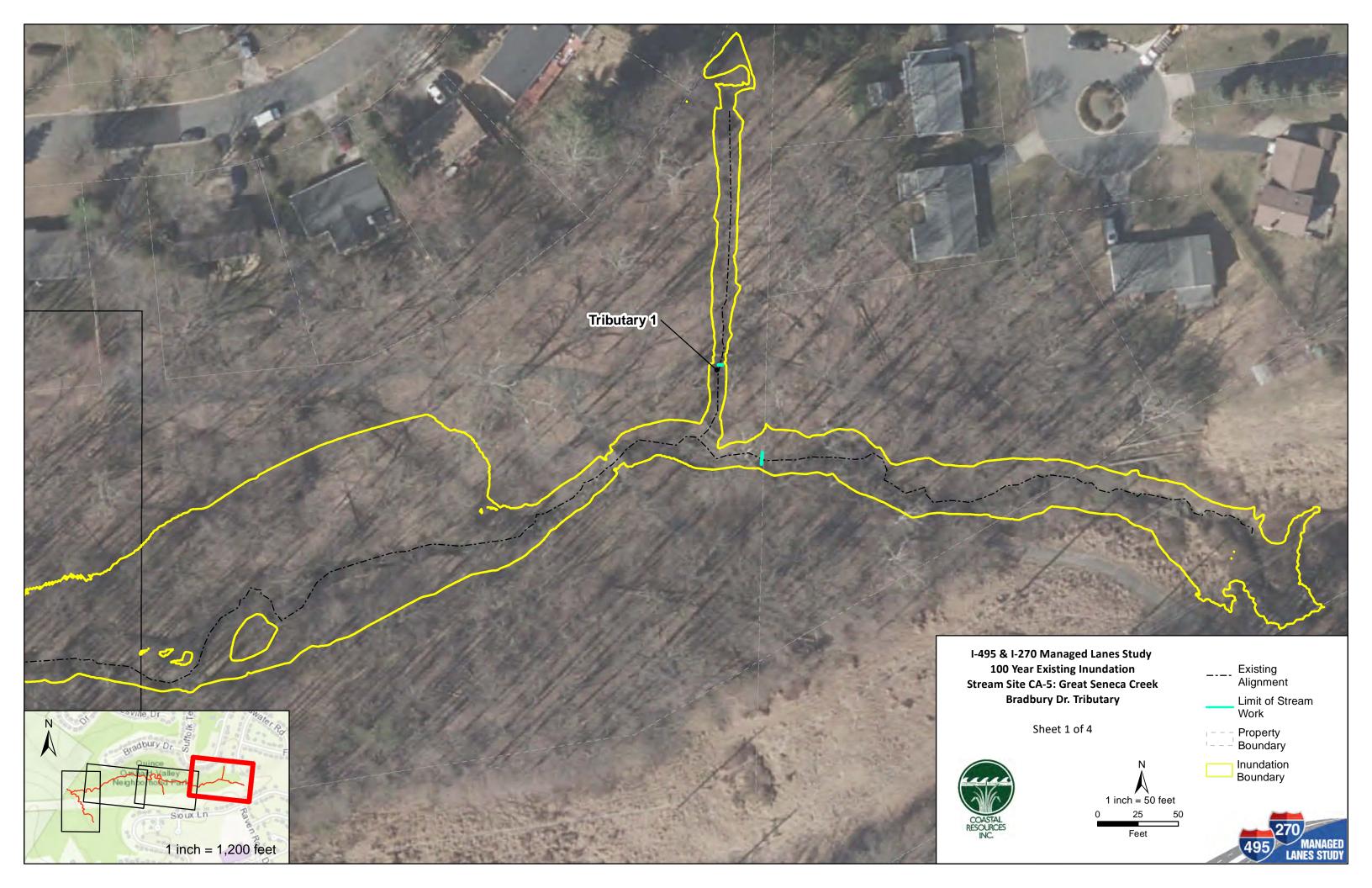

nes Study ocity neca Creek	Limit of Stream Work	10 Year Proposed Velocity (ft/s)
ary	Proposed Alignment Proposed Cross Section	0 - 4.49
	Structures Proposed Stream Structure	4.5 - 6.9 7 - 11
N A	Proposed Toe Wood Proposed Stone Toe	11.1 - 15 15.1 - 18
= 50 feet 25 50 eet	Proposed Rock Pack Proposed Riffle Grade Control	270 495 MANAGED LANES STUDY

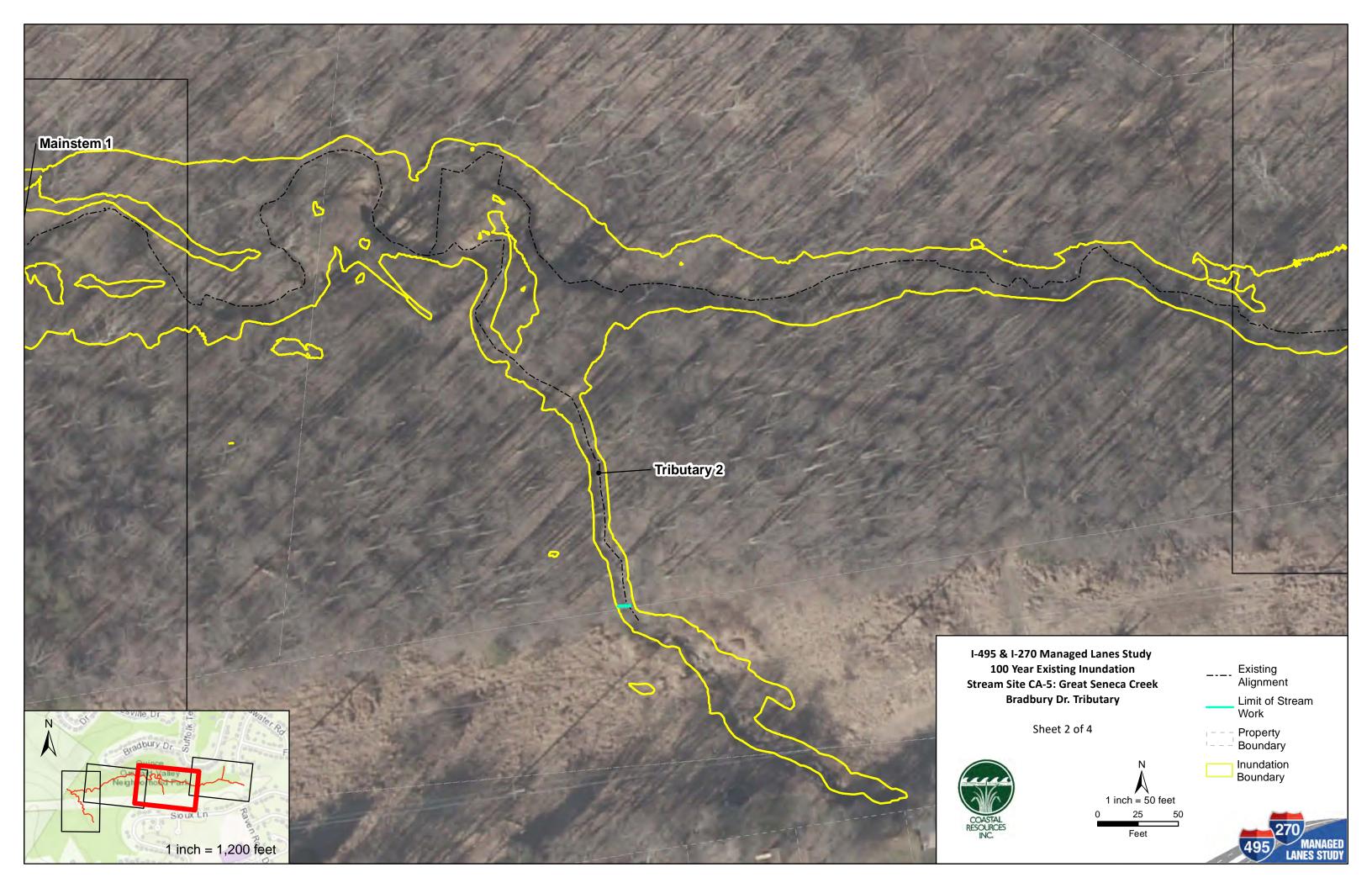

Lanes Study		
/elocity		
Seneca Creek		
utary		

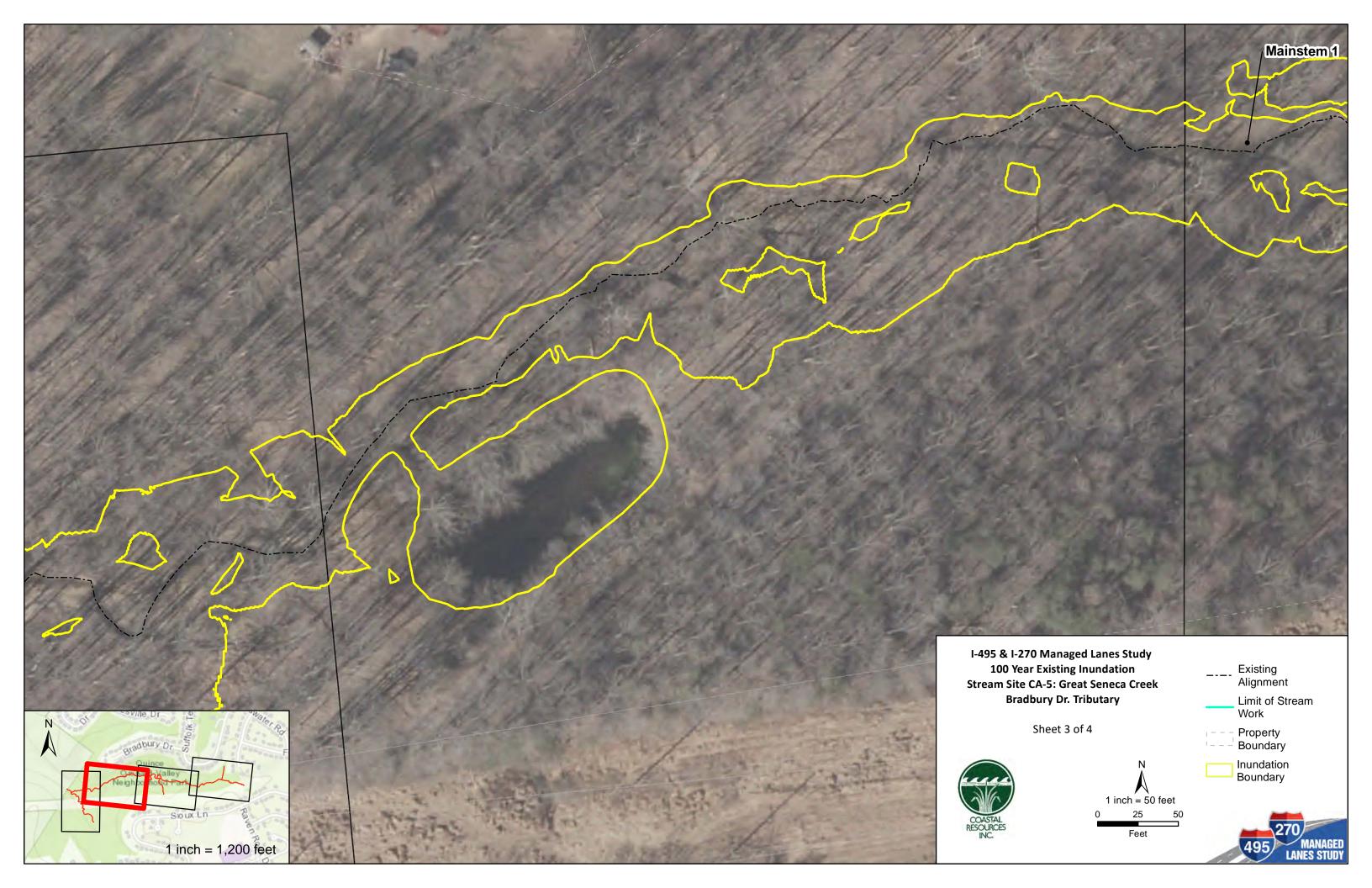

	Limit of Stream Work
	Proposed Alignment
	Proposed Cross Section
Strue	ctures
	Proposed Stream Structu
	Proposed Toe Wood
	Proposed Stone Toe
	Proposed Rock Pack
	Proposed Piffle Grade Co

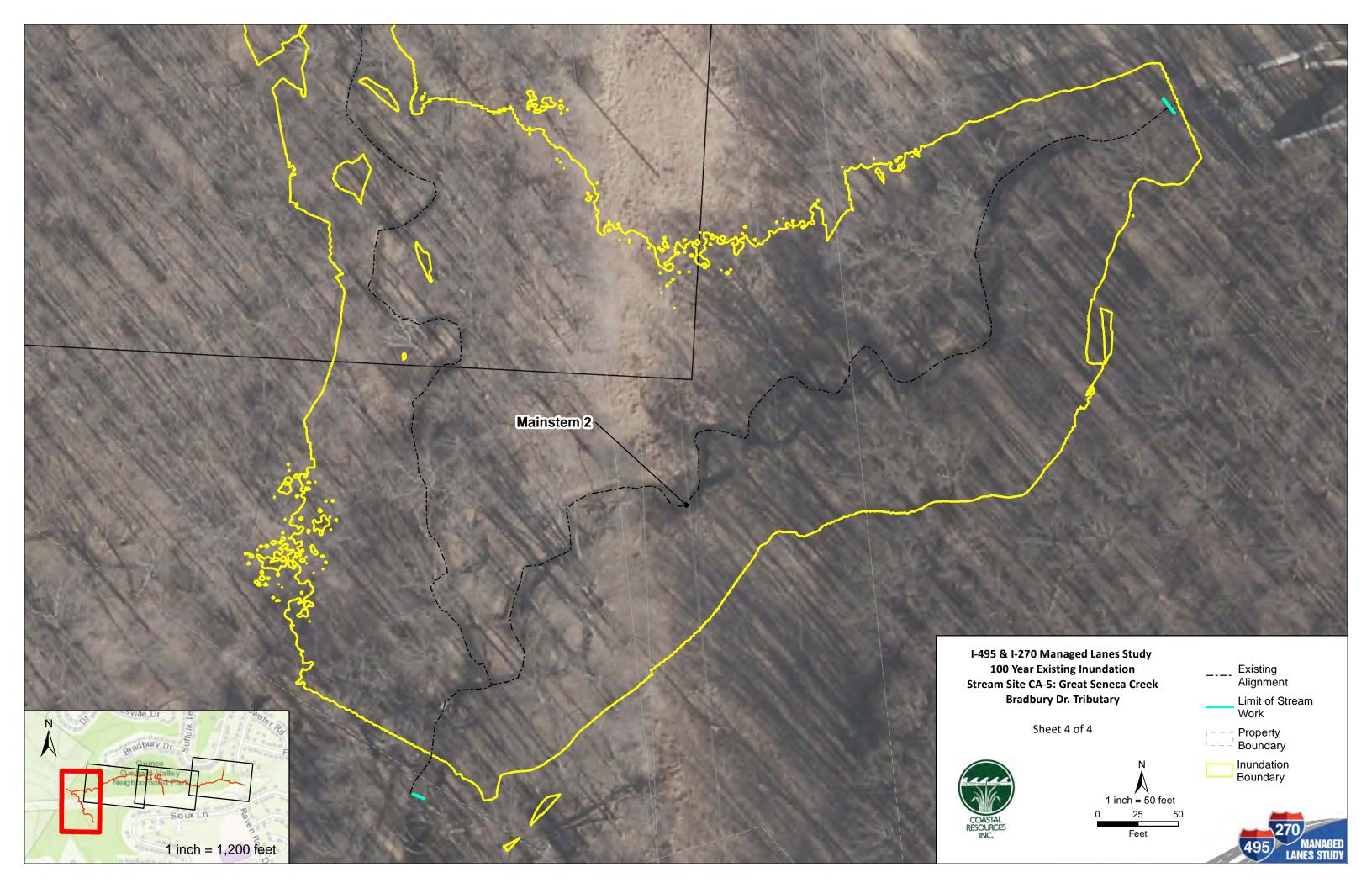

	0 - 4.49	
4.5 - 6.9		
	7 - 11	
	11.1 - 15	
	15.1 - 18	

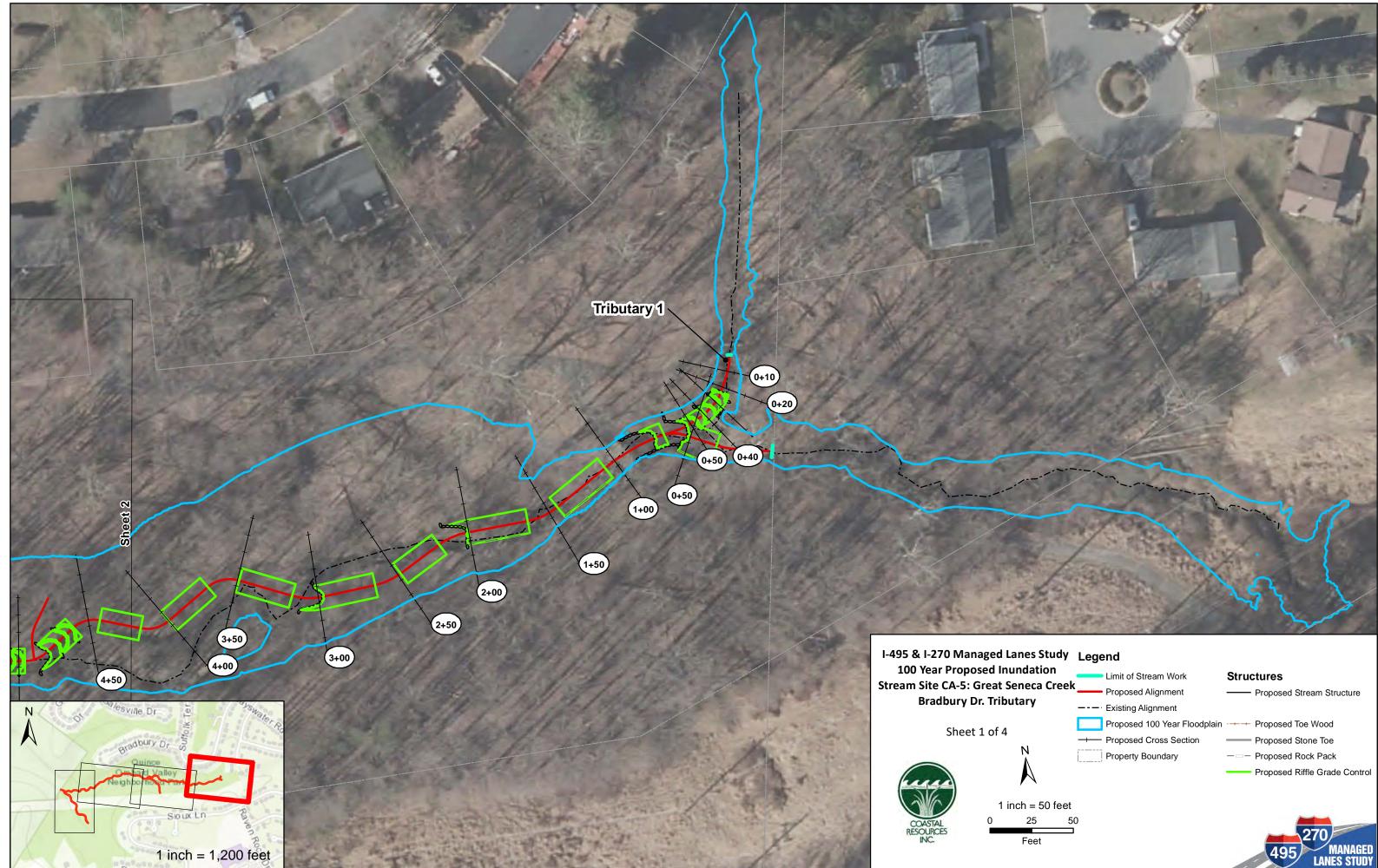


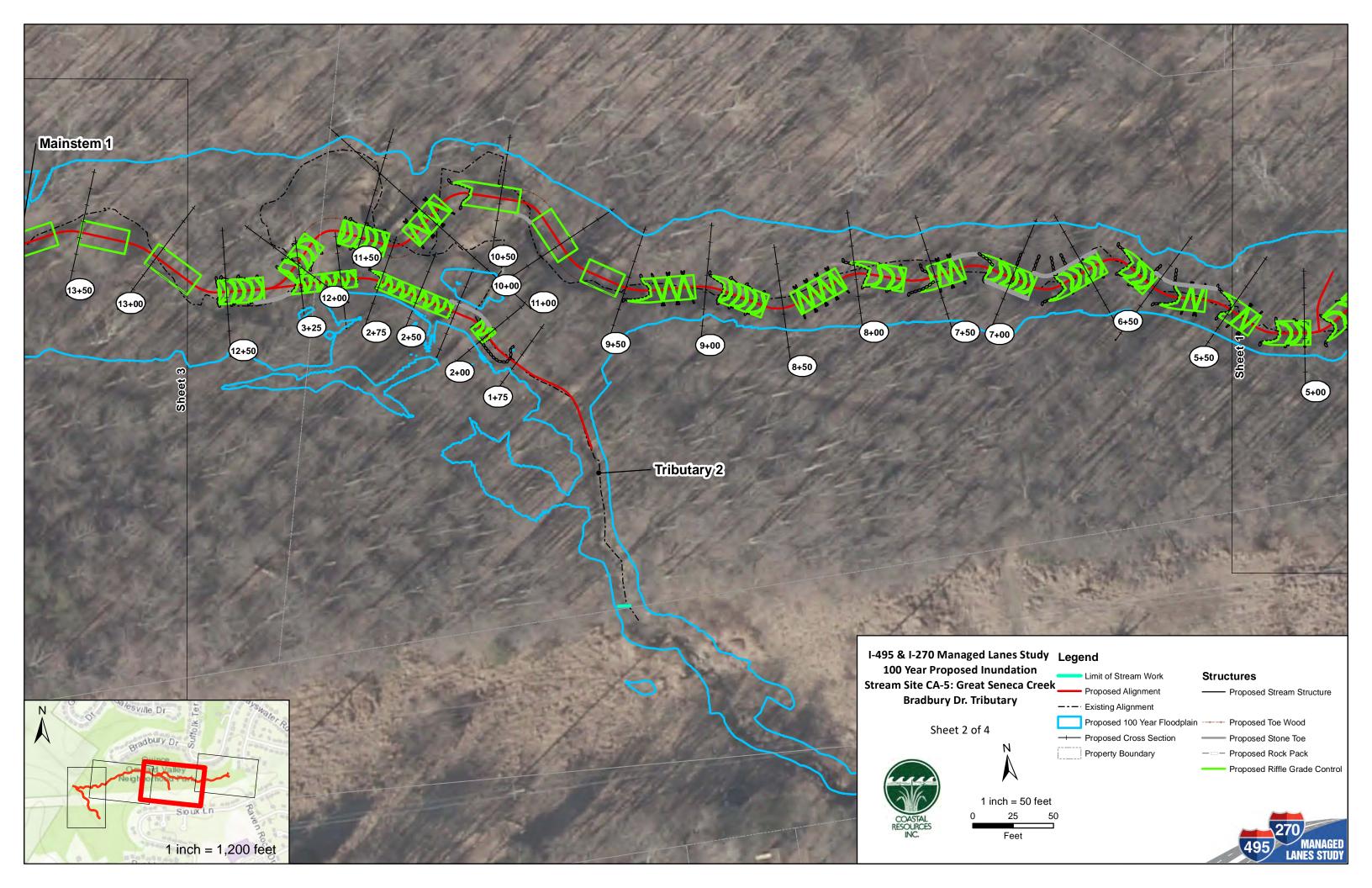

s Study	Legend	Proposed
city	Limit of Stream Work	Velocity
ca Creek	Proposed Alignment	(ft/s)
У	Proposed Cross Section	0 - 4.49
	Structures	4.5 - 6.9
	Proposed Stream Structure	7 - 11
	Proposed Toe Wood	11.1 - 15
	Proposed Stone Toe	15.1 - 18
4	Proposed Rock Pack	
50 feet 50	Proposed Riffle Grade Control	270
t		495 MANAGED LANES STUDY

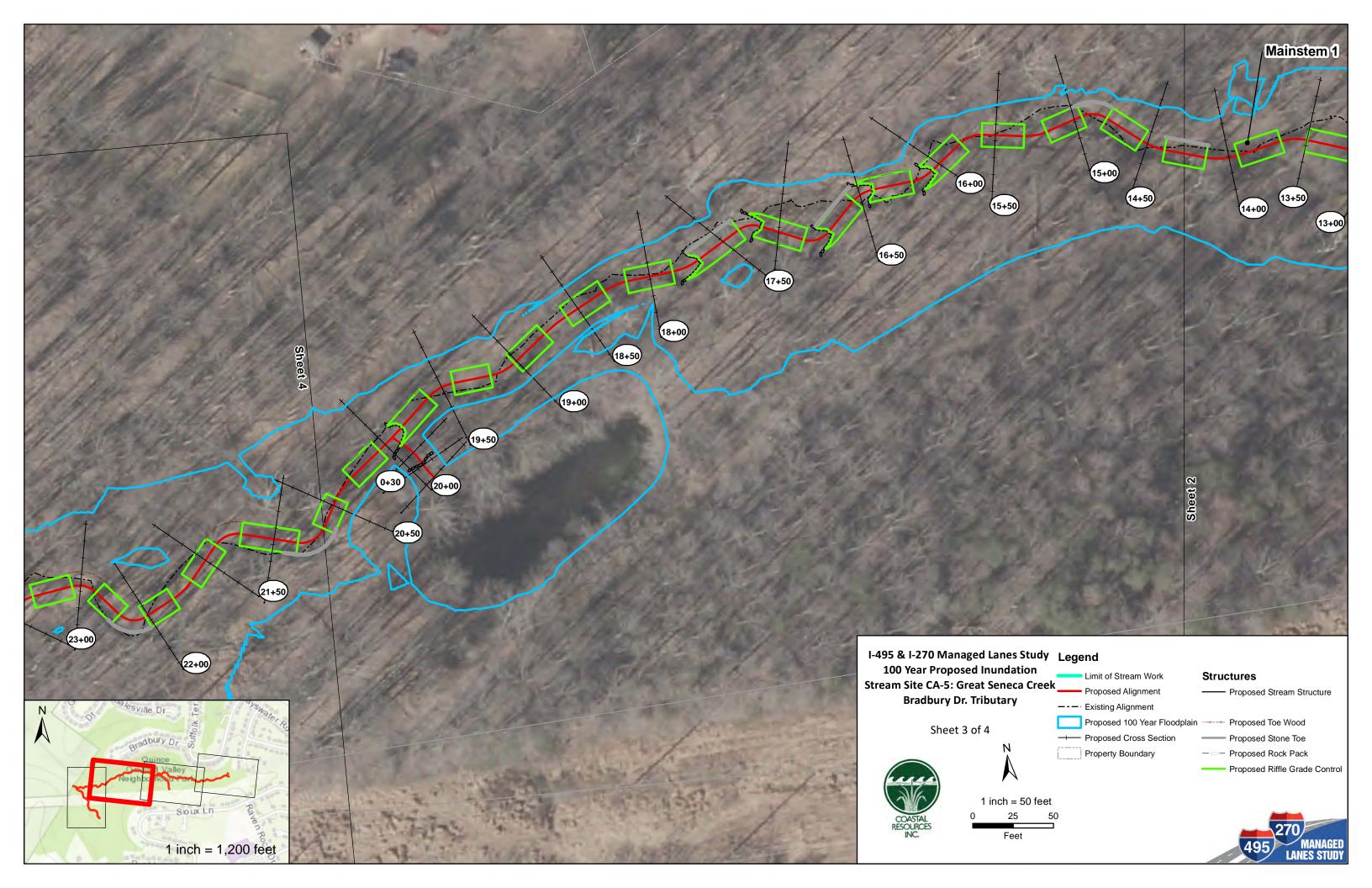


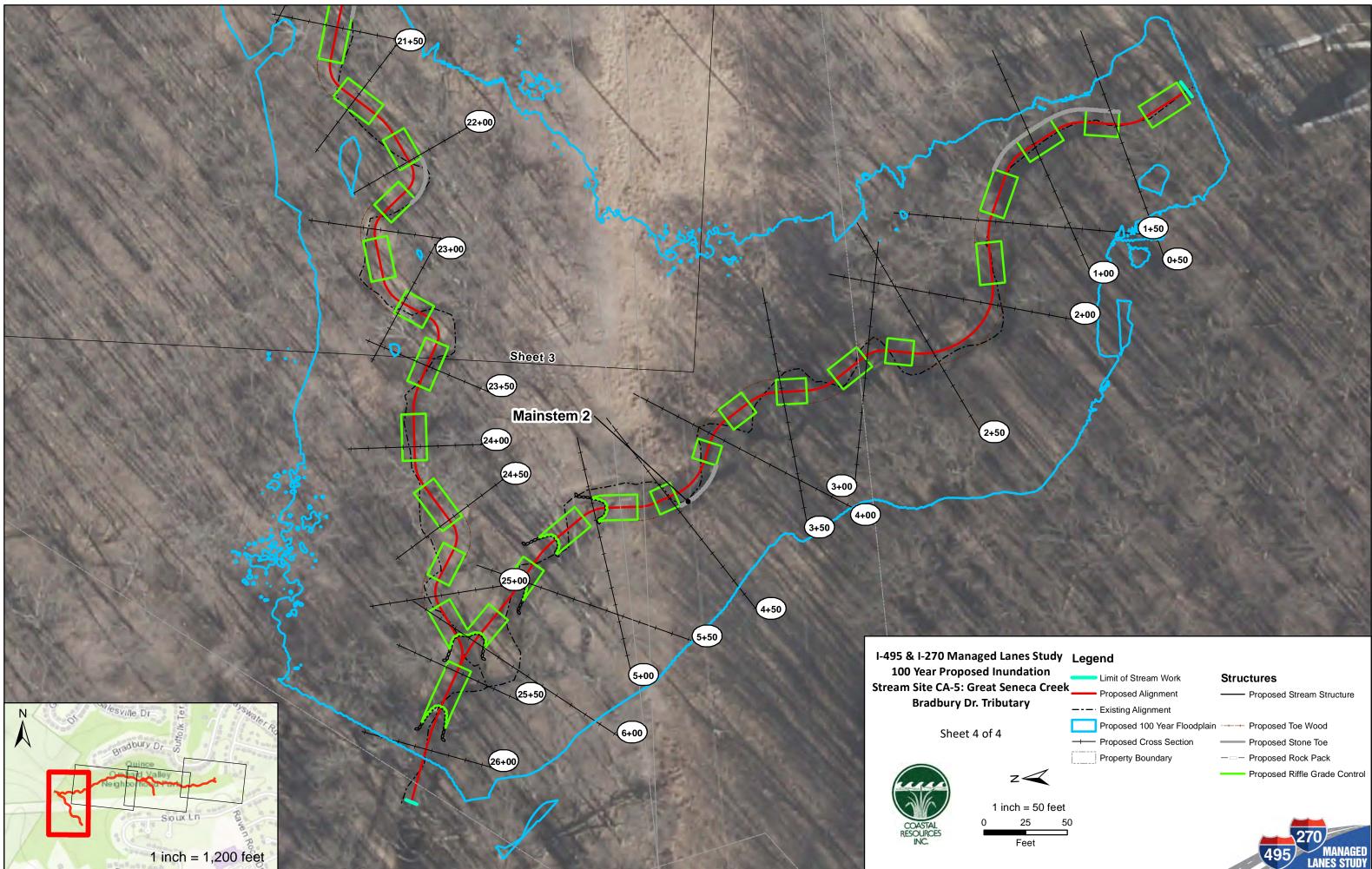


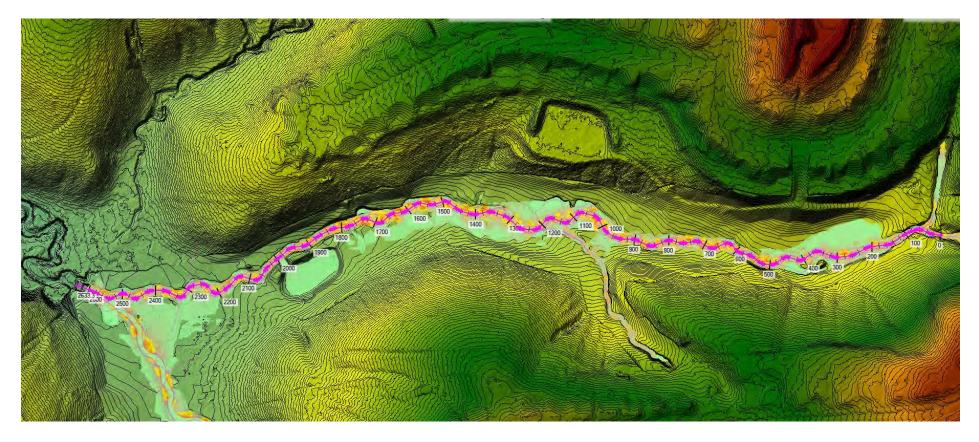


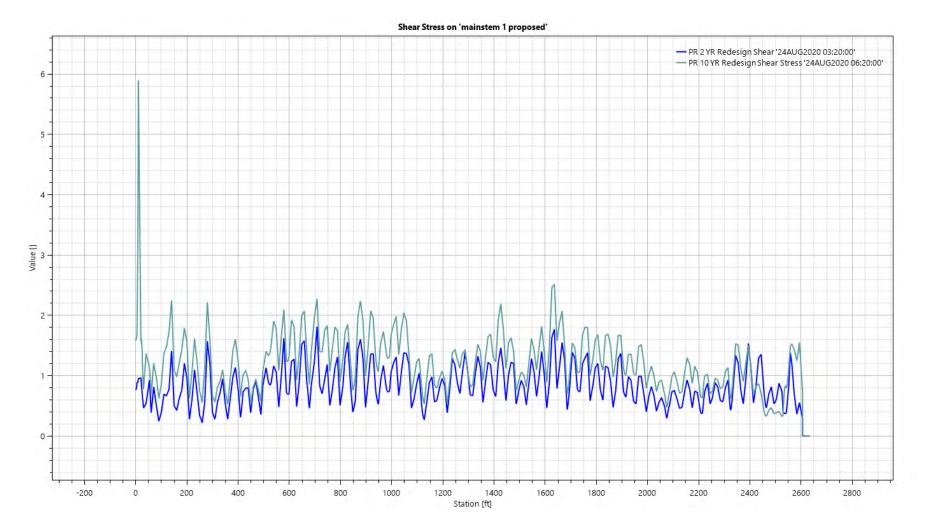


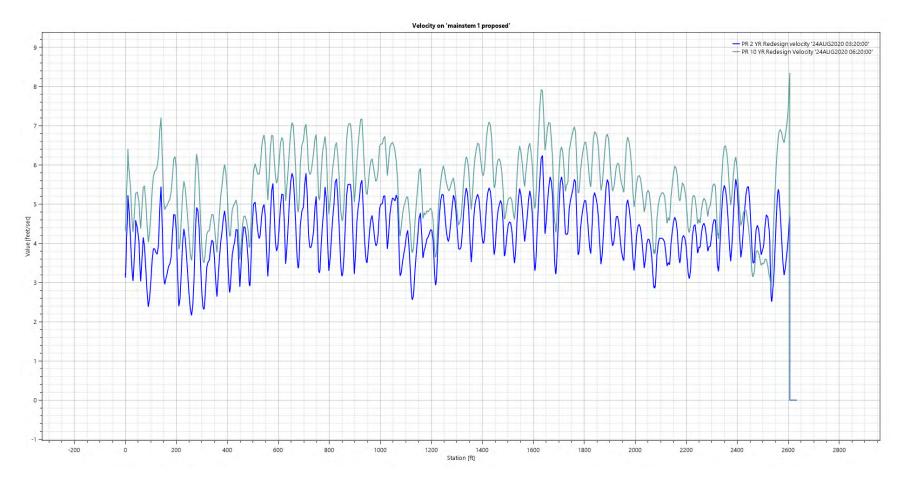


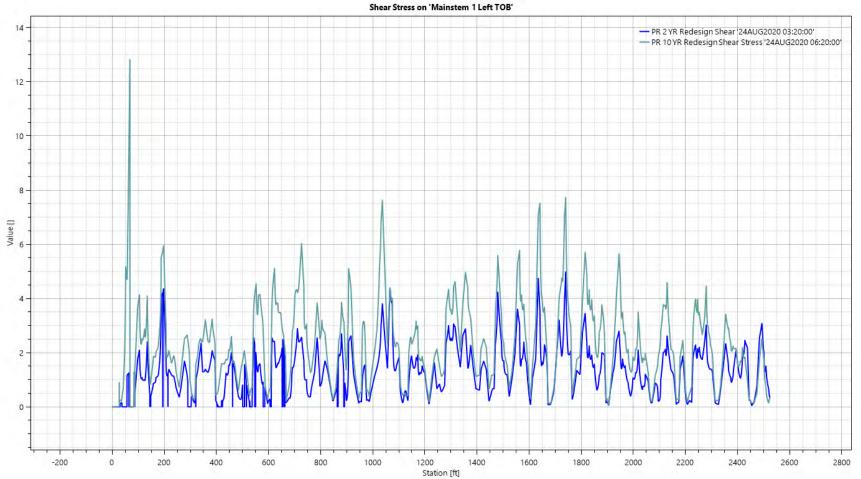


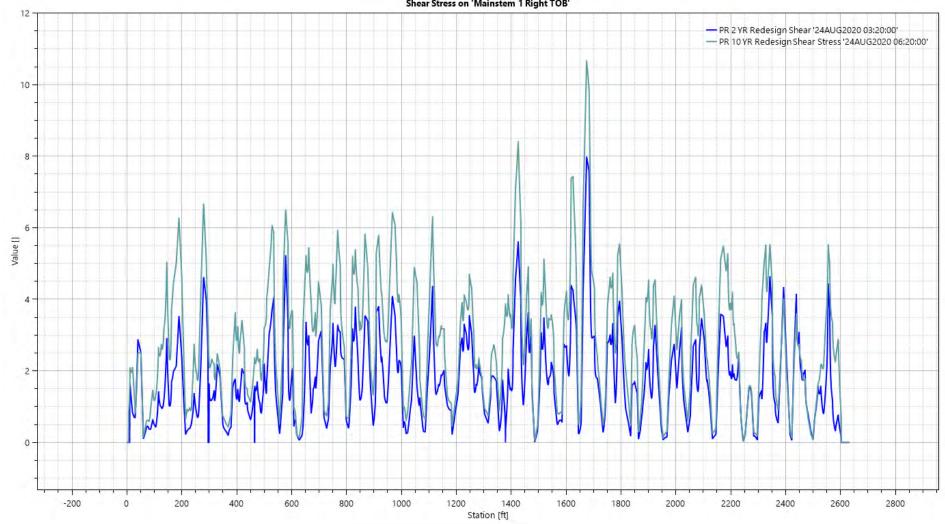


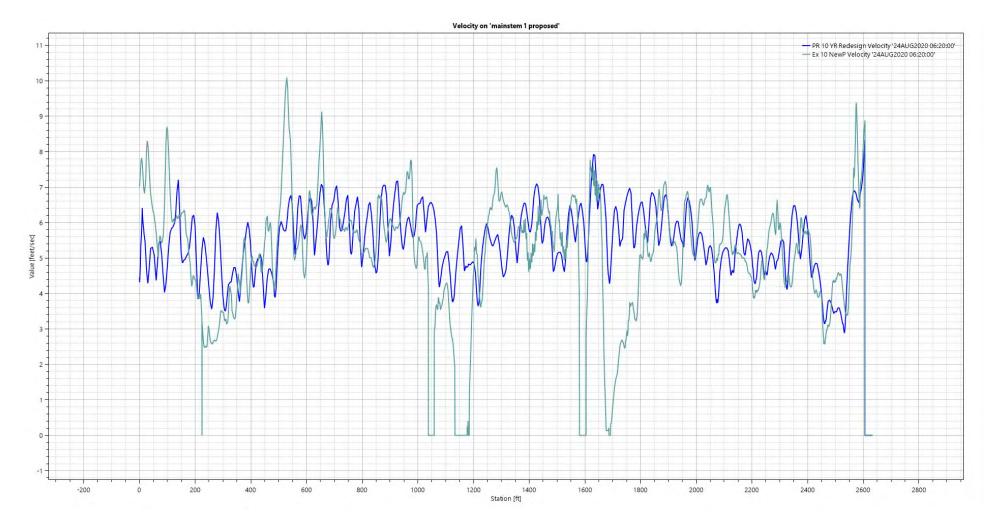

	Legend	
dation	Limit of Stream Work	Structures
ieca Creek	Proposed Alignment	Proposed Stream Structure
ary	· Existing Alignment	
	Proposed 100 Year Floodplain	Proposed Toe Wood
	Proposed Cross Section	Proposed Stone Toe
N A	Property Boundary	Proposed Rock Pack
		Proposed Riffle Grade Control
h = 50 feet		
25 50)	
Feet		270
1 661		495 MANAGED
		LANES STUDY

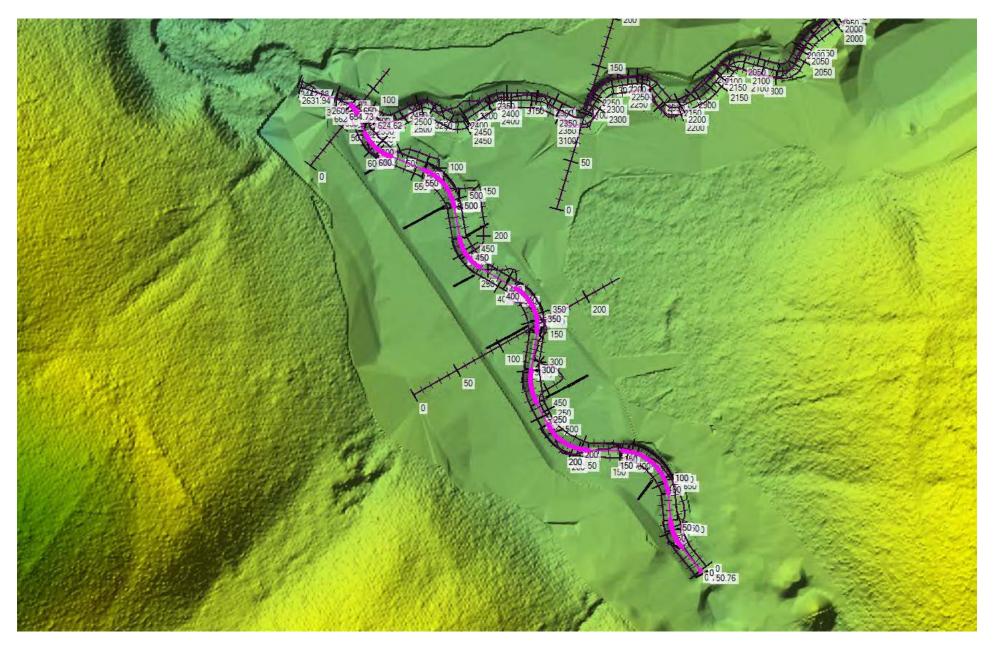


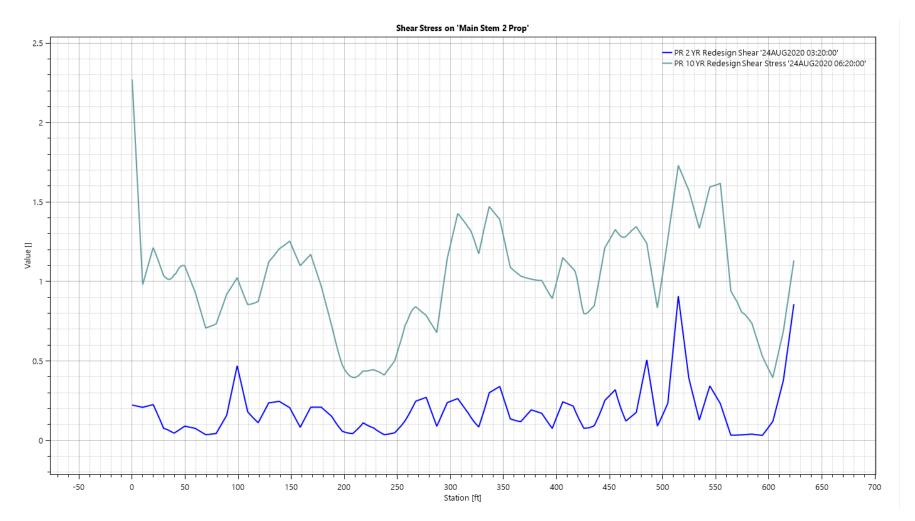


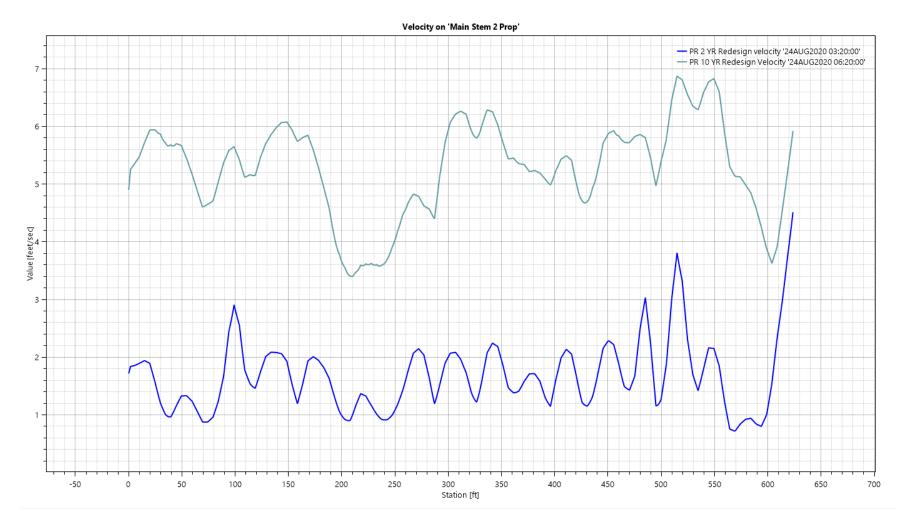


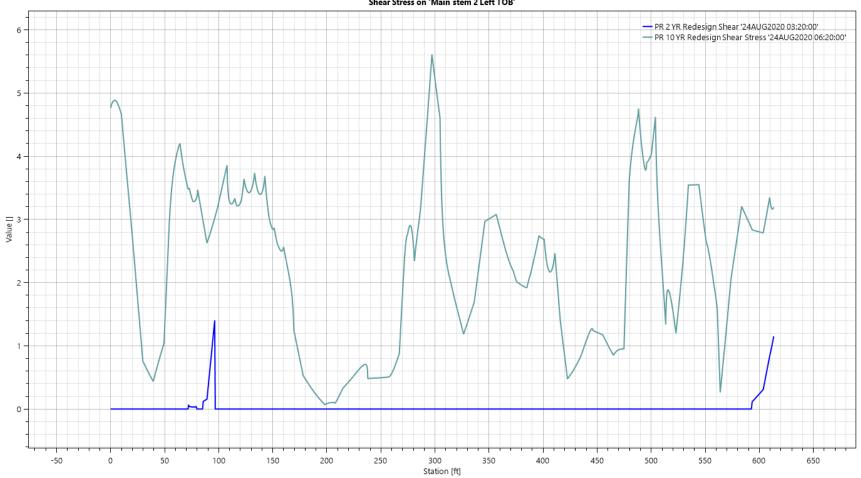

	Legend	
dation	Limit of Stream Work	Structures
ieca Creek	Proposed Alignment	Proposed Stream Structure
ary	Existing Alignment	
	Proposed 100 Year Floodplain	Proposed Toe Wood
	Proposed Cross Section	Proposed Stone Toe
	Property Boundary	Proposed Rock Pack
\leq		Proposed Riffle Grade Control
h = 50 feet		
25 50)	
Feet		270
		495 MANAGED LANES STUDY

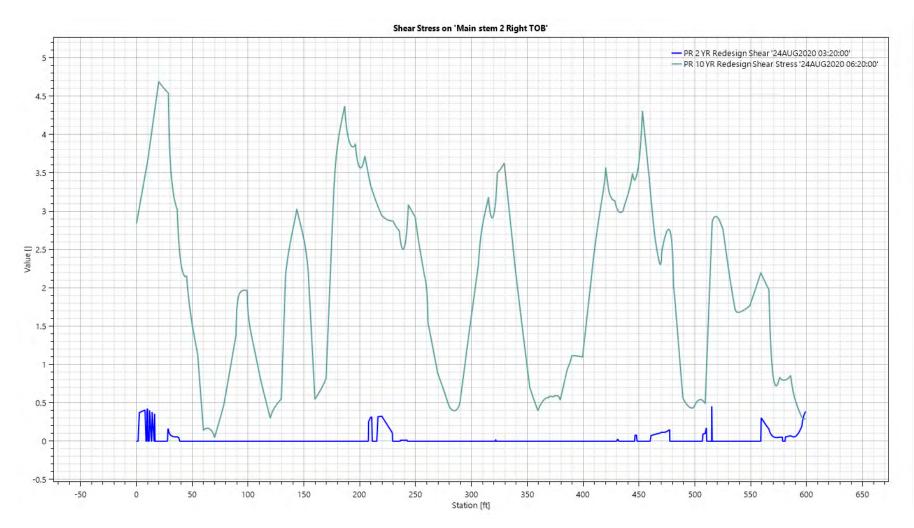


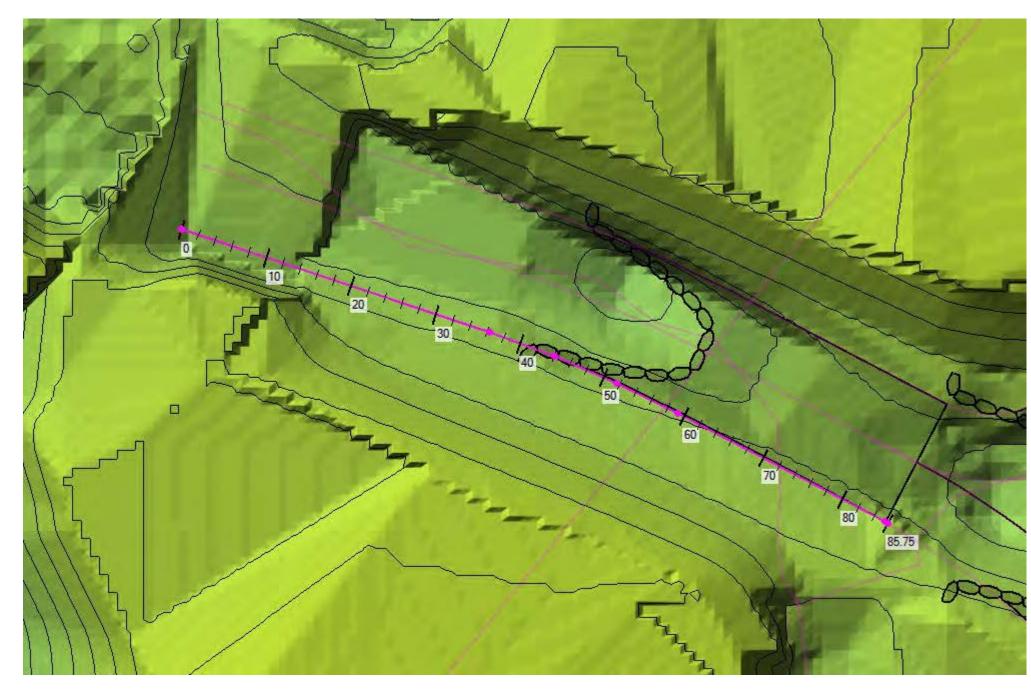


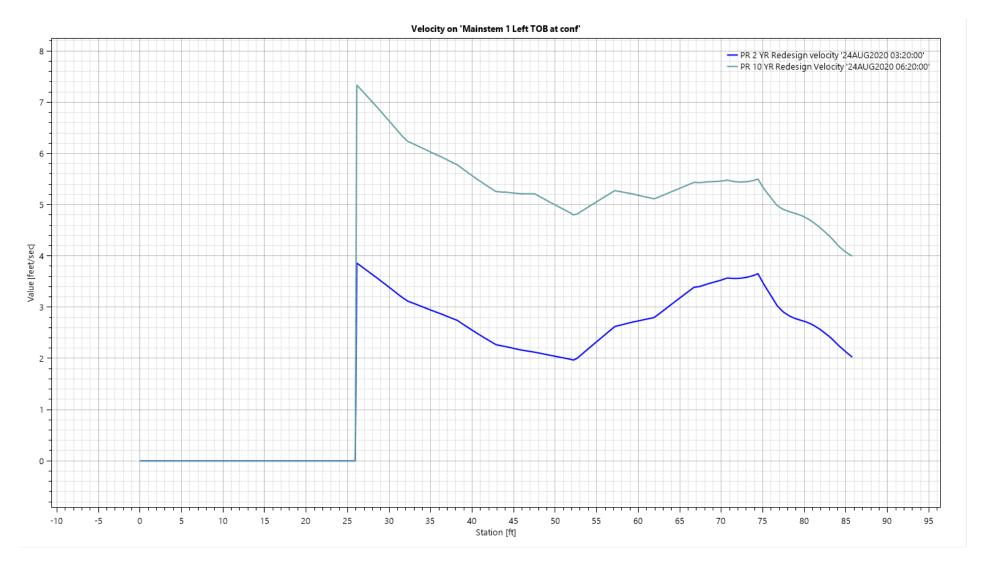





Shear Stress on 'Mainstem 1 Right TOB'







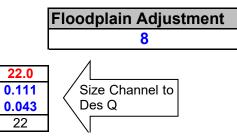
Shear Stress on 'Main stem 2 Left TOB'

APPENDIX E. DESIGN DOCUMENTS

	Summary				Physical P	arameters				Rosgen	Classification	
Droject Nome	405/070 MI	C Mitigation		Existing Con	dition (EC)		Proposed		W/D	18	W/E) 18
Project Name:	495/270 ML	5 Milligation	W _{bkf} :	14.60 f	t.	W _{bkf} :	14.70 ft.		E _R	2	E	a 1.7
Prepared By:	Sarah	Norton	d _{bkf} :	0.80 f	t.	d _{bkf} :	0.82 ft.		Туре	В	Туре	e B
Stream:	CA-5 Trib	outary to	Area _{bkf} :	11.68 s	sq.ft.	Area bkf :	12.00 sc	.ft.		Ge	eometry	
			d _{max} :	1.30 f	t.	d _{max} :	1.10 ft.		Williams Exist	ing Condi	tion Planform (f	it.)
			slope	0.026 f	t./ft.	slope	0.0209 ft.,	/ft.		min (ft.)	mean (ft.)	max (ft.)
Project No:	2017	7-29	Wp	15.60 f	t.	Wp	15.02 ft.		L _m	65	104	165
Date:	3/5/2	2020	K	1.25		K	1.06		R _c	12	20	36
Reach:	Main Trib	Reach 1	Fpw	22 f	t.	Fpw	25 ft.		W _{blt}	40	62	97
									Williams Prop	osed Plan	form (ft.)	
Drainage Area:		sq.mi.	Andrews d _{bkf}	Degra	dina	Andrews d _{bkf}	Stable	_		min	mean (ft.)	max (ft.)
Valley Type:	U-AL	FD	Stability	Degra	ang	Stability	Oldon	•	L _m	80	132	218
Hydro. Region:	Pied	mont	Andrews S _{bkf}	Dogra	dina	Andrews S _{bkf}	Stable	`	R _c	17	26	41
			Stability	Degra	ung	Stability	Stable	5		44	75	131
			Hydrology				Existing I	Riffle	Design Planfo	rm (measu	ured from prop	alignment)
			· · ·				D _{50 (mm)}	16		min	mean (ft.)	max (ft.)
Regional Curve use	ed for Design						D _{84 (mm)}	55	L _m	98.3	125.0	166.7
Piedmont (Th	homas)	Existing C	ondition:		Proposed:		D _{max (mm)}	256	R _c	42.0	125.0	71.0
Discharge:	56.3	u/u*	Mannings n	u/u*	Mannings n		Design R	iffle	W _{blt}	36.0	49.7	68.4
Velocity:		58.3	59.8	57.0	59.0	cfs	D _{50 (mm)}	16	Near-Bank Str	ess (Meth	od 2)	
Area _{bkf} :		5.0	5.1	4.8	4.9	fps	D _{84 (mm)}	55	R _c /W _{BKF}	2.86	8.51	4.83
Recurrence (yr):	1.25	XS Area (sqft):	11.7 XS	6 Area (sqft):	12.0	sq.ft.	D _{max (mm)}	256		Low	Very Low	Very Low

	Proposed Ent	rainment						
Summary 495/270 N	LS Mitigation Rea	ch: Main Trib Reach 1	Date:	3/5/2020				
	Enter Field	Data						1, D ₅₀ /D [*] ₅₀
16 D ₅₀ - Riffle	bed material (mm)							2, D _{max} /D ₅₀
1 D [^] ₅₀ - Bar	Sample (mm)	Conversion to ft						3, Dimensional τ
0.43 D _{max} - Larg	est particle from bar sample (ft)	130.00 mm	304.8	mm/ft				
0.02089154 S - Propos	ed bankfull water surface slope							
0.82 d - Propos	ed bankfull mean depth (ft)							d _r - Required bankfull mean depth (ft)
1.65 γ _s - Subme	rged specific weight of sediment							
62.4 γ								S _r - Required bankfull water surface slope (ft) (S _r = $(\tau^*_{ci}\gamma_s D_i)/d$)
	Appropriate Equation and Calculate		ar Stress					
D ₅₀ /D [^] ₅₀ -	Range 3 - 7 use Equation 1 (τ^*_{ci} = 0.083	34(D ₅₀ /D [*] ₅₀) ^{-0.872})						
τ* _{ci}	Not in range? Select equa	ation 3						
If Equation 1 or 2, Use	These τ* _{ci} Equation 3, Di	mensional t Dimensional t	sional Shear	1.04	Using Equ	uation 1 (D_{50}/D	^ ₅₀) or Equati	on 2 (D_{max}/D_{50}):
D _{max} /D ₅₀ -	Range 1.3 - 4.0 use Equation 2 (τ^*_{ci} = 0	0.0384(D _{max} /D ₅₀) ^{-0.887})				d =	$\frac{\tau^* \gamma_s D_{max}}{S}$	
τ* _{ci}								
Calculate B	ankfull Mean Depth Required for Ent	rainment of Largest Particle	in Bar Sample			<i>S</i> =	$\frac{\tau^* \gamma_s D_{max}}{d}$	
	d bankfull mean depth (ft)					/-		
Stable Proposed	Condition				Usi	ng Equation 3 (I	Dimensional Si	iear Stress):
Coloulate BK	Water Surface Slope Required for E	ntrainment of Largest Partie	al in Par Samn			($d = \frac{\tau}{\gamma S}$	
	ed bankfull water surface slope (ft)	intrainment of Largest Partic	ai in dar Samp	le		1	$S = \frac{\tau}{\gamma d}$	
Stable Proposed							γa	
	Sediment Transpo	ort Validation			Design C	Condition		
1.04 τ _c - Bankfu	ll Shear Stress(lb/ft²) (τ _c = γRS)	R* = 0.80	S _{Proposed} = 0.	0209	A _{BKF} =	12.0	ft ²	
Shields Colorado			•		W _{BKF} =	14.70	ft	
04 457	Movable particle size (mm) at bankfu	ull shear stress (Figure 3-11, R	liver Stability Fie	ld Guide p	D84 (riffle) =	55	mm	
81 157	3-102)		-		d _{mBKF}	0.82	ft	
1.63 0.81	Predicted shear stress required to in	tiate movement of D _i (mm) (Fi	igure 3-11, Rive		WP	15.0	ft	
1.03 0.01	Field Guide p 3-102)				D84 _{ft}	0.18	ft	
1.25 0.62	Predicted mean depth required to in	tiate movement of measured [Omax (mm)		R R/D84	0.80		
0.0321 0.0159	Predicted mean slope required to ini	tiate movement of measured D	Omax (mm)					
Required inputs ar	e in yellow							

	Summary	nary Physical Parameters						Rosgen	Classification	
Droject Nome	495/270 MLS Mitigation		Existing Condition (EC)	Proposed		W/D	10	W/E) 16
Project Name:	495/270 MLS Millgallon	W _{bkf} :	11.30 ft.	W _{bkf} :	14.97 ft.		E _R	2	E,	5.3
Prepared By:	Jon Stewart	d _{bkf} :	1.10 ft.	d _{bkf} :	0.94 ft.		Туре	FALSE	Туре	e C
Stream:	Mainstem 2	Area _{bkf} :	12.43 sq.ft.	Area bkf :	14.01 sc	Į.ft.		Ge	ometry	
		d _{max} :	1.60 ft.	d _{max} :	1.00 ft.		Williams Exis	ting Condit	ion Planform (ft.)
		slope	0.097 ft./ft.	slope	0.0120 ft.	/ft.		min (ft.)	mean (ft.)	max (ft.)
Project No:	2017-29	Wp	13.50 ft.	Wp	15.43 ft.		L _m	68	108	172
Date:	11/1/2021	К	1.24	K	1.02		R _c	12	21	37
Reach:	Mainstem 2	Fpw	22.3 ft.	Fpw	80 ft.		W _{blt}	41	65	101
							Williams Prop	osed Plant	form (ft.)	
Drainage Area: Valley Type:	0.43 sq.mi. U-AL-FD	Andrews d _{bkf} Stability	Degrading	Andrews d _{bkf} Stability	Stable	e	L _m	min 74	mean (ft.) 117	max (ft.) 186
Hydro. Region:	Piedmont	Andrews S _{bkf}	Degrading	Andrews S _{bkf}	Stabl	•	R _c	13	23	40
		Stability	Degrading	Stability	Stable	e		45	70	109
		Hydrology			Existing I	Riffle	Design Planfo	orm (measu	red from prop	alignment)
					D _{50 (mm)}	16		min	mean (ft.)	max (ft.)
Regional Curve use	ed for Design				D _{84 (mm)}	55	L _m	98.3	125.0	166.7
Piedmont (Th	nomas) Existi	ng Condition:	Prop	osed:	D _{max (mm)}	256	R _c	42.0	125.0	71.0
Discharge:	85.8 u/u*	Mannings n	u/u* Mann	ings n	Design R	iffle	W _{blt}	36.0	49.7	68.4
Velocity:	14	3.6 151.7	32.2	35.3 cfs	D _{50 (mm)}	100	Near-Bank St	ress (Metho	od 2)	
Area _{bkf} :		1.6 12.2	2.3	2.5 fps	D _{84 (mm)}	180	R _c /W _{BKF}	2.81	8.35	4.74
Recurrence (yr):	1.25 XS Area (se	ft): 12.4)	(S Area (sqft):	14.0 sq.ft.	D _{max (mm)}	256		Low	Very Low	Very Low

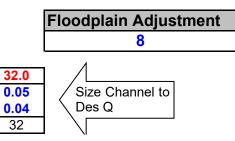

Trib 1 RIFFLE X-Section		
Width/Depth	28.0	
*Max Depth Ratio	1.1	
Width	10.2	
Depth	0.37	
Bankfull Area	3.731	
Riffle Side Slope	2.5	:1
% Low Flow Channel	0%	
Low Flow Side Slopes	3	:1
Max depth	0.40	
D _{trymain}	0.4	
Total Area	3.7	sqft

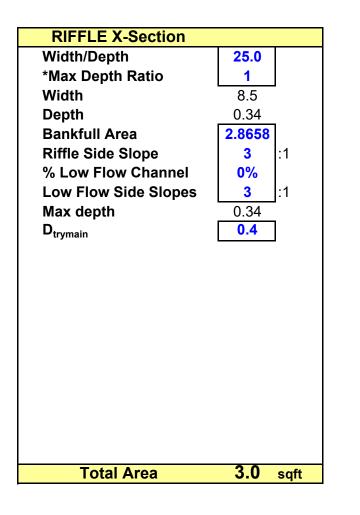
Trib 1 POOL X-Section					
**Depth Ratio	3.3				
Pool Max Depth	1.2				
Point Bar Slopes	5.0	:1			
***Width Ratio	1.1				
Width of Pool	11.2				
Point Bar Ratio	0.65				
OPTIONAL POOL ADJUSTMENT					
Area of Pool	8.4				
3rd Slope Pool	0	ft			
4thSlope Pool	0	ft			
5th Meander Bank pt	0	ft			
2.24					
Press to Calculate Area					

Verify Calculations

OKAY - The calculation of flow channel depth is okay. OKAY - The calculation involving Lower Bankful Area, Steepen Riffle..., and depth ration is verified.

*equals Dmax/Dbkf **equals Dpool/Dbkf *** equals Wpool/Wbkf Calc Q Slope Mannings' n Des Q

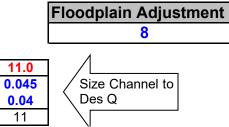

Trib 2 RIFFLE X-Section		
Width/Depth	22.0	
*Max Depth Ratio	1.1	
Width	10.3	
Depth	0.47	
Bankfull Area	4.8	
Riffle Side Slope	2.5	:1
% Low Flow Channel	0%	
Low Flow Side Slopes	3	:1
Max depth	0.51	
D _{trymain}	0.5	
Total Area	4.8	sqft

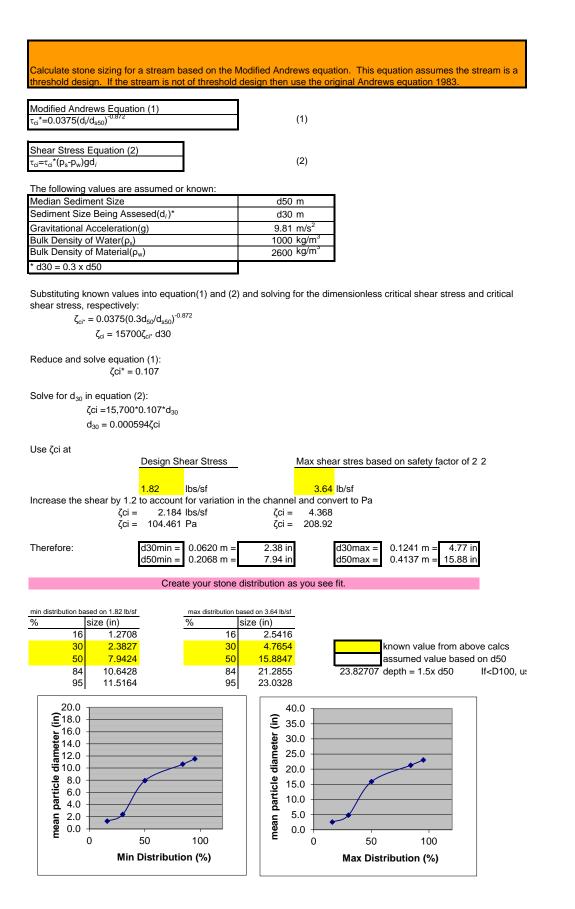

Trib 2 POOL X-Section					
**Depth Ratio	3.3				
Pool Max Depth	1.5				
Point Bar Slopes	4.0	:1			
***Width Ratio	1.1				
Width of Pool	11.3				
Point Bar Ratio	1				
OPTIONAL POOL ADJ	USTMENT				
Area of Pool	11.5				
3rd Slope Pool	0	ft			
4thSlope Pool	0	ft			
5th Meander Bank pt	0	ft			
2.40					
Press to Calculate Area					

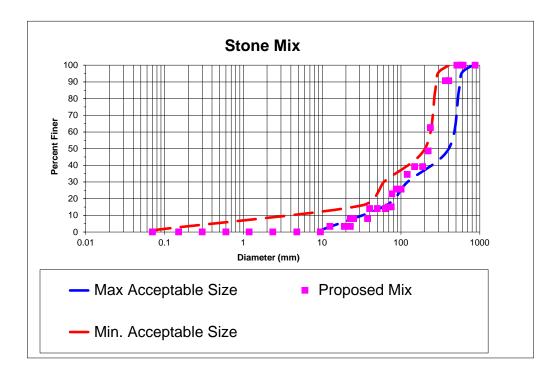
Verify Calculations

OKAY - The calculation of flow channel depth is okay. OKAY - The calculation involving Lower Bankful Area, Steepen Riffle..., and depth ration is verified.

*equals Dmax/Dbkf **equals Dpool/Dbkf *** equals Wpool/Wbkf Calc Q Slope Mannings' n Des Q




POOL X-Section					
**Depth Ratio	2.44				
Pool Max Depth	0.8				
Point Bar Slopes	1.5	:1			
***Width Ratio	1.0				
Width of Pool	8.5				
Point Bar Ratio	0				
OPTIONAL POOL ADJ	USTMENT				
Area of Pool	5.2				
3rd Slope Pool	0	ft			
4thSlope Pool	0	ft			
5th Meander Bank pt	0	ft			
	1.82				
Press to Calculate Area					


Verify Calculations

OKAY - The calculation of flow channel depth is okay. OKAY - The calculation involving Lower Bankful Area, Steepen Riffle..., and depth ration is verified.

*equals Dmax/Dbkf **equals Dpool/Dbkf *** equals Wpool/Wbkf Calc Q Slope Mannings' n Des Q

Proposed Mix				
Amount of				
	Stone Type			
20%	Natural Channel			
20%	Class 0			
60%	Class 1			