

Progressive Design-Build (PDB) IS 270 - Innovative Congestion Management Contract

Montgomery and Frederick Counties Contract No. M00695172 FAP No. N/A

January 19, 2017

Submitted by:

GONCRETE ENERAL, INC. in association with

Table of Contents

Section 1	Cover Letter	
Section 2	Mobility	1 – 20
	2.i. Proposed Improvements	1 – 16
	2.ii. Trip Predictability	16 – 18
	2.iii. Performance Life of Improvements	18 – 20
Section 3	Safety	21 – 30
	3.i. Number/Duration/Severity of Incidents & Incident Management	25 – 29
	3.ii. Innovative Technologies or Techniques	29
	3.iii. Mitigation for Non-Standard Designs	29 – 30
Section 4	Operability/Maintainability/Adaptability	31 – 40
	4.i. Maintenance, Operations, Personnel and Equipment Requirements	34 – 37
	4.ii. Compatibility and Integration	37 – 39
	4.iii. Maintenance, Operations Operability, Maintainability, and Adaptability of Innovative Technologies	39 – 40
Section 5	Well Managed Project	41 – 50
	5.i. Key Elements of the D-B Project Management Plan	41 – 45
	5.ii. Design Builder's Work Plan	45 – 48
	5.iii. Minimization of Impacts	48 – 49
	5.iv. Implementation Approach	49 – 50
	5.v. Watkins Mill Interchange	50
Section 6	Legal and Financial Information	51 – 51-28
	6.i. Design-Builder Organization	51
	6.i. Liability	51
	Memorandum of Understanding	51-1 – 51-8
	Liability Documentation	51-9 – 51-28

Table of Contents

Appendices

Appendix A – Addenda Letters and Responses to RFIs	A-1 – A-53		
Appendix B – CGI Team PTCs and SHA Responses	B-1 – B-57		
Appendix C – Detailed Concept Descriptions	C-1 – C-86		
Appendix D – Pavement Analysis Summary	D-1 – D-19		
Appendix E – Model Calibration Memorandum	E-1 – E-5		
Appendix F – Comprehensive Traffic Model Results	F-1 – F-20		
 1 – VISSIM Traffic Models – required by SHA 2 – Travel Time Tables 3 – Ramp Metering Queue Tables 4 – Throughput versus Demand Graphics 	F-1 F-2 – F-5 F-6 F-7 – F-20		
Appendix G – Concept Evaluation Tables	G-1 – G-147		
Appendix H – HSM Safety Analysis Summary			
Appendix I – ATM Supplemental Materials			
 1 – ATM White Paper 2 – ATM Operational Scenarios 	I-1 — I-6 I-7 — I-9		
Appendix J – Benefit-Cost Analysis			

Section 2 Mobility

Submitted by:

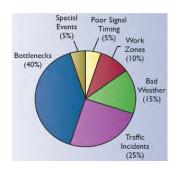
Mobility

2.1 PROPOSED IMPROVEMENT

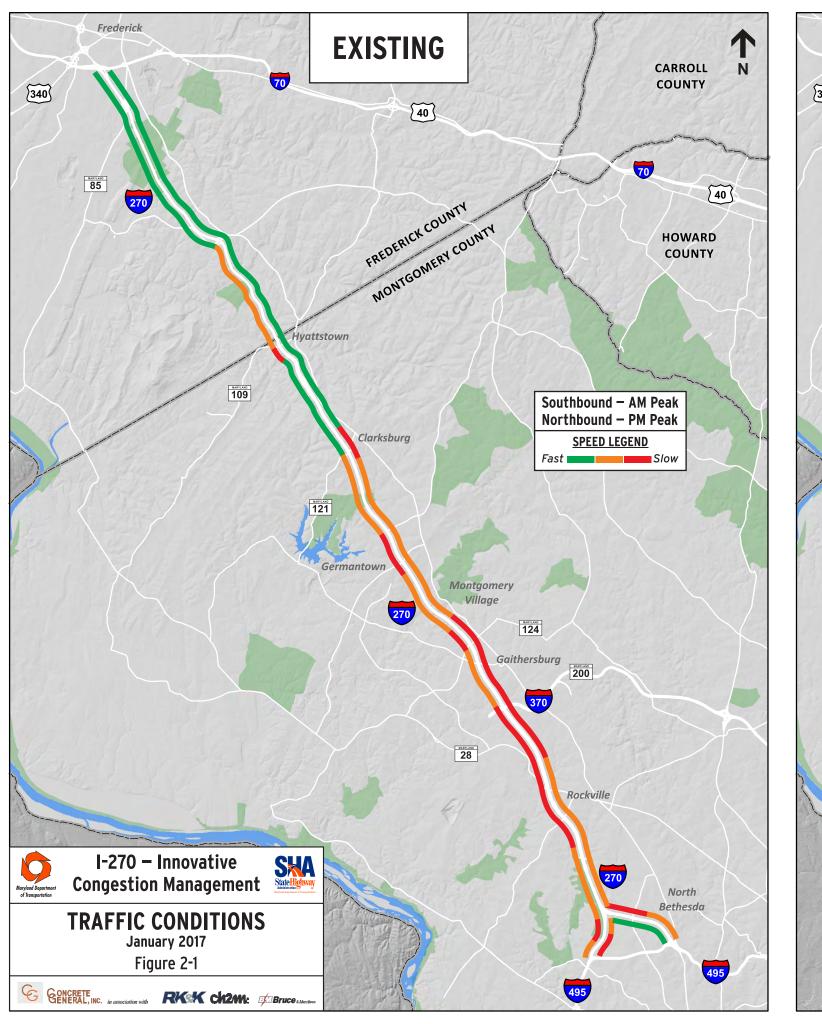
The CGI Team understands that travelers face significant mobility challenges along I-270, but our proposed best-value solution will address these challenges. Our approach will provide SHA with substantial corridor-wide traffic benefits by maximizing SHA's available \$100M project budget. We are proposing a two-pronged approach of roadway improvements and innovative technologies and techniques in order to maximize vehicular throughput, minimize vehicle travel times, and create a more predictable commuter trip along I-270. While the components address both recurring and non-recurring congestion, the roadway improvements focus on relieving today's recurring congestion, and the innovative technologies and

The CGI Team's Improvements will:

- Reduce SB peak travel time by 30 minutes; reduce delay 43%; increase speeds 23%
- Reduce NB peak delay 8%
- Increase SB vehicle throughout 3% during the AM and NB 1% during the PM
- Improve trip reliability by 9%
- Combined benefit/cost ratio is nearly 20:1


techniques focus on managing today's recurring and non-recurring congestion and extending the lifespan of the roadway improvements into the future.

- 14 roadway improvements will increase capacity and vehicle throughput and address safety deficiencies by strategically eliminating existing bottlenecks, the key element limiting vehicular throughput along the corridor, coupled with the impact of crashes and other incidents. Our approach is further based on a "right-sized", practical design approach focused on minimizing impacts to maximize the improvements that can be provided throughout the corridor.
- Innovative technologies and techniques, comprised of adaptive ramp metering, active traffic management (ATM), and virtual weigh stations, will reduce congestion by improving traffic flow and safety.


Implementing this approach will provide I-270 motorists with significant congestion relief and provides SHA with a high impact investment. Today's peak period travelers will save 30 minutes southbound during the AM peak traveling from I-70 to I-495, reducing their delay by 43%. Northbound travelers during the PM peak will see their delays reduced by 8%, with most of that savings achieved in the congested area between the Democracy Boulevard and I-370. Our approach addresses recurring congestion by reducing the severity and duration of peak periods, as well as non-recurring congestion by improving safety and providing demand management tools that can help to reduce incident impacts on travel times. As a result, travel time reliability will be improved throughout the corridor. The CGI program of improvements also would prove to be a very cost-effective approach, with a benefit/cost ratio of nearly 20:1.

I-270 Today

When discussing mobility and the associated congestion that impacts throughput and travel times along the roadway, it is important to distinguish between recurring and non-recurring congestion. Recurring congestion occurs when demand increases beyond the available capacity. It usually is associated with the "typical" morning and afternoon work commutes. Non-recurring congestion results from a decrease in capacity, while the demand remains the same. This kind of congestion usually results from a traffic incident, weather event, or work zone. The graph to the right (from FHWA) shows the causes of congestion. Recurring congestion in the form of bottlenecks typically accounts for 40% of mobility problems; and non-recurring accounts for the other 60% of congestion and has a significant impact on travel time reliability due to the unanticipated disruption to a driver's trip.

Recurring Congestion: Recurring congestion along I-270 is fairly typical of an urban/suburban commuter freeway, in this case, generally focused southbound in the AM peak and northbound in the PM peak. I-270 travelers experience recurring delay southbound between 5:30 and 10:00 AM and northbound between 2:30 and 7:00 PM. The CGI Team used a variety of data sources to understand how congestion typically develops and eventually dissipates, including existing traffic counts from SHA; historic traffic data from RITIS; SHA's Mobility Report, I-270 Operational Bottleneck Analysis, I-270 and I-495 Congestion Management Studies, West Side Mobility Study; calibrated VISSIM models from SHA; and historic traffic data from Google Maps and Inrix. Figure 2-1 depicts the typical peak period congestion levels, along with a comparison of the reduced peak period congestion levels with all proposed CGI Team improvements. These improvements and resulting mobility improvements are presented below.

Mobility

On a typical day, congestion along I-270 first appears at several bottleneck locations before the period of peak traffic demand, sometimes hours earlier. Specifically, these bottleneck locations include:

- AM Southbound: MD 80 to MD 109; Father Hurley Boulevard (MD 27) to MD 124; I-370 to Montrose Road; and River Road (MD 190) along I-495 to the I-270 West Spur.
- PM Northbound: North of MD 121; MD 124 to Father Hurley Boulevard (MD 27); I-270 Y-split interchange to Montrose Road; I-495 to I-270 split (West Spur).

The queue spillback from these bottlenecks increases quickly, and the volume also increases, until the queues from one bottleneck point reach the next bottleneck point. During the peak travel hours, these bottleneck points are the locations of the most severe speed reductions.

Non-recurring Congestion: During a typical week, there is a significant amount of non-recurring congestion throughout the I-270 corridor. Data from RITIS shows that in 2015, there were 211 incidents which resulted in lane closures during the peak periods. Of those incidents, 151 occurred during the peak time and in the peak direction (i.e., southbound in the AM, northbound in the PM). This means the typical commuter will experience congestion due to an incident which resulted in lane closures almost three times per week. Moreover, the peak time/peak direction incidents last an average of 24.6 minutes, leading to an unpredictable commuter trip, and substantially the extending the length and time of congestion.

CGI Team Approach

The CGI Team believes that improving mobility related to daily recurring congestion can be accomplished by improving travel times and speeds during the peak congested periods (severity) and reducing the length of time that the corridor experiences congestion, i.e., "shortening the rush hour" (duration). Improving mobility resulting from non-recurring congestion can be accomplished by improving safety on I-270 and reducing the total number of traffic incidents.

The CGI Team's approach will improve mobility along the I-270 corridor by implementing a program of improvements targeted to solve the identified bottlenecks, while also using innovation and technology to address non-recurring congestion. Our approach is tailored to cost-effectively enhance mobility on I-270 by 1) screening for locations to construct improvements that maximize benefit, 2) developing improvements that can be implemented quickly and easily by utilizing practical design and minimizing impacts, and 3) communicating and collaborating with SHA and other stakeholders to refine the improvement concepts and deliver the best solution. The following paragraphs discuss our approach and outline the details of our improvements, and Section 5 provides more details regarding our Project Management and Work Plan.

Initial Screening: We recognize that simply adding capacity to travel lanes without addressing these bottleneck areas could result in a solution that expends money without meeting the project goals and would not provide any significant additional benefits above and beyond addressing the bottlenecks. The CGI Team completed a high-level analysis of the freeway segments between interchanges using Highway Capacity Manual (HCM) methodology to find the segments where the existing traffic volume exceeded capacity for the base segment, independent of the influence exerted by interchange entrance and exit points along the freeway system. This analysis also allows for a quick understanding of what could happen downstream once upstream bottlenecks are relieved. These calculations were completed for the existing conditions for the primary peak periods. Through this process, we were able to identify several key findings that helped us refine our approach, which are shown in Table 2-1.

Table 2-1. Key Findings for Existing Traffic Congestion.

Segment	Factors that Contribute to Congestion			
Southbound				
MD 109 to MD 121	Volumes approach or exceed capacityVarying roadway grades, which especially impact large truck operations			
MD 121 to I-370	Volumes are slightly under capacity, suggesting that merging volumes contribute to bottlenecks through this segment.			

Segment	Factors that Contribute to Congestion			
I-370 to Montrose Road	 Mainline/Express lanes operate at about capacity between a slip ramp from the local lanes and the next downstream locations where traffic can exit to the local lanes. Local lanes operate at or above capacity between the exit from the express lanes and the downstream entrance to the express lanes. 			
Montrose Road to I-270 Y-split Interchange Segment volumes approach capacity, suggesting that the significant weaving approaching the split causes congestion in this area.				
I-270 West Spur	Capacity constraints from I-495 to Westlake Terrace			
	Northbound			
I-270 West Spur Capacity constraints from I-495 to Westlake Terrace				
Montrose Road to I-370	 Generally, express lanes operate at or above capacity Local lanes operate below capacity until the approach to I-370 where a lane reduction causes the demand to exceed the available capacity 			
I-370 to MD 121	■ Capacity constraints between MD 124 and Middlebrook Road			
MD 121 to I-70	• At the end of the HOV lane, capacity constrained on two-lane northbound segment northward to I-70. This suggests that upstream congestion effectively meters traffic from reaching this point, along with the bottleneck that occurs at the end of the HOV lane.			

In addition to identifying capacity constraints, our Team completed a demand management screening process, focusing on ramp metering. The ramp metering screening process started with the concept that system-wide (i.e., corridor-wide) metering would be the optimal approach for the I-270 corridor. As noted in the FHWA "Ramp Management and Control Handbook" (FHWA-HOP-06-001), system-wide metering may be preferable where:

- Collision problems extend throughout the corridor.
- Multiple bottlenecks/locations of recurring congestion on the freeway are observed.
- The situation requires the improved ability to address non-recurring congestion problems.

The I-270 corridor meets each of these conditions. Moreover, corridor-wide ramp metering provides more options in optimizing the metered flow rates of traffic entering the freeway, maximizing freeway throughput. This approach also reduces the amount of overall system delay by using nearly all the ramps to control traffic, which promotes equity by balancing any ramp delays for all users of the I-270 corridor.

The screening process for identifying locations to deploy ATM was based on the FHWA "Active Traffic Management Feasibility and Screening Guide" and is discussed in Section 3.

Utilizing Practical Design and Minimizing Impacts: After performing the screening process to understand how congestion forms and spreads along the I-270 corridor, we developed solutions that are innovative, yet practical. Based upon the principles of performance-based practical design (PBPD), our roadway improvements focus on addressing specific bottlenecks, and minimize adverse impacts:

- Environmental and utility impacts will be minimized by utilizing existing pavement, including shoulders, for the majority of the targeted roadway improvements.
- The CGI Team has specifically designed and selected improvements that will not require additional right-of-way.
- Roadways adjacent to I-270 will not be negatively impacted by the recommended improvements.

Communication and Collaboration: Many of the improvements

Performance-Based Practical Design

- Develop solutions that meet the project purpose based on defined goals/objectives/transportation needs,
- Utilize objective data and engineering judgement to inform decisions based on an examination of geometric and operational elements,
- Work within constraints/minimize impacts,
- Consider whether the same investment of money would yield a greater return on investment if applied to other system needs/priorities,
- Evaluate how the preliminary design compares to the applicable design standards, and identify any "design exceptions."

were submitted to SHA as Proposed Technical Concepts (PTCs), which SHA reviewed and provided comments (refer to Appendix B for more information on the PTCs). This level of communication and collaboration will continue throughout the project in the form of Design Workshops, Progress Meetings, and SHA's formal Partnering processes. Finally, our

Mobility

Team will coordinate closely with stakeholders, such as FHWA, Montgomery County, Frederick County, and the public to ensure project goals are achieved within the required timeframe.

Program of Improvements

The CGI Team has developed a program of improvements that address SHA's goal of improved mobility by maximizing vehicle throughput, minimizing vehicle travel times, improving travel time reliability, minimizing queues, and reducing delay. Our proposed concepts are a combination of roadway improvements and innovative technologies and techniques that will combine to substantially improve operations along I-270:

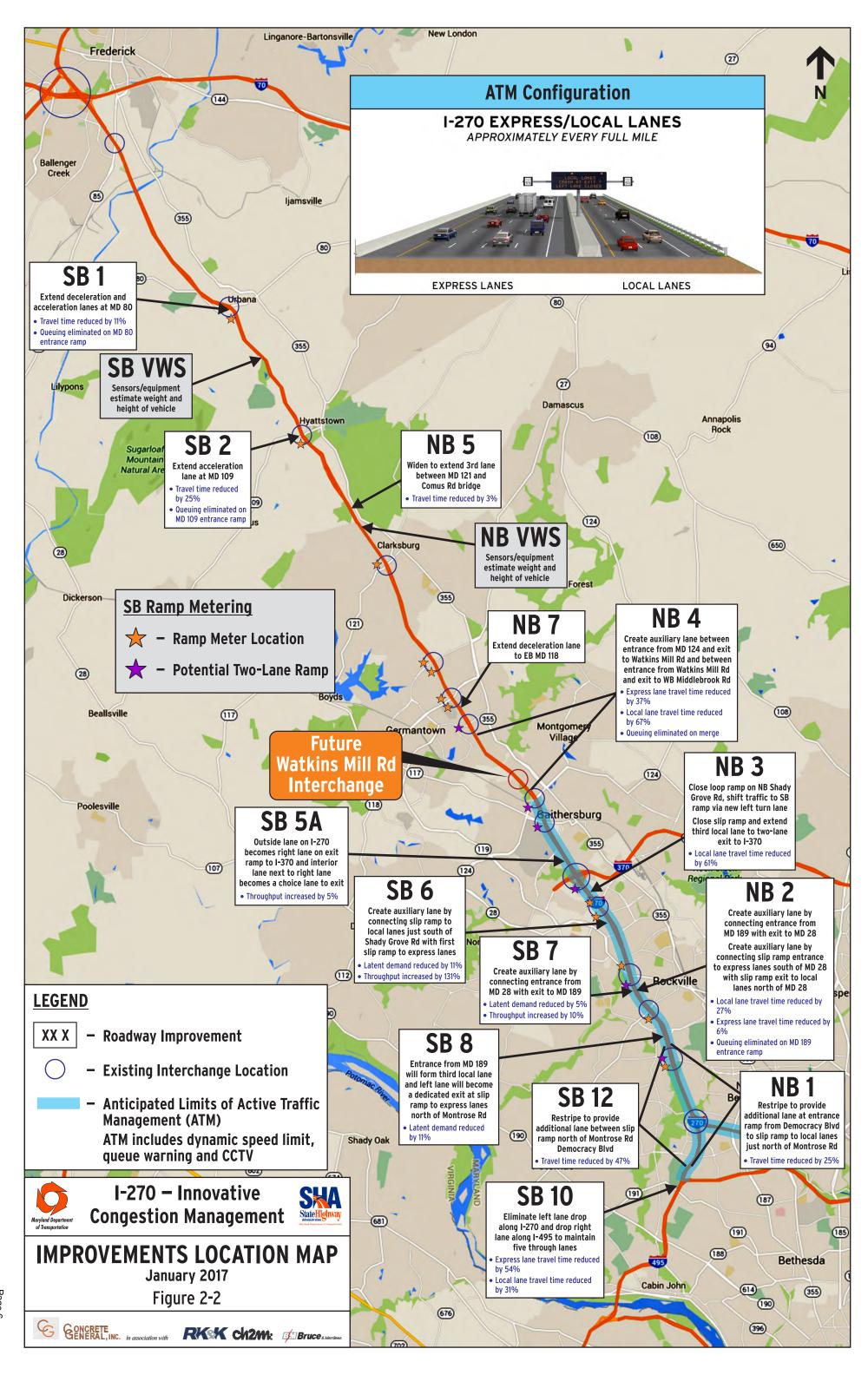
 Roadway improvements that address specific bottlenecks and identified congested locations,

Program of Improvements

- Roadway improvements
- Innovative technologies and techniques
 - Adaptive ramp metering
 - Active traffic management
 - Virtual weigh stations
- Adaptive ramp metering to optimize the rate of traffic flows entering southbound I-270 from the 18 interchange ramps between MD 80 and Montrose Road, and improve safety in the vicinity of the entrance ramps,
- Active Traffic Management strategies to improve safety and reduce the level of non-recurring congestion, and
- Virtual weigh stations to improve the operations of commercial vehicles along the northern segments of I-270.

In total, the CGI Team's concepts provide improvements along both directions of I-270 throughout the project limits. Figure 2-2 shows a map with the location and brief description of each concept, along with isolated congestion relief benefits that each project provides. For additional details about these concepts, including detailed scope and display sheets, refer to Appendix C.

Our improvements constitute a program of including discrete projects, which is beneficial to SHA because several smaller projects will also allow for more straightforward and faster NEPA and permitting approvals. One large project would necessitate a more significant environmental review and documentation process, which would take longer and delay the ability of SHA to get improvements implemented.


Roadway Improvements

Southbound 1 (SB 1): Extend acceleration and deceleration lanes at MD 80: This improvement consists of two distinct components: extending the length of the deceleration lane for the exit to MD 80 and extending the length of the acceleration lane for the entrance from MD 80. The existing merge location at the MD 80 entrance ramps is an identified bottleneck during the AM peak period. Under this concept, a longer distance for entering traffic to merge is provided. The deceleration lane from southbound I-270 to MD 80 is identified as a frequent crash area. By extending the length of the deceleration lane, vehicles are provided a longer, safer distance to reduce their speeds.

Southbound 2 (SB 2): Extend acceleration lane at MD 109: This improvement involves extending the length of the acceleration lane for the entrance from MD 109 to southbound I-270. The existing acceleration length does not meet AASHTO design guidelines and the reduced speed of entering traffic from MD 109 at the merge with high speed traffic on I-270 contributes to congestion during the AM peak period. This concept provides a longer distance for entering traffic to accelerate and merge.

Southbound 5A (SB 5A): Reconfigure exit lanes to I-370: This improvement involves restriping southbound I-270 approaching the exit to I-370 so the outside lane becomes the right lane on the two-lane exit ramp to I-370. The interior lane next to the right lane on I-270 will become a choice lane for vehicles to exit on the ramp to I-370 or continue south on I-270. In the existing configuration where no choice lane is provided, vehicles in the right lane reduce speed approaching the exit ramp and contribute to congestion on this section of I-270. This concept eliminates the need to develop a deceleration lane for the exit to I-370 and vehicles will not need to slow down on I-270 approaching the exit.

Southbound 6 (SB 6): Create auxiliary lane in local lanes south of Shady Grove Road: This improvement involves creating a third local lane by providing an auxiliary lane between the slip ramps south of Shady Grove Road. The entrance slip ramp from the express lanes will be connected to the first exit slip ramp to the express lanes. AM peak period traffic volumes in the local lanes approach capacity of the existing two lane section, resulting in recurring congestion. Under this concept the auxiliary lane will provide additional capacity at this bottleneck.

Southbound 7 (SB 7): Create auxiliary lane in local lanes between MD 28 and MD 189: This improvement involves creating an auxiliary (third) lane in the local lanes by connecting the entrance from MD 28 to the exit to MD 189. AM peak period traffic volumes in the local lanes approach capacity of the existing two lane section, resulting in recurring congestion. Under this concept, the auxiliary lane will provide additional capacity between the two interchanges.

Southbound 8 (SB 8): Reconfigure local lanes between MD 189 and Montrose Road: This improvement involves developing a third lane in the local lanes by connecting the entrance ramp from MD 189 with the exit ramp to Montrose Road. The existing inside (left) local lane becomes a dedicated exit at the slip ramp to the express lanes north of Montrose Road and two lanes continue to the exit to Montrose Road. AM peak period traffic volumes in the local lanes exceed capacity of the existing two lane section, resulting in reduced speeds and queuing. Under this concept, the third lane provides additional capacity between the two interchanges.

Southbound 10 (SB 10): Maintain three lanes from I-270 and drop right lane on I-495 at I-270/I-495 merge: This improvement involves restriping the I-495 outer loop at the merge with the southbound I-270 west spur. Instead of dropping the inside (left) lane from the I-270 spur, the three lanes from I-270 would continue on I-495 and the right lane on I-495 would drop to maintain five lanes. During the AM peak period, recurring congestion at the I-270/I-495 merge results in queues that spill back onto the I-270 west spur. This improvement maintains capacity in three continuous lanes on the I-270 spur, the heavier traffic movement, and provides an expected merge on the right side of the highway with minimal impacts to I-495 outer loop operations approaching the merge.

Southbound 12 (SB 12): Create additional travel lane between Montrose Road and Democracy Boulevard: This improvement consists of restriping southbound I-270 to provide an additional travel lane within the existing typical section from the slip ramp entrance to the express lanes north of Montrose Road to the interchange at Democracy Boulevard on the west spur, a distance of approximately 3.1 miles. The large volume of weaving movements on the section of southbound I-270 between the express/local lane merge and the Y-split interchange results in substantial friction and reduced speeds during the AM peak period. In addition, the I-270 West Spur operates over capacity during the AM peak. Under this improvement, the added travel lane provides additional capacity on southbound I-270 and the I-270 West Spur. This concept uses PBPD principles to continue to provide a right shoulder throughout the concept area.

Northbound 1 (NB 1): Create additional travel lane between Democracy Boulevard and Montrose Road: This improvement involves restriping northbound I-270 to provide an additional travel lane within the existing typical section between the entrance from Democracy Boulevard on the I-270 West Spur to the slip ramp exit to the local lanes just north of Montrose Road, a distance of approximately 2.7 miles. Traffic volumes on this section of northbound I-270 approach capacity of the existing lanes during the PM peak period. Under this improvement, the added travel lane provides additional capacity on the west spur and on the express lanes on northbound I-270.

Northbound 2 (NB 2): Create auxiliary lane in local lanes between MD 189 and MD 28: This improvement involves creating an auxiliary (third) lane in the local lanes by connecting the entrance from MD 189 to the exit to MD 28. This concept also involves restriping the northbound express lanes within the existing typical section to create an auxiliary lane by connecting the entrance slip ramp from the local lanes south of MD 28 with the exit slip ramp to the local lanes north of MD 28. Traffic volumes approach capacity of the existing two local lanes between MD 189 and MD 28 during the PM peak period. Under this improvement, the auxiliary lane provides additional capacity between the two interchanges. On northbound I-270 within the MD 28 interchange, traffic volumes exceed capacity of the existing three general purpose express lanes during the PM peak period. This improvement provides additional capacity in this section.

Northbound 3 (NB 3): Close loop ramp from NB Shady Grove Road to NB I-270; Close slip ramp to express lanes north of Shady Grove Road: This improvement involves closing the existing loop ramp from northbound Shady Grove Road to northbound I-270. Northbound Shady Grove Road will be reconfigured to provide dual left turn lanes in the median north of the existing bridge over I-270, and a new left turn spur will be constructed at the existing intersection to connect with the existing entrance ramp from southbound Shady Grove Road. The existing configuration of ramp and slip ramp entrances within the Shady Grove Road interchange contributes to considerable friction and recurring traffic congestion during the PM peak period. This improvement eliminates the friction by removing a merge point on northbound I-270.

This improvement also involves closing the slip ramp exit from the local lanes on northbound I-270 to the express lanes south of the I-370 interchange. The left (third) local lane that drops at the slip ramp in the existing configuration will be extended to connect with the exit to I-370. PM peak volumes approach capacity of the existing two local lanes between the exit slip ramp and I-370 and there is a short weaving movement between the Shady Grove Road entrance ramp and the exit to the express lanes. These improvements will eliminate the weave and provide additional capacity.

2 M

Mobility

Northbound 4 (NB 4): Create auxiliary lane between MD 124 and Watkins Mill Road and between Watkins Mill Road and WB Middlebrook Road: This improvement consists of two improvements: an auxiliary lane will be provided in the northbound local lanes by connecting the entrance from MD 124 to the exit at the new Watkins Mill Road interchange and an auxiliary lane will be provided along northbound I-270 by connecting the entrance from Watkins Mill Road with the exit to westbound Middlebrook Road (loop ramp). Traffic volumes on northbound I-270 between MD 124 and Middlebrook Road exceed capacity of the existing three general purpose lanes during the PM peak period. Under this improvement, the added travel lane will provide additional capacity in the general purpose lanes.

Northbound 5 (NB 5): Extend third lane to Comus Road bridge: This improvement extends the right (third) lane drop from its current location north of MD 121 to Comus Road, a distance of approximately 0.8 miles. The additional lane will be provided by widening into the median. The lane drop north of MD 121 is a major source of congestion during the PM peak period. Extending the point of the lane drop, including further separating it from the end of the HOV lane will provide more distance for vehicles to merge into the two lane section.

Northbound 7 (NB 7): Extend deceleration lane at MD 118: This improvement involves extending the length of the deceleration lane for the exit to eastbound MD 118. The existing deceleration length is substandard and the exit is identified as a frequent crash area. Extending the deceleration lane will provide additional length for vehicles to slow down off of the through lanes.

Innovative Technologies and Techniques

In combination with roadway improvements, our Team's proposed solution includes technology-based approaches. The general description of these approaches are provided below; however, the technology approaches are also fundamental to our Team's approach to address safety issues along I-270. This safety discussion is presented in Section 3. The details of operations and maintenance for the technology-based approaches is presented in Section 4.

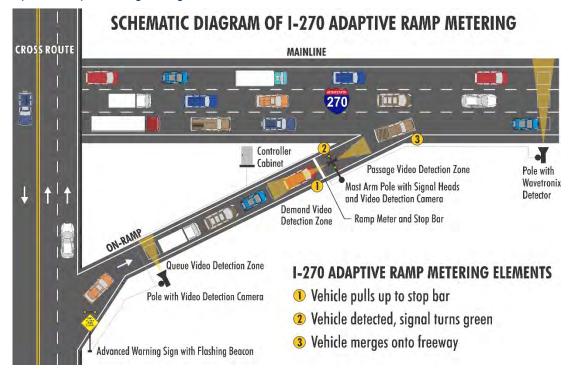
Adaptive Ramp Metering

The CGI Team is proposing "adaptive ramp metering" along southbound I-270 to automatically set the optimum vehicle rate of release at each ramp based on a variety of parameters including mainline traffic flow conditions in the vicinity of the ramp; mainline traffic flow conditions along other segments along I-270 both upstream and downstream of the ramp; queue length at the ramp; and queue lengths at other metered ramps located within the corridor. Time-of-day / day-of week scheduling can be implemented as necessary. Figure 2-3 shows the elements of adaptive ramp metering and how it will operate on I-270.

By managing the amount of traffic entering I-270 and breaking up platoons that make it difficult to merge, congestion will be reduced and the merging movements will be safer.

Adaptive ramp meters will be installed at every southbound entrance ramp from the arterials to I-270 from MD 80 to Montrose Road (18 total ramps), including the ramp from I-370 to southbound I-270. Along I-370 approaching the ramp to SB I-270, additional warning signs/signals will be installed to alert freeway motorists to the ramp queuing ahead. Metering the southbound I-270 mainline ramps, including along those segments that generally do not experience recurring congestion, will help alleviate any potential equity-related opposition, because ramp delays will be balanced for all users of the corridor. Our program of improvements does not include ramp meters along northbound entrance ramps for two primary reasons: first, approximately 76% of northbound traffic enters via I-495, two access points that cannot be readily metered. Second, north of the I-270 spurs, northbound traffic exiting I-270 at each interchange exceeds traffic entering; limiting the effectiveness of ramp metering as a demand management strategy.

In order to prevent traffic from backing up onto the arterials, each location will be equipped with queue detection which will increase the release rate of traffic onto I-270 to prevent queues from backing onto and therefore impacting operations on the arterial roadways. Ramp meters would be included on the new Watkins Mill interchange as noted in Section 5.


In addition, the ramps with the highest traffic volumes may be widened as needed to provide adequate storage space for queued vehicles, while still preventing queues from backing onto the arterials. The following ramps onto I-270 southbound may be widened to two lanes (as needed):

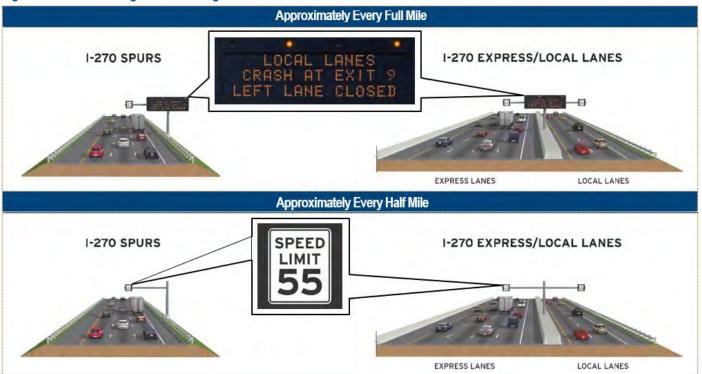
- Montrose Road westbound entrance ramp,
- MD 28 eastbound entrance ramp,
- MD 117 entrance ramp,

- MD 124 entrance ramp, and
- Middlebrook Road entrance ramp.

Figure 2-3. Adaptive Ramp Metering Configuration on I-270.

Active Traffic Management: Active Traffic Management (ATM) strategies involve the use of technologies to dynamically manage recurring and non-recurring congestion based on prevailing and predicted traffic conditions. The specific ATM strategies proposed by the CGI Team for I-270 include:

- Dynamic speed limits (DSL), also known as variable speed limits, to adjust speed limit displays based on real-time traffic, roadway, and/or weather conditions. DSL can be speed advisories or regulatory limits, and they will be applied to an entire roadway segment. This "smoothing" process helps minimize the differences between the lowest and highest vehicle speeds.
- Queue warning (QW) to provide real-time displays of warning messages (on DMS) along I-270 to alert motorists
 that queues or significant slowdowns are ahead. QW is also used to provide additional information to motorists
 as to why the speed limit is being reduced.


Another component to be included in the ATM concept is CCTV cameras (with pan, tilt, and zoom capabilities) on the DSL/QW support poles. This implementation of full coverage CCTV will support improved incident management and response times along I-270, thereby further reducing non-recurring congestion. According to statistics published for the CHART system, other roadways that have full coverage CCTV and are managed by the CHART system have shown an approximate 20% improvement in incident response times.

The proposed segments for ATM deployment on I-270 are shown on Figure 2-2 and described in Table 2-2, and the preliminary configuration of ATM devices is shown in Figure 2-4.

Table 2-2. Proposed Segments for ATM Deployment.

Road Segment Anticipated Limits		Configuration
I-270 Spurs (both directions)	I-495 to Y-Split interchange	DSL on mast arms and pole-mount DMS for queue warning. CCTV mounted on each pole.
I-270 Mainline – SB	Y-Split to MD 124	DSL on mast arms, with different speed limit displays for local
I-270 Mainline – NB	Y-Split to Middlebrook Rd	and express, and pole-mount DMS for queue warning. CCTV mounted on each pole.

Figure 2-4. ATM Configurations along I-270.

Within the express-local lanes section, the express lanes and local lanes will be treated as separate roadways, which allows for DSL on both roadways to operate independently based on conditions.

ATM strategies have been proven to significantly reduce rear-end and sideswipe crashes, which are prevalent along the proposed roadway segments, thereby enhancing safety. The safety benefits of ATM are discussed in more detail in Section 3, but by reducing the number of crashes, there is a corresponding reduction in non-recurring congestion. Additionally, these ATM strategies reduce turbulence in freeway traffic flow, reducing the number of traffic shockwaves and helping to prevent flow breakdown from occurring.

Other ATM strategies, such as dynamic shoulder lanes (also known as temporary shoulder lanes or hard shoulder running) and dynamic lane assignment, were also investigated by the CGI Team, but were eliminated from consideration. Dynamic shoulder lanes can reduce recurring congestion by opening the shoulder to traffic during peak periods thereby temporarily increasing roadway capacity. However, our Team determined that this approach would not be appropriate for I-270 because the use of a peak period shoulder lane could actually negatively impact traffic operations and safety by not having a full shoulder available during the heaviest times of travel for incident management and emergency refuge areas; important because over half of congestion is non-recurring. Dynamic lane assignment (DLA) involves the use of overhead lane use control signs to dynamically close or open individual traffic lanes as needed. This strategy was not considered due to large costs associated with installing lane use control signs over each lane. To mount the signs, large gantries spanning the entire width of the roadway would be required about every half mile along the corridor. In addition, proper operation of DLA would require an enhanced decision support system and significant integration with the existing CHART system. Further, the extensive infrastructure that is needed for DLA may become unnecessary with future innovations in transportation such as connected vehicles and autonomous vehicles.

Virtual Weigh Stations

A Virtual Weigh Station (VWS) is a method of pre-screening trucks at highway speeds for weight and height violations. Scaling equipment embedded in the pavement of the travel lanes and adjacent height sensors measure the weight and height of a vehicle and an infrared camera photographs the vehicle and the license plate. Within seconds, a report is transmitted wirelessly to the computer of an enforcement officer located downstream of the VWS so the officer can determine if the vehicle is violating any regulations. If the vehicle is in violation, the officer can choose to pull over the vehicle for inspection and/or static weighing.

When the existing weigh stations south of MD 109 are in operation, the volume of truck traffic entering and exiting the weigh stations results in significant friction and reduced speeds in both directions on I-270. Under this improvement, trucks

would no longer be required to stop at the physical weigh stations unless in violation. This in turn would greatly reduce the source of traffic friction from trucks entering and exiting the mainline traffic flow. As a part of the proposed improvements, the VWS will be constructed in the northbound and southbound directions in advance of the existing weigh stations south of MD 109 along relative flat and tangent sections of I-270 as required for proper VWS operations. The locations of the proposed VWS are shown in Figure 2-2. The existing weigh station facilities will serve as a pull-off area for an enforcement officer to pull over, inspect, and weigh a vehicle in violation and portable scales will not be necessary.

Reducing Recurring Congestion

The CGI Team's program of improvements when packaged together would provide substantial system-wide benefits and would significantly

Improved Mobility

- SB peak period travel time reduced by 30 minutes; delay reduced by 43%
- SB peak average speeds increased by 23%
- NB peak period travel time reduced by 4 minutes; delay reduced by 8%
- Vehicle throughout increased 3% SB during the AM peak and 1% NB during the PM peak.

reduce recurring congestion. While each individual improvement concept does provide specific benefits (as illustrated in Figure 2-2 and Appendix F), deploying them as a program of improvements results in comprehensive corridor-wide benefits. Most specifically, this will provide measureable improvements in travel time, speed, vehicle throughput, density, intersection operations, queuing and network performance.

The corridor-wide congestion reduction was quantified by modeling the overall program of improvements as one proposed scenario in the SHA-provided VISSIM models for both the existing year (2015) and the horizon year (2040). Most of the improvements were discretely modeled in the VISSIM model, including the roadway improvements and adaptive ramp metering. The smoothing of vehicular speeds resulting from ATM (dynamic speed limits) was not explicitly modeled. The CGI Team's program showed congestion reduction benefits in both the existing year and horizon year, relative to the nobuild. The concept evaluation tables in Appendix G demonstrate this.

In particular, the CGI Team's program of improvements would be effective in alleviating today's daily recurring congestion. These improvements are most greatly realized in the peak directions, meaning southbound during the AM peak and northbound during the PM peak. System-wide, the greatest increases in travel speeds and decreases in congestion would occur southbound during the AM peak, with a nearly 30-minute improvement in travel time and a 43% reduction in delay between I-70 and the I-495 / Cabin John Parkway interchange. Northbound during the PM peak, the system-wide improvements are more modest: 4-minute improvements in travel times and 8% reduction in delays. However, in the most severely congested northbound segment, between I-495 and MD 124, travel times would be improved significantly, particularly in the local lanes with a more than 9-minute improvement in travel time. Overall, the CGI program would reduce delay by 42% across the entire I-270 network during the AM peak, and 14% during the PM peak. The average speeds during the AM peak would also increase by 23%. Table 2-3 below illustrates these system-wide benefits. Vehicle throughput would increase by 3% southbound during the AM peak and 1% northbound during the PM peak.

Table 2-3. Total System-Wide Vehicle Network Performance Improvements from Proposed Concepts.

Time Period	Mobility Improvements 2015
AM Peak	 Travel Time Reduction: Southbound: I-70 to I-495 / Cabin John Parkway (via express lanes and West Spur): 30 minutes Southbound I-270 local lanes: 7.1 minutes Delay Reduction: Network-wide: 42% Southbound I-70 to I-495 / Cabin John Parkway: 43.5 % Southbound I-270 Local Lanes: 7.1 minutes Vehicle Throughput Increase: Network-wide: 3%

Time Period	Mobility Improvements 2015			
	 Southbound at I-370 and along the West Spur: 15% Southbound at Montrose Road: 20% Vehicular Density: 32% of I-270 segments operating at LOS E/F improve to LOS D or better 			
	 Vehicular Speed: 23% improvement Number of I-270 segments > 45 MPH increases by 40% (from 52% to 92%). 			
PM Peak	 Travel Time Reduction: Northbound: I-495 to I-70 (via express lanes and West Spur): 4 minutes Northbound I-270 local lanes: 7.1 minutes West Spur Southbound: 7.5 minutes Delay Reduction: Network-wide: 14% Northbound I-270 local lanes: 45 % West Spur Southbound: 27% Vehicle Throughput Increase: Network-wide: 1% Bottleneck is eliminated in area of I-370 / MD 124: up to 10% improvement Vehicular Density: 7% of I-270 segments operating at LOS E/F improve to LOS D or better Vehicular Speed: 5% improvement 			

Figure 2-4 shows the southbound travel time reductions anticipated from I-70 to I-495 (via the Express Lanes) during today's AM peak, and Figure 2-5 shows expected travel time reductions along the southbound local lanes during the AM peak. Similar graphics illustrative travel times for the CGI program for all locations for both existing and 2040 can be found in Appendix F.

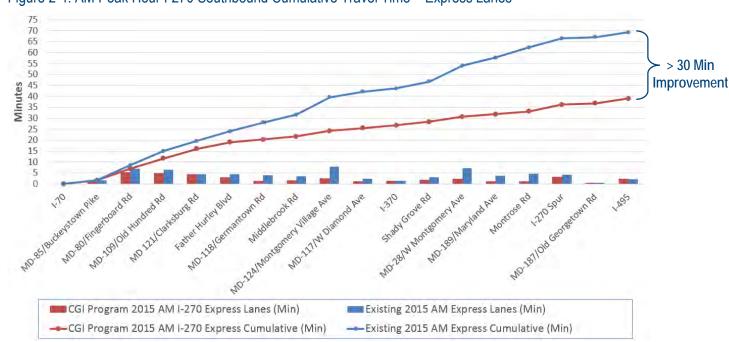
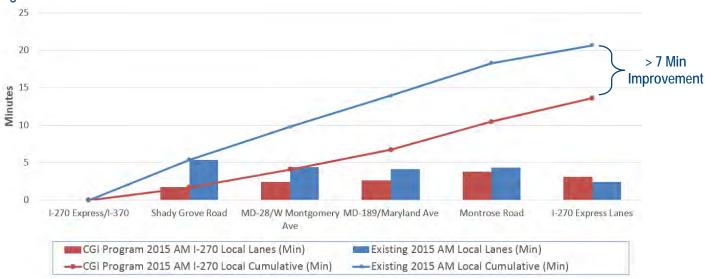



Figure 2-5. AM Peak Hour I-270 Southbound Cumulative Travel Time – Local Lanes

Operational Benefits at Bottleneck Locations: A deeper dive into the CGI Team's program of improvements shows significant operational benefits at the key bottleneck locations. Several operational metrics support this.

Segment Capacity. During the AM peak hour today, 53 of the 85 freeway segments along I-270 southbound operate at or above capacity (LOS E or F); by implementing our program, this would be reduced to 26 segments. Along the I-270 southbound local lanes, of the 31 total segments, there are 26 operating at LOS E or F under existing conditions, this would be reduced to 19 segments. In the PM peak hour, 39 of the 85 total freeway segments along I-270 northbound express including the spurs, operate at LOS E or F. This is would be reduced to 33 segments with the CGI program. In the northbound local lanes in the PM peak, the number of segments operating at LOS E or F would be reduced from 20 under existing conditions to 8.

Bottleneck Reduction. A significant benefit of implementing the CGI Team's program of improvements is the reduction in the number and severity of bottlenecks that the I-270 traveler would encounter. Today, a motorist traveling the length of I-270 southbound during the AM peak encounters four bottleneck areas: MD 80/MD 109, MD 27 to MD 124, the Express-Local lanes section, and the I-270 West Spur / I-495 (outer loop) merge. Our improvements reduce the bottlenecks at all four of these locations, and we are nearly eliminating the bottleneck in between MD 117 to MD 124 and the Express-Local lanes section. Figures 2-6 to 2-8 illustrate expected travel speeds along the corridor in the southbound direction during the AM peak. For each figure, the top graphic shows travel speeds anticipated once our program is implemented, the middle graphic shows existing travel speeds without our program as portrayed in the VISSIM model, and the bottom graphic shows existing travel speeds without our program based on INRIX data.

Similarly, during the PM peak, motorists encounter bottlenecks at three locations: exiting I-495 onto the west spur, the merge between the east and west spurs (Y-split interchange), and the end of the HOV lane section just north of MD 121. Our program eliminates the congestion north of MD 124 and reduce the impact of the congestion at the other two bottleneck areas. Appendix F shows the congestion diagrams that illustrate the travel speeds along the corridor in the northbound direction in the PM peak.

Ramp Queuing and Intersection Operations: The proposed roadway concepts along the I-270 corridor do not directly impact intersection operations. However, the concepts improve the flow and quantity of traffic that is serviced along the express and local lanes of I-270. This relieves spillback from the mainline onto the arterials. In general, implementing the CGI Team's program of improvements would keep the intersection operations at today's level during both the AM and PM peaks with one exception. Roadway improvement NB 3 includes closure of the entrance loop ramp from eastbound/northbound Shady Grove Road to northbound I-270. This movement is replaced by a left turn spur for eastbound/northbound Shady Grove Road to northbound I-270. The existing intersection at this location will be modified to accommodate this new left-turn movement. These improvements are shown on the display sheets in Appendix C. Removing the ramp and reconfiguring the Shady Grove Road interchange provides significant benefits to I-270, however

Figure 2-6. AM Peak Period I-270 Southbound Travel Speeds – Express Lanes

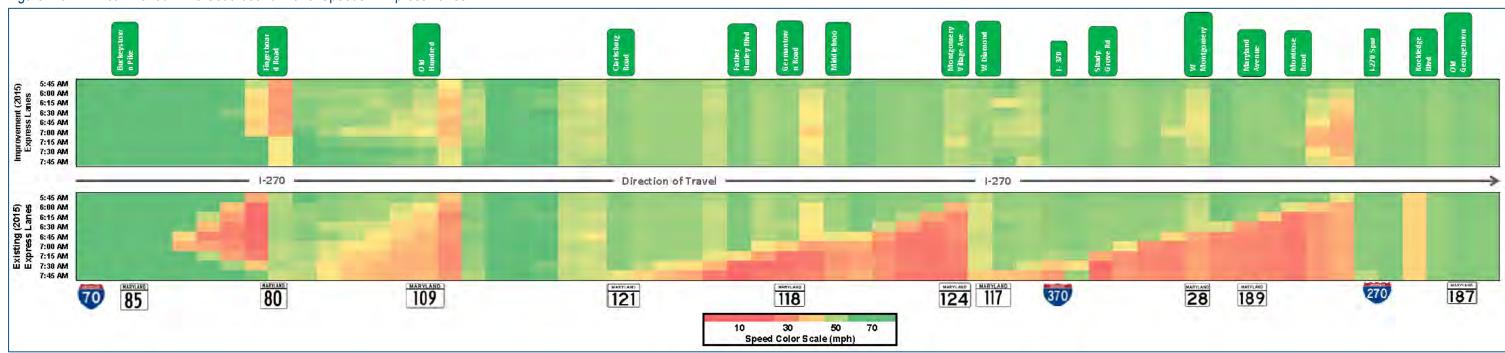


Figure 2-7. AM Peak Period I-270 Southbound Travel Speeds – Local Lanes

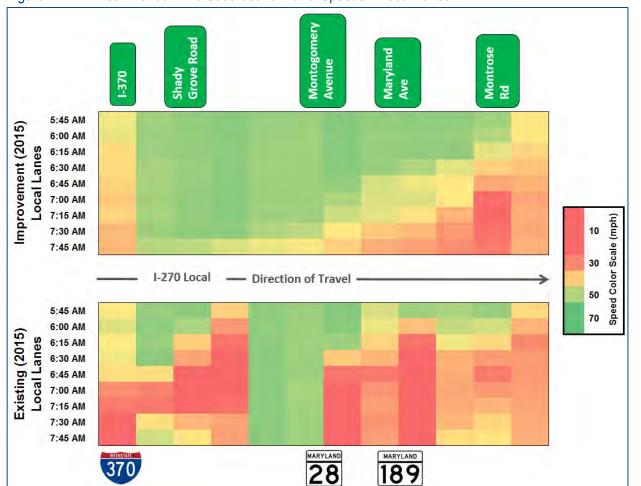
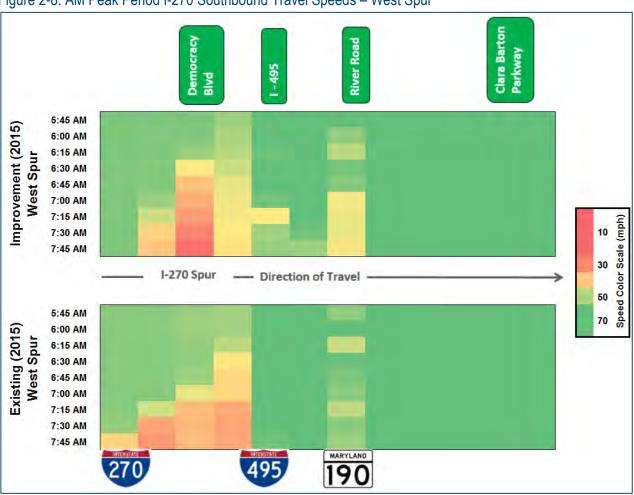



Figure 2-8. AM Peak Period I-270 Southbound Travel Speeds – West Spur

Mobility

during the PM peak the addition of the extra left turn phase along Shady Grove Road increases delays from 24.6 seconds per vehicle to 34.7 seconds per vehicle, however, the level of service along Shady Grove Road remains LOS C.

Adaptive ramp metering, including widening specific ramps to provide adequate storage area, contains the queues along the ramps as shown in Appendix F. Assuming typical operations along the mainline, the ramp metering algorithm prevents vehicle spillover onto the arterials while maintaining the throughput of the entrance ramp. The algorithm provides an override of the meter signal to clear queuing along the ramp if traffic begins to back up to the arterial. Additional discussion of adaptive ramp metering operation is provided in Section 4. In order to facilitate the effectiveness of the metering on I-270 and limit spillback onto arterials (and associated overrides), five ramps may be widened from one to two lanes as needed to implement ramp metering as shown on Figure 2-2 and Appendix C. By providing both the override functionality and the additional ramp widening, the upstream and downstream intersections along the crossing arterials would not experience any significant impacts. Appendix F includes the intersection delay results and LOS tables.

Innovative Management Techniques: The inclusion of innovative techniques to the CGI Team's program compliments the benefits provided from the roadway concepts. Adaptive ramp metering particularly helps reduce the buildup of recurring congestion in the following locations:

- Metering the southbound entrance ramps provides almost 15 minutes in travel time benefit in the express lanes and 8 minutes in the local lanes.
- Metering the southbound entrance ramps at MD 80 and MD 109 manages congestion near the weigh stations south of MD 109,
- Metering the MD 121 and MD 117 southbound entrance ramps manages congestion that starts just north of I-370,
- Metering the southbound entrance ramps from Shady Grove Road to Montrose Road reduces congestion along the express and local lanes in this section and further downstream to the I-270 spurs, and
- Metering the southbound entrance ramps from I-370 smooths the flow of traffic onto I-270, improving the efficiency
 of the traffic merging during the peak periods.

Active Traffic Management in the form of DSL and QW provides mobility benefits by reducing the turbulence in freeway traffic flow by reducing the traffic shockwaves and helping to prevent flow breakdown from occurring. Speed harmonization upstream of the queues will reduce the fluctuations in speeds and potentially reduce the duration of the queues along the freeway segments even during recurring congestion periods. It is difficult to quantify the benefits of ATM using the VISSIM models, therefore, we have not include the potential mobility benefits of ATM in our reported mobility improvements. However, as presented in FHWA's *Synthesis of Active Traffic Management Experiences in Europe and the United States (August 2013)*, based on assessment of projects where dynamic speed limits and queue warning were implemented, the mobility benefits for the corridor include a modest increase in roadway capacity as well as an increase in throughput of up to five percent.

Trucks entering and exiting I-270 at today's weigh station locations cause friction in the travel lanes along I-270 when they are open, compounding capacity and geometric challenges. Implementing virtual weigh stations (VWS) will aid in reducing this turbulence by cutting down in the number of trucks leaving the normal traffic stream. Various studies, including a 2009 Maryland Virtual Weigh Station Final Report completed by SHA documented that VWS was as or more effective as traditional screening tools, and the MD 32 pilot indicated that VWS was also effective in identifying heavy vehicles with safety concerns. We have not included the potential benefits of VWS in our reported mobility improvements; however, we believe it should contribute to improving mobility in the vicinity of the existing weigh stations.

Real-World Applicability: The benefits of the CGI Team's program of improvements have been estimated using the VISSIM models provided as part of SHA's RFP. While the VISSIM models were developed and calibrated to best reflect travel conditions during the peak periods, there are a few factors to consider when assessing the model results. Our Team assessed each of these factors when evaluating the merits of each concept when developing our program. Specifically, these factors included:

Existing Weigh Station Operations. The VISSIM models provided in the RFP did not route any truck traffic into and out of the weigh stations during the peak periods. A review of the historic traffic data shows friction near the weigh stations, and as such, we adjusted the existing conditions model to have vehicles entering and exiting the weigh station, essentially treating it as open during peak periods. This caused the model to show peak period operations that were worse than those indicated in the base model from SHA. However, we feel that incorporating

Mobility

this real-world condition into our model will provide SHA with a more accurate picture of how I-270 will operate once our proposed improvements are implemented.

- Impact of I-495 Outer Loop Congestion. The VISSIM models provided in the RFP extends along southbound I-495 (outer loop) to the Clara Barton Parkway interchange and the American Legion Bridge. A review of existing traffic conditions shows that during the AM peak, the southbound I-495 bottleneck stretches across the American Legion Bridge and approximately 1 to 2 miles into Northern Virginia. This bottleneck is not reflected in the VISSIM model. The CGI Team's program of improvements will improve vehicular throughput throughout the I-270 corridor, and would increase throughput to southbound I-495 by approximately 545 vehicles during the AM peak hour. While we anticipate this would add one mile of queuing, today's 3-mile queue along I-270 approaching I-495 is nearly being eliminated by our program of improvements. Similarly, during the PM peak, we are not anticipating significant increases in throughput that would affect downstream operations along I-495. We believe that the overall benefits our program provides outweighs this downstream consideration.
- Metering provided by I-495 Inner Loop Congestion. Congestion approaching and across the American Legion Bridge has the opposite impact for northbound I-495 (inner loop) approaching I-270. This congestion actually meters traffic entering the I-270 system, reducing the number of vehicles entering the I-270 system during the peaks. Our program of improvements is focused on reducing congestion and improving the throughput for those vehicles already entering the I-270 system.
- Proximity of Multiple Entrances to the Freeway System. With many closely spaced interchanges and a densely developed roadway network, motorists entering I-270 have multiple choices on where to enter the I-270 system. The use of adaptive ramp metering for all southbound entrance ramps between MD 80 and Montrose Road allows for the traffic flow demand to be controlled as described under intersection operations. For areas outside of the ramp meter system, such as the Democracy Boulevard entrance, we believe that the downstream congestion along southbound I-495 (outer loop) will not cause a significant shift for traffic volumes entering I-270 southbound at Democracy or entering I-495 westbound (outer loop) at MD 187.

Ultimately, we understand that these real world conditions must be considered by SHA in the evaluation of our proposed improvements. As required, we are reporting our anticipated mobility benefits based on the output of the VISSIM models, including the adjustment for the existing weigh station operations noted in the first bullet above. We did not adjust the VISSIM model to reflect the queuing on the I-495 outer loop that was not reflected in the VISSIM model, since that queuing includes elements beyond the scope of the provided model. However, SHA should consider how the reported southbound I-270 mobility benefits resulting from CGI's proposed solutions should be considered in lieu of the known downstream bottleneck along the outer loop of I-495 at and beyond the American Legion Bridge.

It also must be noted that the above results represent the mobility benefits from our improvements during the peak period. In addition to this, the CGU Team program will have benefits during shoulder peaks and during non-recurring congestion periods. The roadway improvements provide full-time additional capacity at existing bottlenecks. As discussed in Section 4, adaptive ramp metering and ATM can operate during all times, not just the peak periods, which means that benefits from these technology-based improvements can be realized when heavy traffic occurs at unexpected time (weekends, special events, incidents during non-peak times, etc.).

2.II TRIP PREDICTABILITY

A primary indicator of trip predictability is travel time reliability, which is defined by FHWA as the consistency or dependability in travel times, as measured from day-to-day and/or across different times of the day. Two measures of travel time reliability are travel time index (TTI) and planning time index (PTI).

- TTI is the ratio of the average travel time during the peak to the travel time under free flowing (ideal) conditions. The higher the number, the longer the travel times.
- PTI is the ratio of worst case travel time during the peak to the free flow travel time. It is a measure of the amount of time that should be planned for to ensure an on-time arrival and incorporates typical and unexpected delay. The higher the number, the less reliable and longer a trip could take.

If travel times vary greatly it becomes difficult for travelers to plan their trip and an unpredictable trip can frustrate drivers. Such is the case with I-270. Using 2015 data from RITIS, southbound I-270 during the AM peak period has an average

Mobility

weekday TTI of 1.77 and a PTI of 3.37. Using thresholds defined by SHA in the *2015 Maryland State Highway Mobility Report* (December 2015), this means the corridor is heavily congested and extremely unreliable during the AM peak.

Northbound I-270 during the PM peak has a TTI of 1.14 and a PTI of 1.64. Using the SHA thresholds, the overall corridor is uncongested and moderately unreliable, but the West Spur during the PM peak has a TTI of 1.98 and PTI of 3.33. It is heavily congested (borderline severely congested) and extremely unreliable.

Improved Reliability

- Trip reliability will be improved by 9%, saving I-270 users nearly \$100,000 each day.
- Improvements at every unreliable location along I-270 identified in the 2015 SHA Mobility Report.

These unreliable travel conditions along the I-270 corridor have a direct cost to roadway users. The "Reliability Measurement" module of SHA's "Benefit-Cost Analysis" tool calculates a cost based on variability in network-wide travel time results. The module applies separate values for travel time and reliability (in \$ per minute) to the results from multiple VISSIM simulation runs. Models with widely varying results across multiple runs will result in higher costs. The existing I-270 network was analyzed using the reliability measurement module. The network-wide travel time variability results in user costs of over \$492,000 during the AM peak hour and over \$508,000 during the PM peak hour. The PM peak has a higher user cost due to the excessive and highly variable travel times along both directions of the I-270 West Spur. Together, unreliability during the AM and PM peak hours alone costs users, most of which are commuters, more than \$1,000,000 each day.

The program of improvements will improve reliability such that the cost to users due to travel time variability will decrease to \$909,000 during the AM and PM peak hours. The unreliability will be reduced by 9%, and while this percentage cannot be directly applied to real-life conditions, it is reasonable to assume that TTI and PTI for the corridor will be reduced considerably.

Predictable Commuter Trip and Reliability

Overall, the CGI Team's improvements will provide a more predictable commuter trip with better travel time reliability. Specifically, the roadway improvements are targeted to address the bottlenecks that contribute to extremely unreliable conditions on I-270.

Roadway Improvements: According to the "2015 State Highway Mobility Report," of the Top 30 unreliable highway locations in Maryland, four I-270 locations were on the AM peak list and four were on the PM peak list. As presented in the Section 2.i above, the roadway improvements will address each bottleneck, which contribute to unreliability along I-270, improving overall reliability for the corridor. Table 2-4 shows the unreliable locations and their statewide rankings and the specific improvement concepts that will address each location.

Adaptive Ramp Metering and ATM: Non-recurring congestion contributes to trip unpredictability. Roads like I-270 that have high levels of recurring congestion are more vulnerable to non-recurring congestion. Small incidents can create long backups, delay, and unreliable conditions for hours. If a minor rear-end collision occurred on an uncongested multi-lane roadway, a driver could easily change lanes to avoid the impacts from the incident. During peak periods on I-270, drivers cannot easily change lanes and must slow down approaching the incident, which sends a traffic shockwave of vehicles slowing down throughout the corridor. About 63% of crashes during the peak periods are rear-ends or sideswipe accidents, both indicative of congestion-related accidents. Our proposed adaptive ramp metering and ATM solutions will have a primary purpose of reducing these types of congested-related accidents. Adaptive ramp metering works to smooth the merging operations at interchanges, which will lead to fewer sideswipe accidents. ATM, through DSL and QW, is designed to vary speed limits during congested periods and alert drivers in advance of congested traffic. As presented in detail in Section 3, both approaches have been shown to reduce to number of rear-end accidents. Table 2-4 shows where adaptive ramp metering and ATM will be implemented at the unreliable locations along I-270.

As discussed more completely in Section 3, together adaptive ramp metering and ATM are anticipated to reduce the peak period accidents by 18% where both are provided (along southbound I-270 within the express-local lanes), and by 10% where only one approach is provided. This significant reduction in crashes would greatly reduce non-recurring congestion due to crashes, and therefore improve overall trip reliability and predictability. Moreover, adaptive ramp metering and ATM can be operated at all times, not just during peak periods. The ability for full-time operation means that trip reliability and predictability could also be improved during off-peak times.

Table 2-4. Proposed Improvements at Unreliable Locations along I-270.

Unreliable Locations During AM Peak (Direction)	Statewide Rank	Proposed Improvements
Shady Grove Road to MD 28 Local Lanes (Southbound)	17	 SB 6: Create auxiliary lane in local lanes south of Shady Grove Road Adaptive ramp metering ATM
Shady Grove Road to MD 28 Local Lanes (Southbound)	17	 SB 6: Create auxiliary lane in local lanes south of Shady Grove Road Adaptive ramp metering ATM
Father Hurley Boulevard (Southbound)	19	Adaptive ramp metering
I-370 to Shady Grove Road (Southbound)	22	 SB 5A: Reconfigure exit lanes to I-370 SB 6: Create auxiliary lane in local lanes south of Shady Grove Road Adaptive ramp metering ATM
Father Hurley Boulevard to MD 118 (Southbound)	29	Adaptive ramp metering
Unreliable Locations During PM Peak (Rank)	Statewide Rank	Proposed Improvements
Democracy Boulevard (Southbound)	1	 SB 12: Create additional travel lane between Montrose Road and Democracy Boulevard ATM
I-495 (Southbound)	3	 SB 10: Maintain three lanes from I-270 and drop right lane on I-495 at I-270/I-495 merge
I-270 to Democracy Boulevard (Southbound)	12	 SB 12: Create additional travel lane between Montrose Road and Democracy Boulevard ATM
MD 124 to Middlebrook Road (Northbound)	19	 NB 4: Create auxiliary lane between MD 124 and Watkins Mill Road and between Watkins Mill Road and WB Middlebrook Road

The CGI Team's program of improvements will enhance travel time reliability and trip predictability on I-270. The targeted roadway improvements will reduce recurring congestion and increase capacity which will accommodate any disruptions cause by non-recurring congestion. The innovative technologies and techniques will reduce the amount of non-recurring congestion by reducing the number of incidents.

2.111 PERFORMANCE LIFE OF IMPROVEMENTS

The CGI Team's proposed improvements will provide benefits over the No-Build condition to 2040 and beyond. However, it is critical to consider what mobility benefit the proposed improvements will provide relative to existing levels of traffic congestion. We completed an evaluation to understand when peak period congestion will return to existing levels in both the southbound (AM peak) and northbound (PM peak) directions. We have also summarized results for traffic operations during the horizon year (2040).

In addition to relating how our proposed improvements will perform over time, it is important to understand that elements from our solutions have been chosen specifically because of the flexibility they offer SHA to help manage traffic in the decades ahead. Finally, the CGI Team knows that the I-270 project is important not only for the millions of drivers who use that corridor each year, but also for how SHA can best use funding for improvements across the state. We have completed a detailed benefit-cost analysis to help us choose solutions that offer SHA the best value for the investment. Each of these elements are discussed below.

Performance Life of CGI's Proposed Improvements

To understand how the Team's program of improvements will operate in the future, the improvements were modeled using the 2040 No-Build network provided by SHA in the RFP. Taken broadly, during both peak periods, the Team's program of improvements provides considerable mobility improvement when compared to the 2040 No-Build. The 18-22%

Mobility

reductions in southbound travel times during the AM peak and network-wide 13% increase in vehicle throughput during the PM peak exhibit this. The improvements proposed by the CGI Team are robust and provide benefits for over 20 years. Moreover, by implementing the CGI program of improvements, I-270 would not be expected to return to the same levels of congestion as today until 2040 or beyond. This would be especially true of the AM peak, as virtually all of the relevant congestion measures indicate that the I-270 network with the CGI improvements performs better than under the existing (2015) conditions. During the PM peak, overall congestion levels would be expected to return to pre-improvement levels by about 2040. While the overall congestion levels near current levels by 2040, I-270 would accommodate upwards of 19% more vehicles in the northern section and 7% more vehicles around I-495 during the peak hour. Table 2-5 illustrates key overall metrics supporting this.

Table 2-5. Total System-Wide Traffic Mobility Improvements between Existing Conditions and 2040 (with CGI Program)

Time Period	Mobility Improvements between Existing Conditions and 2040 (with CGI Program) Mobility Improvements from Existing to 2040		
AM Peak	 Travel Times: Southbound: I-70 to I-495 (via Express lanes and West Spur): 14-minute reduction Southbound: I-70 to I-495 (via Express lanes and East Spur): 15-minute reduction Northbound: I-495 to I-70 (via Express lanes and West Spur): Identical (33 minutes) Delay Reduction: Network-wide: 1% Vehicle Throughput Increase: 16% network-wide 10% southbound along West Spur Vehicular Density: Southbound: I-70 to I-495 (via Express lanes and East Spur): 24% reduction in number of segments LOS E/F Vehicular Speed: Network-wide: Nearly identical (32 vs 33 mph average) Southbound: I-70 to I-495 (via Express lanes and East Spur): 28% improvement 		
PM Peak	 Travel Times: Northbound: I-495 to I-70 (via express lanes and West Spur): 1 minute longer, 49 min (2015) versus 50 min (2040) Northbound I-270 local lanes: 1-minute reduction West Spur SB: 7-minute reduction West Spur NB: 2-minute reduction Vehicle Throughput Increase: 13% network-wide 39% southbound along West Spur 4% northbound along I-270 local lanes Vehicular Density: Northbound West Spur: 39% reduction in number of segments LOS E/F Southbound West Spur: 31% reduction in number of segments LOS E/F Vehicular Speed: Identical (41 vs 41 mph) 79% improvement southbound West Spur 11% improvement northbound local lanes 		

Mobility

A review of the localized congestion patterns anticipated in 2040 (included in Appendix F) also shows that where congestion is anticipated in 2040 after the implementation of the CGI program are located in areas that are not targeted by the program. Southbound, generally speaking, the bottlenecks approaching I-370 and within the express-local lanes section would remain alleviated through 2040. However, two key bottleneck points, MD 80/MD 109 in Frederick County and the I-270 West Spur, would return to 2015 pre-improvement levels. Similarly, in the northbound direction, congestion in the local lanes from Montrose Road to I-370, as well as the West Spur north of I-495, would remain alleviated; however, the bottlenecks at MD 124 and MD 121 would re-emerge by 2040. By implementing our program of improvements, the capacity constraints that control the entire system in 2040 would shift from being between Father Hurley Boulevard and the West Spur, including the express-local lanes section, to two separate locations: north of MD 121 (the current four lane section), and along I-495 approaching and across the American Legion Bridge. This latter location currently experiences substantial congestion.

Innovative Technology and Techniques

In addition to reducing non-recurring congestion, the proposed technology improvements will optimize the mobility benefits over the life of the project. As demand grows, the technologies will work together to manage traffic to stabilize flow along the corridor. The use of adaptive ramp metering will act as a demand management technique, and regulating entry flow will help preserve the lifespan of the CGI program. Controlling entry flow at the entrance ramp points would limit the potential for induced demand, potential for demand shifts from the arterials, and potentially even limit changes in travel modes. Since the ability to use this technique relies on the southbound entry ramps providing a location for vehicles to wait to enter I-270, our Team's program of improvements has sized each of the southbound ramps to provide enough capacity to accommodate anticipated 2040 demand.

Benefit-Cost Analysis

In order to directly compare the benefits of the CGI Team's program of improvements to the cost of the project, a benefit-cost (B-C) analysis was performed using SHA's "Benefit-Cost Analysis Tool." The tool monetizes the benefits of the proposed improvements and measures the costs and benefits of the improvements against the "do nothing" scenario over the lifetime of the project. Specifically, the B-C tool compares the total lifetime of benefits of the project in terms of reduced delay, anticipated reduction in crashes, and improved reliability to the total costs of initial construction, ongoing operation and maintenance, and rehabilitation/total replacement of project elements. The analysis calculates a single number, or B-C ratio, which can be used to compare alternatives and justify the cost of projects. The larger the ratio, the more the benefits outweigh the costs.

In general, any B-C ratio greater than 1:1 means the project is providing value. The CGI Team's program of improvements results in a benefit-cost of 19.6. This means that for every \$1 spent on the project, \$19.60 of benefits are realized in the form of improved mobility, safety, and reliability for travelers throughout the I-270 corridor. Over the life of the project, the improvements will save over \$2.5 billion in delay costs and almost \$46 million in fuel costs. These estimates can also be considered conservative, as the B-C analysis and VISSIM simulations only captured benefits associated with reducing recurring congestion. Delay reductions realized by reducing nonrecurring congestion were not incorporated into the benefit:cost calculations. The actual savings and B-C ratio that would be realized when the improvements are implemented would be greater than what is shown.

When compared to the projects SHA evaluated in the 2015 *Freeway Congestion Management Studies*, the CGI Team's improvements would rank among the top 10 freeway corridor projects in the state, and with a scope of improvements far larger than any of those projects.

The benefit-cost analysis shows that the CGI Team's approach of targeted roadway improvements combined with innovative technologies and techniques, such as adaptive ramp metering, ATM, and virtual weigh stations, can be applied to other roadways throughout the State to improve mobility by reducing recurring and non-recurring congestion.

A technical memorandum describing the methods and assumptions and full results from the Benefit-Cost Analysis Tool can be found in **Appendix** J.

GONCRETE Ch2M: Bruce & Merrilees

Safety

Proposed Improvements

Although the primary purpose of this project is to reduce recurring and non-recurring congestion and improve travel time reliability along I-270, a second important goal is to provide for a safer I-270 corridor. Within the project area, I-270 is characterized by heavy congestion and is considered one of the most congested interstate corridors in Maryland. This congestion results in safety incidents, especially rearend and sideswipe crashes, which in turn result in even more congestion of the non-recurrent type. Specifically, a total of 2,133 crashes were reported along I-270 between I-495 (including the I-270 spurs) and I-70 over the three-year period between 2011 and 2013. Of those crashes, nearly half (49%) were rear-end crashes. As shown in Figure 3-1, in some of the segments with the highest crash frequencies, the percentage of rear-end crashes is even higher than 49%. Additionally, fixed object collisions accounted for approximately 23% of crashes and sideswipe collisions accounted for approximately 14% of crashes. This crash pattern is typical of congested conditions.

Safety Benefits from Proposed Improvements

- Total number of annual crashes reduced by 140 in year 2040
- Severity of crashes reduced due to annual reduction of 60 fatal and injury crashes in year 2040
- Duration of crashes reduced due to fewer secondary incidents and reduced response times
- Enhanced incident management due to technology improvements
- Maintains at least one full shoulder for the mainline in the entire I-270 Corridor

The CGI Team recognizes that a safer flow of traffic will increase mobility along I-270 by reducing incidents, thereby avoiding delay and increasing travel time reliability. During the first six months of 2015, there were 152 incidents that closed at least one lane of traffic. Of those, 50% occurred during the AM and PM peak travel periods (weekdays, 6:00–10:00 AM and 2:00–7:00 PM). On average, an incident closed at least one lane in the peak direction of travel during one of the peak periods once every two to three days. The average duration was approximately one-half hour; however, several incidents closed at least one lane for more than 90 minutes. By strategically addressing safety needs along the I-270 corridor, the CGI Team will further improve mobility by addressing a frequent source of non-recurring congestion.

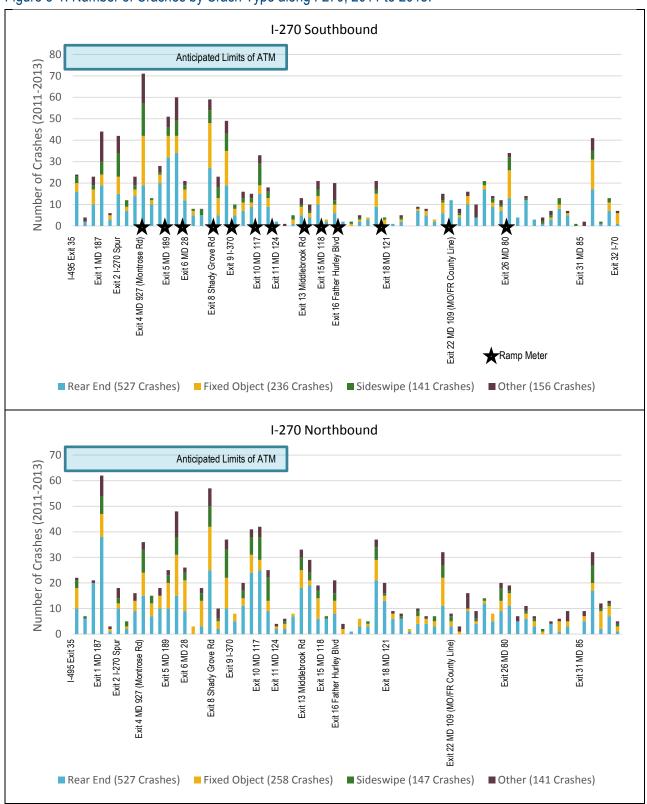
In order to provide a safer flow of traffic in the I-270 Corridor, the CGI Team has developed a two-pronged approach to improve safety (similar to our two-pronged approach to improve mobility), that includes the following:

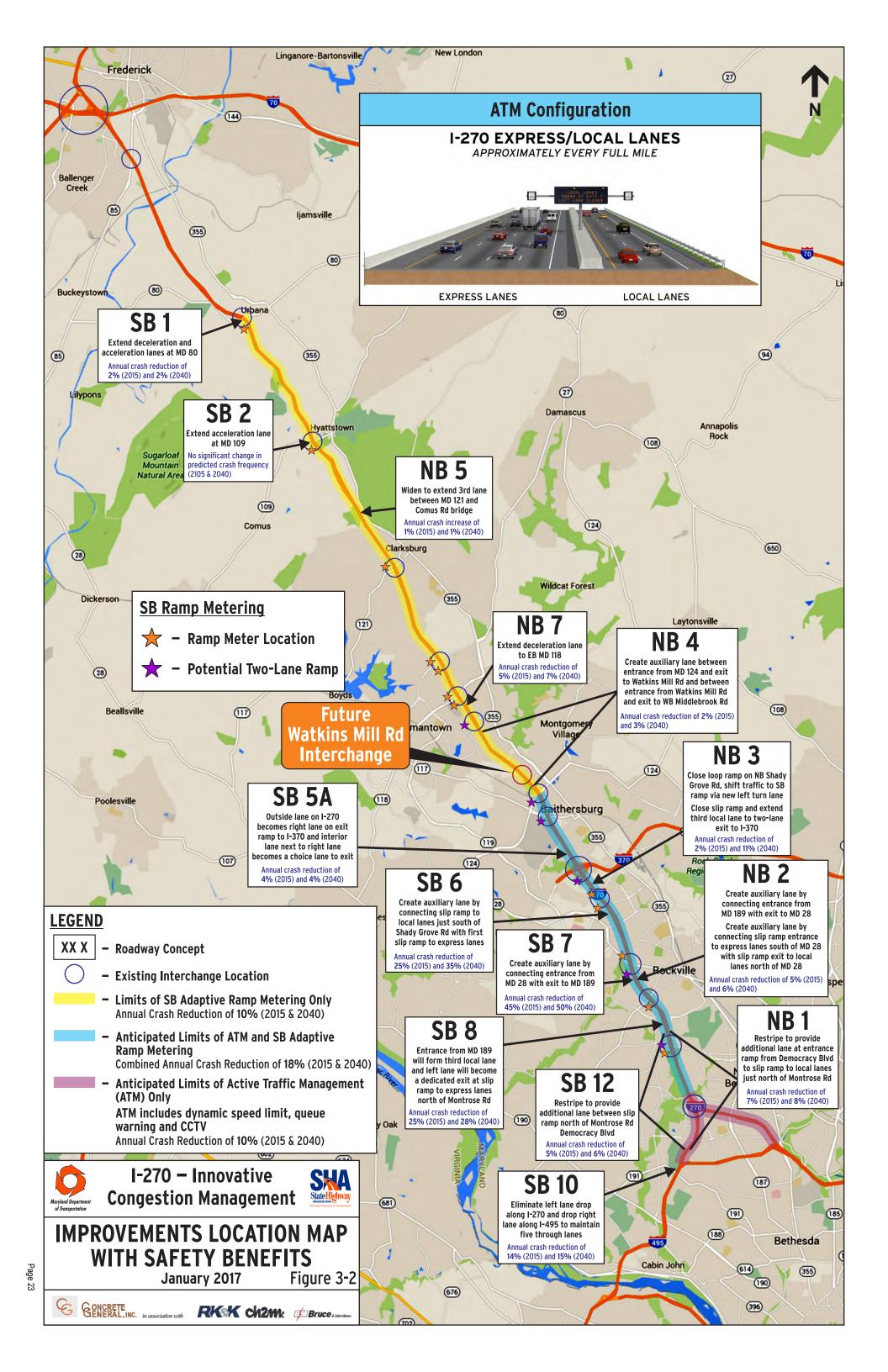
- Roadway improvements that reduce the number and severity of crashes at specific bottlenecks and high crash locations; and,
- Technology-based improvements that reduce the number and duration of crashes, as well as improve incident management capabilities along the corridor.

Proposed roadway improvements that address specific bottlenecks and high crash locations include extending acceleration and deceleration lanes, re-striping to provide an additional lane where there is an existing lack of capacity, reconfiguring interchange ramps, and limited widening.

Technology-based improvements proposed for the I-270 corridor include:

- Adaptive ramp metering along southbound I-270 to optimize the rate of traffic flows entering I-270 and to improve safety along the mainline in the vicinity of entrance ramps;
- Active Traffic Management (ATM) strategies to improve safety and reduce the level of non-recurring congestion by harmonizing speeds and providing advance queue warnings; and
- Virtual weigh stations adjacent to the truck weigh stations to eliminate friction caused by heavy vehicles entering the traffic stream at low speeds, thereby reducing the number and severity of crashes.


Figure 3-2 shows the location of the improvements developed by the CGI Team alongside the quantified safety benefits of each. For additional details about these concepts, including detailed scope and display sheets, please refer to Appendix C.


Implementing this approach will provide motorists with a safer I-270 and increase mobility by reducing the number, severity, and duration of incidents. Under our program of improvements, the number of total predicted crashes along I-270 would be expected to be 105 fewer crashes per year based on 2015 crash frequencies and is estimated to be more than 140 fewer crashes per year by the design year 2040. Severity of crashes will also be reduced with an expected reduction of 40 fatal and injury crashes based on 2015 frequencies and 60 fatal and injury crashes in the design

Safety

year 2040. The technology-based improvements will directly reduce the number and severity of secondary incidents that occur at the back of queues during non-recurring congestion, as well as indirectly reduce duration by improving incident response capabilities at CHART.

Figure 3-1. Number of Crashes by Crash Type along I-270, 2011 to 2013.

3 Safety

Defining Improvements to Address Safety Problems

Roadway Improvements: With the exception of the deceleration lane to the exit ramp from southbound I-270 to MD 80 (SB 1), a frequent crash area, the majority of proposed roadway improvements were initially identified to reduce congestion and improve travel time. The collection of roadway improvements was selected based on considerations of safety, mobility, operability/maintainability/adaptability, and cost.

Roadway improvements were evaluated individually using the quantitative methods for estimating change in crash frequency as described in Part C of the AASHTO *Highway Safety Manual* (HSM), using the FHWA approved Enhanced Interchange Safety Analysis Tool (ISATe).

Adaptive Ramp Metering: Ramp metering has been shown to enhance safety by breaking up platoons of vehicles that are entering the freeway and competing for the same limited gaps in traffic. By allowing for smooth merging maneuvers, collisions on the freeway can be reduced.

Adaptive ramp metering will be deployed along southbound I-270, but not along northbound I-270. Metering is most effective when deployed on a corridor-wide basis to reduce overall system delay and promote equity by balancing any ramp delays for all users. Such a system-wide approach is not possible for the northbound direction where much of the traffic entering I-270 comes from the Capital Beltway, an access point that cannot be readily metered.

The HSM does not address ramp metering in the available predictive models in Part C. Instead, the CGI Team applied analysis methods consistent with the guidance and approach to quantitative safety analysis provided in Part D of the HSM to estimate the change in safety performance due to ramp metering.

ATM strategies: The process for identifying limits of ATM strategies was based on the FHWA *Active Traffic Management Feasibility and Screening Guide* (FHWA-HOP-14-019). The CGI Team is proposing to implement the following ATM strategies along I-270 in both directions with anticipated limits between the I-495 and the northern limit of the express/local configuration:

- Dynamic Speed Limits (DSL) This strategy adjusts speed limit displays based on real-time traffic, roadway, and/or weather conditions. This "smoothing" process helps minimize the differences between the lowest and highest vehicle speeds, thereby improving safety and reliability by reducing the likelihood of rear-end crashes. DSL is aimed at reducing the number and severity of crashes. DSL will provide regulatory or advisory speed limits, based on coordination with SHA and the Maryland State Police (MSP).
- Queue Warning (QW) This strategy involves real-time displays of warning messages (typically on dynamic message signs, or DMS) along a roadway to alert motorists that gueues or significant slowdowns are ahead, thus
- improving safety by reducing rear-end crashes due to vehicles decelerating quickly. QW will be included as a part of our ATM solution to complement DSL, and is useful in informing drivers as to why the speed limit is being reduced. QW is aimed at reducing the number and severity of secondary crashes, or those that occur in the queues resulting from congestion caused by the initial crash. QW thereby reduces the total incident duration.

In addition to the DSL and QW strategies selected for I-270, the ATM deployment will be paired with the addition of CCTV cameras (with pan, tilt, and zoom capabilities) on the DSL / QW pedestals, as described in Section 2. As shown in Figure 3-2, there will be pedestal-mount DMS that include the QW, a CCTV camera, speed detectors, and DSL on mast arms approximately

ATM is defined by FHWA as "the ability to dynamically manage recurrent and non-recurrent congestion based on prevailing and predicted traffic conditions." Automated and dynamic ATM deployments increase throughput and safety "without delay that occurs when operators must deploy operational strategies manually." Adaptive ramp metering, dynamic speed limit, and queue warning strategies will be deployed in combination to meet system-wide needs of mobility and safety along I-270.

every mile. In between, there will be a pedestal-mount CCTV camera, speed detector, and DSL on mast arms. North of the spurs, the DSL will have different speed limit displays for local and express lanes.

Safety

Two ATM strategies that were initially considered for I-270 but were eliminated from the proposed solution were dynamic lane assignment (DLA) and dynamic shoulder lanes (also known as hard-shoulder running). DLA was eliminated from consideration and is not included in the CGI Team's proposal for the following reasons:

- Crash types and causes: Nearly half of all crashes along I-270 (49%) are rear-ends, and in some of the highest crash segments, the percentage of rear-end crashes is even higher. Moreover, a large majority of the crashes along I-270 have either "followed too closely" or "too fast for conditions" listed as the probable cause. The combination of DSL and QW strategies is best suited to address such crash types and causes. DLA focuses on safely merging traffic from a lane that is closed ahead to the adjoining open lanes, thereby reducing side-swipe crashes which constitute only 14% of all crashes along I-270.
- Cost: DLA requires lane control signs to be installed over every lane. This would entail large and costly gantries spanning the entire width of the roadway every ½ mile (+/-). While this would likely help to further decrease crashes particularly sideswipe types such an approach would not be as cost-effective as our proposed concepts.
- Risk: Proper operation of DLA would require an enhanced decision support system and significant integration with the existing CHART system. The maintenance and operation of DLA would increase the burden on SHA and CHART.

Dynamic shoulder lanes, or hard-shoulder running, was eliminated from consideration and is not included in the CGI Team's proposal for the following reasons:

- Operational Flexibility: Often emergency response vehicles use the shoulder to access the incident scene. Not having the shoulder available would adversely affect the safety of the driver of a vehicle that is disabled and/or in an incident which in turn would adversely affect the mobility of other drivers on the road. If dynamic shoulder lanes were implemented, it would be necessary to implement some form of DLA to close the shoulder to traffic as part of the incident management process, thereby further increasing project costs and system operator responsibilities similar to a full scale DLA deployment. During incident management activities, if the shoulder were to be closed, traffic would need to merge back into the general purpose lanes. During congested periods, when hard-shoulder running would be implemented, the additional merge necessary for incident management activities would introduce additional friction that may lead to additional crashes.
- Cost: Mitigation techniques would be necessary to address the loss of shoulder functions noted above. Typically, this would include constructing supplemental emergency pull-off or refuge areas which would add construction costs.

Virtual Weigh Stations: Virtual weigh stations are a modern approach to commercial motor vehicle weight, height, and safety enforcement. Virtual weigh stations are proposed along northbound and southbound I-270 near the existing location of the weigh station facilities south of MD 109. There is limited data available about the safety benefits for general road users associated with the implementation of virtual weigh stations; however, the virtual weigh stations will reduce the number of trucks that must diverge and merge with I-270 traffic to access traditional weigh stations. This will likely reduce both the number and severity of incidents, although there are no established methods for quantifying the benefit. Additionally, there are several safety guidelines separate from height and weight requirements, such as speed, lights, brakes, steering, tires, suspension, and regulated downtime that do impact the safety of the traveling public. Virtual weigh stations are associated with increased safety on the roads by removing violators from the traffic stream.

The safety improvements of the virtual weigh stations proposed by the CGI Team are not quantified, but will be an added benefit to SHA beyond the predicted crash reductions associated with the other proposed improvements.

3.1 Number/Duration/Severity of Incidents & Incident Management

Number of Incidents

Roadway Improvements: The safety benefits of individual roadway improvements were evaluated by determining the difference between the predicted crash frequencies using the ISATe tool based on existing and proposed conditions. The HSM methodologies predict the long-term crash frequency by crash severity. Table 3-1 summarizes the difference in

Safety

predicted average annual total crash frequency for both present year (2015) and future year (2040) traffic volumes. Negative values in Table 3-1 indicate a reduction in annual crashes due to the proposed improvements. Detailed analysis results, including the difference in estimated crash frequencies by crash severity for each roadway improvement, are found in Appendix H.

Table 3-1. Proposed to Existing Condition Comparison of Predicted Crash Frequency (2015 and 2040).

•			
Roadway Concept	Difference in average number of crashes per year		Notable Safety Impacts
	2015	2040	
SB 1	-0.44	-0.67	 Decrease in total crashes, property damage only (PDO); no anticipated impact to fatal and injury crashes
SB 2	0.04	-0.06	■ Decrease in PDO
SB 5A	-0.61	-0.66	 Decrease in total crashes, injury and PDO; no anticipated impact to fatal
SB 6	-2.39	-4.01	Decrease in total crashes and all severities
SB 7	-11.57	-16.48	 Decrease in total crashes and all severities; largest anticipated benefit (total, fatal and injury) SB concept
SB 8	-5.45	-7.94	 Decrease in total crashes and all severities; third highest anticipated total crash benefit of the SB roadway concepts; second largest for fatal and injury
SB 10	-2.80	-3.38	 Decrease in total crashes, injury and PDO; no anticipated impact to fatal
SB 12	-7.07	-9.16	 Decrease in total crashes, PDO; second highest total crash benefit of the SB Concepts; crash benefit primarily PDO
Total SB Improvements	-30.29	-42.34	
NB 1	-8.57	-12.02	 Decrease in total crashes, PDO; highest total crash benefit of the NB Concepts; crash benefit primarily PDO
NB 2	-1.49	-2.52	 Decrease in total crashes, fatal and injury; second highest total crash benefit of the NB Concepts; decrease in crash severity
NB 3	-0.58	-5.18	 Decrease in total crashes, fatal and injury; decrease in crash severity
NB 4	-1.51	-2.49	■ Decrease in total crashes, PDO
NB 5	0.13	0.12	■ Decrease in PDO
NB 7	-0.28	-0.45	Decrease in total crashes and all severities
Total NB Improvements	ments -12.30 -22.54		
Total Improvements – Both Directions	-42.59	-64.90	

As shown in Table 3-1 the expected net impact is a decrease in predicted annual crashes for the build conditions compared to the existing or no build conditions. Additionally, the predicted safety benefit is estimated to increase even as traffic volumes grow between existing and design year 2040. As a whole, the collection of roadway improvements is predicted to reduce the predicted annual number of crashes by more than 9% (65 crashes in 2040) within the localized concept limits, compared to existing or no build conditions.

Concepts SB 1, SB 2, and NB 7 are predicted to reduce the number of incidents because these improvements increase the length of deceleration and acceleration lanes and contribute to a reduction in rear-end and sideswipe crashes from vehicles decelerating quickly or merging within a short distance. Concepts SB 6, SB 7, SB 8, SB 12, NB 1, NB 2, and NB 4 provide an additional travel lane to address recurring congestion and contribute to a reduction in rear-end crashes.

Safety

Concept SB 10 is expected to reduce the number of sideswipe crashes associated with the existing left-lane drop by providing the merge on the expected right side of the roadway. Concept NB 3 will eliminate a source of friction by removing a merge point and eliminate a weaving segment, both of which will contribute to a reduction in sideswipe crashes.

It should be noted that not all of the roadway improvements result in reductions in crash frequency. Concept NB 5 is predicted to increase the total number of crashes per year by 0.13 and 0.12 in years 2015 and 2040, respectively. This concept was retained in the proposed program of improvements because the predicted increase in the annual number of crashes is marginal and multiple factors including mobility, operability/maintainability/adaptability, and cost were also considered in selecting the overall program of improvements.

Adaptive Ramp Metering: Crash modification factors (CMFs) were developed based on the experiences in the US locations documented in the FHWA Ramp Management and Control Handbook, and applied to estimate the change in

crashes as a result of implementing ramp metering. In addition to data in the Ramp Management and Control Handbook, the FHWA CMF Clearinghouse contains a single CMF for ramp metering of 0.64 which, indicates a 36% reduction in total crashes. However, the CMF is based on a single study of nineteen ramp meters in northern California.

Ramp metering is expected to result in 24 fewer crashes each year.

The CGI Team determined that a 10% reduction in crashes along southbound I-270 is appropriate for those segments where adaptive metering will be deployed. Relative to the crash reductions experienced in other locations in the US, the assumed 10% reduction is a very conservative value; but for the purpose of predicting future crash reductions, the CGI Team believed such a cautious approach was most appropriate. This equates to an annual reduction of 24 crashes along SB I-270 between MD 80 and the Y-split.

Active Traffic Management: Similar to adaptive ramp metering, CMFs were developed based on the experiences in the US locations documented in the FHWA *Active Traffic Management Feasibility and Screening Guide*, and applied to estimate the change in crashes as a result of deploying DSL and QW. In addition to the benefits documented in FHWA's *Active Traffic Management Feasibility and Screening Guide*, the CMF clearinghouse contains a single CMF for variable speed limits of 0.92 which indicates an 8% reduction in total crashes; however, the CMF is based on deployment in St. Louis, Missouri and includes only one year of after data.

ATM are expected to result in 41 fewer crashes each year.

The experience in Portland, Oregon most closely resembles what is proposed for I-270 for the deployment of ATM strategies (i.e., DSL and QW, with no DLA). Portland has shown the highest reduction in crashes of the US ATM examples at 21%. As was the case for the ramp metering crash reduction

prediction, the CGI Team went with a conservative approach, assuming a 10% reduction in crashes along those segments where DSL and QW strategies will be deployed. Using a 10% CMF, while much less than the Portland experience, is closer to the results from ATM in the US. This equates to an annual reduction of 41 crashes along the I-270 segments identified for the implementation of ATM.

Combined Impacts: The previous discussions have addressed the predicted reduction in crashes from roadway improvements, adaptive ramp metering, and ATM on an individual strategy basis. Figure 3-2 shows the predicted reduction in crashes for the entire I-270 corridor incorporating all of the proposed strategies.

There is always the potential situation of double counting some of these crash reductions when multiple strategies are

deployed in the same locations. Therefore, these numbers do not reflect a simple summation of the individual strategy results. Recognizing this possibility, the CGI Team continued its conservative approach to crash reduction and estimated the total reduction in crashes from the recommended strategies as follows:

The total predicted reduction in crashes as a result of our improvements along I-270 is more than 105 total crashes in 2015 and more than 140 crashes in the design year 2040.

 Roadway improvements: The specific roadway conditions are taken into consideration and only the relative difference between the existing and proposed, or expected change in crash frequency, was taken into consideration when estimating the predicted reduction in crashes. These

Safety

estimates are also limited specifically to the area in which the roadway improvements are focused and do not take into consideration other indirect impacts to safety, thereby producing a conservative estimate of benefit and limiting the risk of double counting.

Segments with both ATM and ramp metering (i.e., SB I-270 from around MD 124 to the Y-split) are assumed to have a net 18% reduction in crashes. This is slightly less than the 10% + 10% = 20% reduction that would occur from a simple summation of the assumed crash reduction values presented above. It is important to recognize that ramp metering and ATM target different types of crashes. ATM-related crash reduction will tend to focus more on rear-end crashes and those incidents where the primary cause is excessive speed for the conditions (DSL) or following too close for the conditions (QW); whereas ramp metering, providing a smoother merge process, focuses more on side-swipe crashes during peak period conditions when congestion is at its greatest. Both strategies complement one another. Moreover, in developing the crash reduction factors for ATM along I-270, the CGI Team focused on ATM deployments in the US where ramp metering was already operational. As such, the CGI Team believes any overlap or double counting is minimal.

Duration of Incidents

The reduction in the duration of incidents has been qualitatively included in our analyses, but there are limited tools and data available to quantify the reduction. The targeted roadway improvements are not expected to impact the duration of incidents; however, the technology-based improvements are included specifically to address incident duration.

Although ramp metering will likely not directly impact the duration of incidents, it will be very beneficial in managing traffic upstream of a crash site. By being an adaptive approach, the rate of release of entering traffic along I-270 will automatically adjust in response to congestion and delays caused by crashes and other incidents.

DSL and QW strategies will reduce the duration of incidents along I-270, primarily by reducing the number of secondary incidents that occur within proximity to a primary incident when roadways are at less than capacity. In many respects, they can be viewed as an extension of the primary incidents' duration. No statistics were available to quantify the impact, but based on the results from Europe, it is envisioned that the use of DSL and QW, coupled with adaptive ramp metering to reduce the flow rate into the congested area resulting from a primary crash, will result in a reduction of secondary crashes and a reduction in the duration of issues associated with the primary incident.

The addition of CCTV on DSL / QW pedestal poles is expected to improve incident management and response times along these I-270 segments to be more comparable to other SHA roadways that have full coverage CCTV. Incident response is one aspect of incident duration. In 2014 CHART's average response time was 11 minutes, and the average incident took 23 minutes to clear. In 2013, the last year for which crash data was collected, the average incident duration in Maryland was approximately 22 minutes while the average incident duration on I-270 was more than 25 minutes.

Severity of Incidents

Our program of improvements includes an emphasis on reducing some of the most impactive crashes to I-270 – those that result in fatalities or injuries. These crashes have an outsized cost to society at large and reducing them falls into the goals of FHWA's Vision Zero initiatives. Additionally, these types of crashes have an outsized impact on the operations of I-270, typically requiring longer response and clearance times, compromising mobility for hours. A key finding of our predictive safety analysis of the roadway improvements is that in some locations, while the change in the number of total crashes is expected to be small, the number of fatal and injury crashes is expected to be reduced at a rate greater than the total number of crashes. Specifically, for roadway improvement concepts NB 2 and NB 3, the predicted crash frequency for fatal and injury crashes are predicted to decrease, while the predicted number of property PDO crashes increases slightly. See Appendix H for a detailed summary of the estimated difference in crash frequencies for 2015 and 2040.

There is limited data regarding the impact of ramp metering on crash severity; however, as reported in the FHWA *Ramp Management and Control Handbook*, Detroit experienced a greater decrease in injury crashes relative to the overall total decrease in crashes. In other locations, a single crash reduction for all crash severities was reported.

Similarly, there is limited data regarding the impact of ATM strategies on crash severity; however, the speed harmonization benefits of DSL and QW are likely to result in reduced crash severity.

3 Safety

Impact on Incident Management

The addition of CCTV cameras along the 12 (+/-) miles on I-270 between I-495 and the end of the local/express roadway configuration to the north is expected to improve overall incident management response by CHART. Following deployment, the average incident response times along this I-270 segment will more closely match the lower response times along other freeway segments in Maryland that do have full CCTV coverage.

In 2015, the CHART response times for incidents on I-270 were greater than 12 minutes during the AM peak, greater than 11 minutes during the PM peak, and greater than 13 minutes during off-peak periods. In contrast, the response time for incidents along I-95 were approximately 8 minutes during both peak and off-peak periods. With the exception of incident response along the Capital Beltway during the AM peak, which also experienced incident response times greater than 12 minutes, the I-270 Corridor experienced the longest durations of incidents for major roads in the state of Maryland. Additional CCTV cameras will reduce response times by providing a way to identify and confirm incidents in locations that do not currently have video coverage. Faster identification and confirmation of incidents will lead to faster notification of emergency responders.

It should also be noted that the potential negative incident management impact was one of the reasons that the CGI Team did not include hard shoulder running as part of the recommended strategies. One of the key functions of a shoulder is to provide first responder access and a means to bypass congestion to quickly reach an incident scene. Opening the shoulder for traffic flow during peak periods essentially takes away this shoulder function. DLA would be necessary as a mitigation technique to maintain access to incidents during hard-shoulder running operations. During incident management activities, operations staff would also need to determine which segments of the shoulder should be closed to traffic to improve emergency access, followed by the actual tasks necessary to close the shoulder—changing lane control signs and changing DMS messages to warn vehicles that the shoulder is closed and that traffic needs to merge back into the general purpose lanes.

3.11 INNOVATIVE TECHNOLOGIES OR TECHNIQUES

By definition, ATM strategies and adaptive ramp metering are innovative in that they are relatively new and have not been widely adopted and implemented in the US. In contrast to emerging technologies that have not been tested, have a higher risk of failure, and/or would not be compatible with the existing CHART infrastructure, the solutions proposed by the CGI Team are more leading edge in nature with proven success in initial

Innovative strategies and technologies, such as active traffic management and adaptive ramp metering, are the primary approaches for achieving the safety goal along I-270.

deployments. The adaptive ramp metering and ATM strategies proposed for I-270 have been successfully deployed to provide significant safety and mobility benefits in Europe plus a few (and growing number of) implementations within the US. Moreover, several vendors have ATM and adaptive ramp metering software packages available, thereby helping to minimize costs and risks.

A potential issue with deploying these innovative approaches is that the technologies and the associated operational concepts will be very new to the drivers of I-270. Accordingly, the CGI Team is committed to supporting SHA with education and outreach activities. Such efforts will be important for the corridor stakeholders to understand how ATM and adaptive ramp metering work, thereby helping to achieve the maximum possible benefits.

The recommended innovative strategies can also set the stage for even further innovation and new technologies in the future as discussed in Section 4.

3.III MITIGATION FOR NON-STANDARD DESIGNS

The CGI Team's approach is based upon getting the most benefit out of SHA's \$100M project budget. As such, the foundation of our proposed improvements, both roadway and technology-based, uses a performance-based practical design (PBPD) philosophy and approach. This "design up" approach allows designers and decision makers to develop solutions that meet the project purpose based on explicitly defined goals, objectives, and transportation performance needs, in contrast to the traditional "top down, standards first" approach. As such, the CGI Team has explored mitigation strategies for locations along the I-270 Corridor that do not meet typical design standards in order to provide for a safer I-270 corridor while maximizing the use of available budget.

Safety

Roadway Improvements: While there are several important elements to practical design, we have developed our improvements based upon a careful engineering evaluation of the existing conditions, site constraints, and engineering judgement to identify locations where typical design standards can be modified to address the project goals. Using these approaches, we are able to propose more roadway improvements over a greater portion of the project limits than would be possible using traditional roadway improvement techniques. Our proposed improvements include restriping the mainline, reconfiguring the local lanes in several locations, and extending acceleration and deceleration lanes within existing shoulders. Each of these approaches addresses an identified mobility or safety issue, but does so in a manner that does not fully follow established design guidelines for lane width and/or shoulder width.

Utilizing FHWA's ten controlling criteria for design, the proposed roadway improvements will fall below the

Attributes of Performance-Based Practical Design

- Develop alternative solutions that meet the project purpose based on explicitly defined goals, objectives, and transportation performance needs,
- Utilize relevant, objective data to inform decisions, along with engineering judgement,
- Base project decisions on critical examination of geometric and operational elements,
- Work within constraints and minimize potential impacts,
- Consider whether the same investment of money would yield a greater return on investment if applied to other system needs and/or priorities, and
- Evaluate how the preliminary design compares to the applicable design standards, and identify any design exceptions.

minimum AASHTO standards for lane width and/or shoulder width and, therefore, will require design exceptions. The CGI Team will collaborate closely with SHA to document the design exceptions in accordance with FHWA's *Mitigation Strategies for Design Exceptions*. Members of the CGI Team have extensive experience evaluating, documenting, and receiving approval for design exceptions. We are confident that the design exceptions required for this project will be approved based on the safety analysis we have completed as part of this proposal effort, mitigation approaches we have taken while developing the proposed improvements to offset the potential negative effects of the proposed design, and engineering judgment about the operational realities of the existing and proposed configurations. As documented above, we have completed a safety analysis of all proposed roadway improvements, and all would either have marginal effects on safety or improve safety.

The proposed improvements already include elements that attempt to mitigate the effects of reduced lane and shoulder width. For example, along the I-270 mainline we are proposing that, where reasonable, at least one full shoulder be provided. Typically, this would be the right shoulder. This approach necessitates limited widening in locations where there is insufficient roadway width to accommodate restriping to provide an additional lane and at least one full shoulder. For improvement SB 12, which involves restriping the mainline of I-270 from just north of Montrose Road to south of Democracy Boulevard, widening is proposed from south of Tuckerman Lane to south of the Y-split interchange. This approach ensures that there is a full shoulder to accommodate stopped vehicles and emergency response vehicles in this segment. For the improvements along the local lanes, such as SB 6, widening is impractical in many locations because of roadside retaining walls or noise walls. However, in these locations the proposed reconfigured roadway segments where shoulders would be reduced would be limited in extent to at most one-half mile (typically much less). This limited distance with no full shoulders is mitigated by the fact that at least one full shoulder would be provided before and after these segments.

Technology-based Improvements: The proposed technology-based improvements were chosen to meet typical design standards in a cost effective manner. Thus, mitigation strategies are not necessary for deployment of adaptive ramp metering, ATM strategies, CCTVs, or virtual weigh stations. Instead, these techniques help to mitigate existing conditions where I-270 does not meet typical design standards by improving operations and safety.

In closing, the CGI Team believes the proposed improvements offer SHA the best value and meet the safety goal of the project. We are committed to working closely with SHA to further refine the proposed improvements to maximize the ultimate safety benefits.

Section 4

Operability/ Maintainability/ **Adaptability**

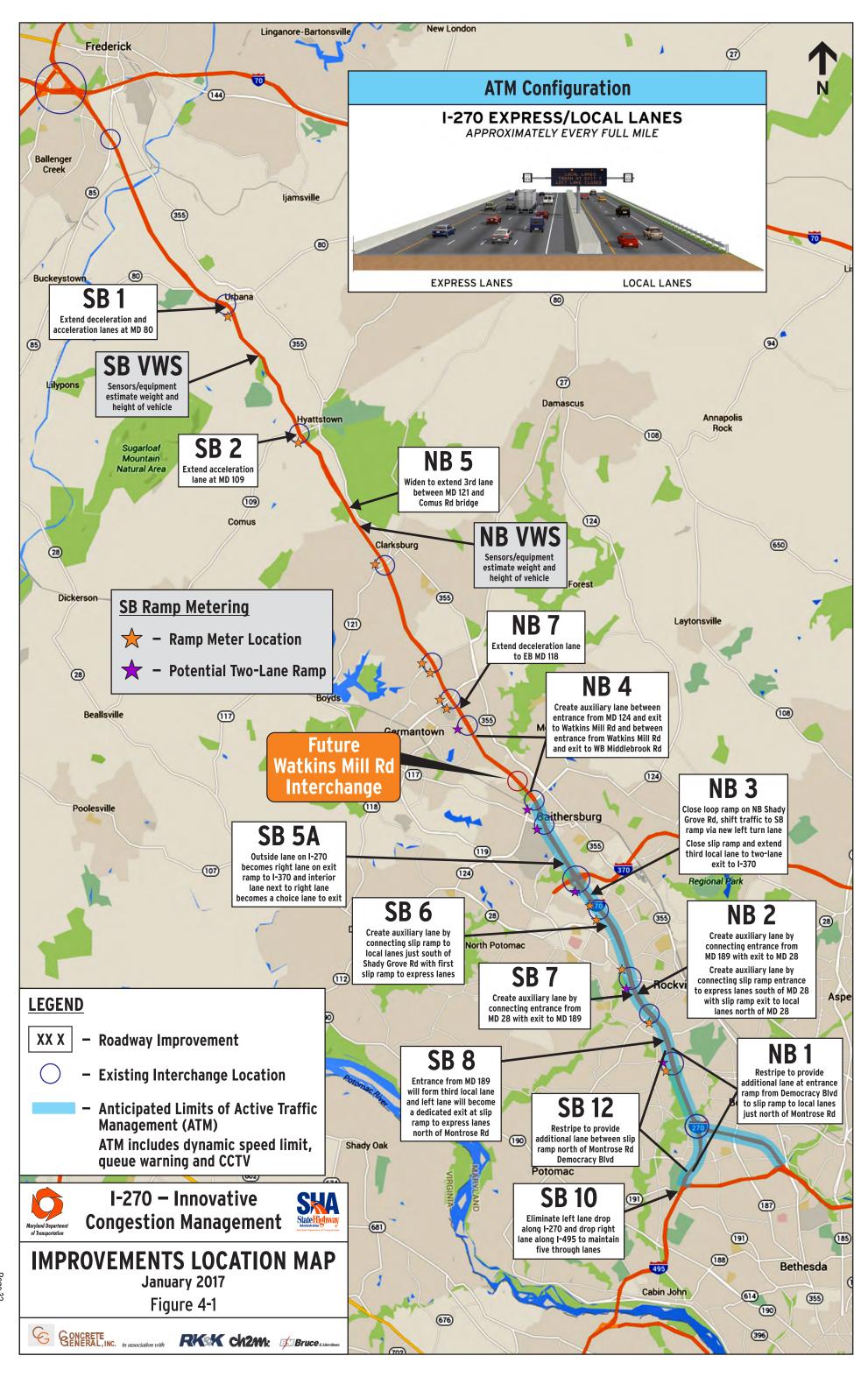
Submitted by:

The CGI Team understands SHA values solutions which will provide for ease of operations and maintenance while still addressing the mobility and safety goals now and in the future. The CGI Team improvements along I-270 will provide tangible improvements to mobility, safety, and trip predictability without significantly increasing the cost or complexity of SHA operations and maintenance needs and activities. Further, our improvements are adaptable to future transportation technological advancements. Compatibility and integration of the proposed solutions with SHA's existing infrastructure, including CHART, are key considerations in developing these proposed improvements as these are technologies SHA staff is familiar with operating and maintaining. The innovative strategies proposed by the CGI Team are not only adaptable to future advancements, but set the stage for the future of transportation.

The CGI Team has developed improvements addressing SHA's goals of improved mobility and safety while considering operations and maintenance needs. Our proposed improvements are a combination of **pavement** (roadway) and **non-pavement** improvements (technology-based) which will combine to substantially improve mobility and safety along I-270:

- Roadway improvements to address bottlenecks and congestion at 14 locations by widening ramps, lengthening acceleration or deceleration lanes, creating auxiliary lanes and reconfiguring exit lanes. Refer to Section 2 for details of the roadway improvements.
- Adaptive Ramp Metering to optimize the rate of traffic entering I-270 and to improve safety in the vicinity of entrance ramps,

CGI Team Program of Improvements


- Roadway Improvements
- Technology-based Improvements
 - Adaptive Ramp Metering
 - Active Traffic Management
 - Virtual Weigh Stations
- Active Traffic Management (ATM) strategies to improve safety and reduce the level of non-recurring congestion,
- Virtual Weigh Stations to improve the operations of commercial vehicles along the northern segments of I-270. Each of these proposed improvements has associated operations and maintenance requirements. This section focuses on those requirements and how the proposed improvements are adaptable to future technological advancements. Figure 4-1 shows a map with the location and brief description of each improvement. For additional details about these improvements, including detailed scope and display sheets, please refer to Appendix C.

Functionality of Technology-Based Improvements

In order to properly discuss operability, maintainability, and adaptability, it is important to provide a summary of the proposed operations and functionality of our non-pavement technology-based improvements:

Ramp Metering: The CGI Team will deploy ramp meters at 18 of the southbound entrance ramps along the corridor (all ramps from MD 80 to Montrose Road). The ramp meters will regulate the flow of vehicles onto the southbound I-270 mainline by using traffic signal displays on each of these ramps to hold vehicles for a short period of time (e.g., 4 to 9 seconds) before they are released onto southbound I-270. With adaptive operations, metering rates will be optimized based on real-time mainline flows and ramp demands on a corridor-wide basis. It is envisioned ramp metering will operate primarily during the AM peak period, but will be triggered when volume thresholds are reached (such as when a major incident or special event occurs).

The ramp metering software proposed utilizes queue, demand, passage and mainline detectors to determine the metering rate (i.e., the rate at which vehicles are released, which translates into the number of vehicles allowed to enter the freeway each hour) at each ramp. The system will include queue detectors near ramp entrances to detect backups, allowing metering rate modifications to avoid spillback onto the arterial and local roadways. The ramp metering locations will have communications connections, similar to SHA's standard for new traffic signal systems (Ethernet network using cellular modems). The peer-to-peer technology employed by the proposed system promotes an adaptive metering approach, allowing mainline detectors at any ramp meter location to control the metering rate at a single ramp meter location or many ramp meter locations, without requiring a central management software. This feature is important because it allows the system to address major bottleneck locations by adjusting the metering rate at multiple upstream ramp locations, subject to override by the queue detectors, thereby providing traffic responsive (adaptive) control on a system-wide, equitable basis. The system has the functionality to operate with pre-determined ramp metering rates based on time of day plans (TOD); however, it is expected this mode of operation will be the exception, and the ramp meters will typically operate in adaptive mode. Our Team will configure the ramp meter locations to operate in adaptive mode with minimal oversight from SHA personnel including alarm notifications if issues arise.

Active Traffic Management: The CGI Team proposes ATM approximately between I-495 and the northern limit of the local / express lane configurations on the I-270 mainline. The ATM system will consist of dynamic speed limits (DSL) displayed on small full-color Dynamic Message Signs (DMS) installed on mast arms over the roadway (with separate signs over the local and express lanes) at nominal ½-mile intervals. Our Team evaluated lane-by-lane dynamic lane control as part of the ATM system but determined the additional cost and sign clutter associated with gantries spanning the entire roadway did not provide the best value to SHA, particularly since our solution maintains minimum

ADVISORY DSL SIGN

shoulder widths at almost all locations and does not include part-time travel lanes The CGI Team will work with SHA and the State Police to determine if the speeds displayed should be regulatory (speed limit) or advisory. During the concept of operations phase, we will define operational considerations such as compliance, enforcement, judicial implications, operability, and record keeping. Generally, dynamic regulatory speed limits will provide the tools to achieve better compliance, however will require additional reporting and record keeping considerations which may require third party intervention. Another key consideration will be balancing the desire to keep the operating speed for the HOV lane as close to free flow as possible, while using DSL to smooth travel speeds on the adjacent lanes. The Code of Maryland does allow for DSL under Section 21-802(c). Our proposed system will be adaptable to either approach in the future. Queue warning messages will be displayed on larger pedestal mounted DMS co-located with the DSL at nominal 1-mile intervals. The queue warning messages will indicate where queues exist and reinforce the need to reduce speeds (e.g., "Congested Traffic 2 Miles Ahead; Reduce Speeds). Detectors (located on ATM supports) will provide real-time data for

the dynamic speed limit and queue warning software algorithms. CCTV cameras will be installed on the poles to support and enhance incident management activities. The ATM system will operate on a 24/7 basis. Appendix I shows potential operational scenarios along a segment of I-270.

Our Team is familiar with several turnkey ATM software packages we can deliver within our project budget and will accommodate the system's functional needs. The exact vendor will be selected during the design phase to ensure the best functionality and latest features for SHA for automated operation of the speed limit and queue warning displays. The logic is not applied independently to each location, but takes into account the flow conditions and displays at adjacent signs to ensure no rules, such as maximum decrease in speed

The CGI Improvements will:

- Minimize Operations Costs
- Minimize Maintenance Costs
- Function well today but be adaptable and set the stage for the future.
- Minimize new equipment and personnel after construction is complete.
- Minimize integration with CHART and existing signal systems, while still allowing for it in the future.
- Minimize Life-cycle Cost
- Be Deployed Quickly
- Maintain shoulders in the entire I-270 corridor.

between signs, are violated. The CGI Team will continue our discussions with these vendors, and working with SHA, will develop detailed requirements for a compliance matrix, followed by system demonstrations and final costing. The selected vendor will be the one providing the greatest functionality and least maintenance and operations requirements to SHA, for the most reasonable cost.

The ATM devices (DMS, controllers, detectors) will be connected to a central server (where the ATM software will reside) via the existing MDOT Shared Resource fiber network. The specific location of the server has not yet been finalized; it will not be integrated into the CHART system as part of this project, in order to allow the solution to be deployed quickly and more cost effectively. SHA staff will have access to the ATM system enabling review of the operation, identification of any failures, and manual override of the automated operation if deemed necessary. The proposed DMS for queue warning can be setup to allow overrides from the CHART system, if desired by SHA, in order to aid with dissemination of information to motorists during emergencies. The CCTV will be connected and integrated into CHART's video management system via the aforementioned fiber network.

Virtual Weigh Station: The CGI Team proposed to install Virtual Weigh Stations (VWS) at both truck weigh stations in the northern part of the corridor. It is anticipated VWS will be utilized during weekday peak hours to allow the weigh station along I-270 to be closed to eliminate turbulence associated with trucks entering I-270 mainline. During enforcement periods, a Maryland State Police (MSP) vehicle may be positioned downstream of the VWS location and when a violation is detected by the VWS site, the MSP officer is notified. The MSP officer will then pursue the offending vehicle and direct them to an area (most likely the existing weigh stations south of MD 109) for a secondary inspection. The VWS allows enforcement of truck regulations without needing to force all trucks to exit to a truck weigh station and later re-enter the freeway facility. The use of VWS could reduce personnel and equipment requirements, in order to enforce truck weight restrictions, since only violators will be pursued by MSP instead of all trucks being screened, as under the current weigh station operation along I-270. The proposed VWS locations will utilize the software, policies, and procedures already in place for existing VWS locations. Our sites will utilize the same exact equipment as existing VWS sites to ensure operability, maintainability, and adaptability consistent with existing VWS sites. Refer to Section 5 for additional information on third party coordination.

Additional details for non-pavement improvements will be provided in the Concept of Operations which will be developed by the CGI Team at the onset of design.

4.1 MAINTENANCE, OPERATIONS, PERSONNEL AND EQUIPMENT REQUIREMENTS

The CGI Team's solution includes a plan for maintenance for both pavement and non-pavement elements.

Pavement: Part of our Team's approach is to implement roadway improvements addressing mobility and safety issues in as many locations as possible, maximizing the benefit to I-270 users and the scope of improvements within SHA's available budget. One cost-effective method to achieve this goal is the use of existing shoulders in locations where our Team proposes to reconfigure the existing roadway to provide additional capacity. The highway would be reconfigured to utilize a portion of the existing shoulders as travel lanes while still maintaining minimum width shoulders throughout the corridor. This

The CGI Team Anticipates No New Personnel or Equipment will be Necessary to Operate and Maintain Proposed Improvements

- Devices similar or identical to existing SHA assets.
- Maintenance Skills and Procedures Similar to Existing
- Technology Improvements are Automated Systems
- Field devices remotely accessible through proposed Central Management Software.

would include through lanes, auxiliary lanes, and extended acceleration and deceleration lanes. The improvements which include use of existing shoulders are SB 1, 2, 6, 7, 8, and 12; NB 1, 2, 3, 4, 5, and 7; and at the ramp metering locations where existing ramps would be reconfigured to be two-lanes wide to increase storage and to minimize the likelihood of excessive ramp queues. This shoulder use is targeted at spot locations, and does not constitute hard shoulder running for several contiguous miles along I-270. The specific locations for the use of existing shoulders are shown in the detailed improvement descriptions and display sheets provided in Appendix C.

The CGI Team conducted a pavement analysis of existing shoulders based upon the pavement core and as-built information provided by SHA. This analysis revealed that in all locations where we are proposing to reconfigure the roadway, the existing shoulders are sufficient to support full-time traffic loading. However, in the locations of these improvements the existing shoulder pavement sections would not be considered "full-depth" and as such would not be expected to perform as well as the existing mainline pavement. Once under full-time traffic loading, these existing shoulders are anticipated to have a design life of approximately 15 years before major rehabilitation would be needed. This is approximately 10 years less than the anticipated life of the adjacent mainline pavement. The supporting documentation for our pavement analysis is provided in Appendix D. The CGI Team proposes a straightforward method to address this long-term maintenance issue. Instead of performing a full-depth reconstruction of the shoulder pavement when shoulder condition deteriorates after years of traffic use, we propose SHA complete an intermediate grinding and resurfacing operation. This pavement work would be in addition to the normally programmed pavement maintenance that SHA would complete along I-270. Ultimately, this would result in a more expensive pavement maintenance program, but an approach far less expensive and impactful than full depth reconstruction of the shoulder as part of the initial construction. Avoiding full depth reconstruction of the shoulder will avoid the need to construct and maintain new storm

water management facilities. The CGI Team approach to roadway improvements maximizes benefit and minimizes cost by augmenting existing SHA resurfacing efforts.

Beyond the need to resurface the shoulders, SHA would only need to provide normal programmed pavement grinding and resurfacing for the remainder of the project design period (2020-2040). Utilizing this proposed approach, the existing shoulder could support full-time traffic loading until SHA needs to complete more extensive pavement rehabilitation for the full highway. The future maintenance costs of the intermediate pavement resurfacing are included in our benefit-cost analysis provided in Appendix J.

Non-Pavement: The proposed ATM and adaptive ramp metering systems consist of electronic equipment, including DMS for dynamic speed limit displays and queue warning messages, ramp metering signals, controllers, detectors, and virtual weigh station equipment, which will need to be maintained by SHA. This will entail both preventative maintenance, performed at regularly scheduled intervals for the upkeep of equipment, and corrective maintenance to repair or replace failed equipment and restore normal operations. Such maintenance is necessary to ensure the associated mobility and safety benefits continue to accrue (the life-cycle costs were included in the benefit-cost analysis in Appendix J). While the non-pavement strategies of ATM and adaptive ramp metering are innovative and new to SHA and Maryland drivers, the SHA maintenance staff will be very familiar with the associated hardware. The proposed hardware for detectors, cameras, controllers, signals (for ramp metering) and DMS (for dynamic speed limits and queue warning) are essentially the same as currently used by SHA. While the maintenance effort will increase as a result of additional devices, the knowledge base required by SHA staff to properly maintain the hardware will remain essentially unchanged. Our Team

believes maintenance staff will not be required to learn or implement a new maintenance regimen or procedures for the proposed improvements.

The proposed system will be designed with maintenance and ease of expansion in mind. For example, the ITS-based field devices, such as DMS, ramp signals, controllers, and detectors can be monitored remotely. The CGI Team proposes central management software to perform real-time

The CGI Team Improvements are Designed with Ease of Maintenance in Mind

- No new maintenance regiments or procedures.
- Limited lane closures to access ATM devices.
- ATM and ramp metering can be remotely monitored.

monitoring of the field devices and detection of any abnormal conditions, such as loss of communications, DMS and meter display malfunctions, automatic comparison of current operating parameters with expected values, etc. This functional status information is continuously reported back to the server and can be displayed to operators through the central software, including any alarms identifying a malfunction. The system will log such occurrences. Moreover, the proposed device placement and configuration was developed with ease of maintenance in mind, such as locating DMS on center-mount sign structures such that they will be readily accessible by bucket truck, and no more than one travel lane will need to be closed for maintenance/replacement activities.

Maintenance of the adaptive ramp meter system will be very similar to maintenance SHA already performs for traffic signals throughout Maryland. The only new ramp metering components SHA does not already maintain and stock within existing SHA assets is the Econolite/Safetran 2070 controller with Intelight MaxTime ramp meter software. Since Econolite already holds a contract with SHA for traffic signal controllers and associated equipment, acquiring spare parts and maintenance equipment for the 2070 controller will cause no additional procurement to take place during the long-term maintenance of the system. SHA's skilled traffic signal technicians should be able to quickly learn the programming elements associated with the ramp meter software due to the similarities in menu systems with their current traffic signal controllers. The CGI Team will train SHA signal shop personnel on the MaxTime ramp meter software and MaxView central management software.

Similarly, the maintenance of the ATM system components should be familiar to SHA staff. The DMS for DSL may be a bit different in terms of their design, but the basic maintenance principles SHA currently applies will still be mostly relevant. The detectors and CCTV cameras will be the same as currently used for CHART.

Maintenance for the proposed Virtual Weigh Stations will be completed by the Motor Carrier Division and associated support divisions and contractors. Since the proposed VWS sites will be identical in design to existing sites, the CGI

Team expects no new equipment, spare parts, or personnel will be necessary to maintain and operate the new locations.

In addition to the field hardware, there will be additional software (and the associated servers) and firmware requiring "maintenance", which in this context means being able to call the software vendor whenever a potential "bug" is discovered, ensuring the latest software version is in place an operating, and being able to readily expand the system in the future throughout Maryland. Our Team will address these needs with the selected software vendors in terms of warranty provisions, a statewide software license, and a maintenance agreement which covers on-call support when needed and version updates when they come out (which may be an annual expense to SHA).

As part of the preliminary design and implementation activities, the CGI Team will finalize the following:

- Maintenance program plan, including an assessment of any additional resources required and the associated costs to SHA.
- Training and instruction of SHA staff in the maintenance of the hardware and software associated with the
 ATM, adaptive ramp metering equipment and infrastructure. It will not be necessary for this training to focus on
 all devices since most of the equipment is not new to SHA, but should focus on the software elements which
 will be new to SHA
- Documentation and other manuals on the maintenance of all equipment.

Development of the Maintenance Concept will parallel the development of the system Concept of Operations, so that as the system is defined the maintenance requirements can be defined in greater detail.

Personnel and Equipment Requirements

Once the ATM and ramp metering solutions are installed and become active, and the system has been turned over to SHA, personnel will be needed to support system operations and maintenance. The proposed roadway improvements will have no new personnel or equipment requirements for maintenance or operations. For the purpose of the alternatives analyses, the CGI Team has assumed an additional annual maintenance and operations cost of approximately 5-10% of the capital costs associated with the new ITS field devices. This conservative estimate will be further refined during the Concept of Operations preparation at the onset of the project.

- Operations. A key objective during the CGI Team's analyses of innovative technologies was to minimize the need for active and continuous operator involvement with the associated system software. Dynamic speed limits, queue warning, and adaptive ramp metering operations will be automated to the greatest extent possible, with the software and the controller firmware calculating (in real time, subject to appropriate rules and constraints) the optimum metering rates and speed limits at each location, and displaying the speed limits and any queue warning messages without operator involvement. The automation will be similar to existing SHA systems within CHART including automatic deployment of travel time or weather messages on DMS without operator involvement. Operator involvement will be the exception rather than the rule. Accordingly, our Team anticipates no additional operations staff will be required for the proposed innovative systems. Operations staff will receive training such that they can override the automated system when deemed appropriate, fine tune the various parameters on which automated operation is based, and expand the system sometime in the future.
- Maintenance. Maintenance is expected to be undertaken by SHA's Traffic Operations Division for adaptive ramp metering and SHA's Office of Maintenance Communication Division for ATM via State forces and contractors, therefore incremental maintenance costs for the proposed solutions would be absorbed as part of the regular maintenance budget. Additional spare part inventories may be required as the result of additional field devices. Regardless, new skills will not be required, as all of the proposed equipment is already familiar to SHA maintenance staff. Software maintenance and updates will not require any additional SHA staff, as this will be provided via a software maintenance agreement with the vendors, renewed on a regular basis. Our Team anticipates no new SHA personnel and maintenance equipment will be required for the proposed improvements as part of this project.

Maintenance and operations assumptions, such as no new personnel and maintenance equipment, along with other information on system functions, field hardware and operational scenarios will be confirmed and documented in the

Concept of Operations to be developed at the onset of the project. The American National Standards Institute (ANSI) document, *Guide for the Preparation of Operational Concept Documents* will be used as the basis for developing the Concept of Operations for the I-270 project. As noted in the ANSI Guidance, a good Concept of Operations should tell a story; that is, it should be a narrative, pictorial description of the system's intended use.

4.11 COMPATIBILITY AND INTEGRATION

The CGI Team will perform all the project activities, particularly as they relate to innovative technologies and strategies, in accordance with the principles of systems engineering (as shown in Figure 4-2). This process has already commenced with the "feasibility study/concept exploration" and the associated analyses of various improvements as part of the proposal preparation. Systems engineering is frequently described as a "requirements-driven process" where the system requirements are traced back to operational concepts, which in turn are traced back to the overall project goals and objectives. In addition to the goals of improved mobility and safety, and minimal impact on SHA on-going operations and maintenance activities, the CGI Team has been cognizant of the need for our improvements and technologies to be compatible with the current transportation infrastructure, including potential integration into the CHART system.

Figure 4-2. Systems Engineering "V" Diagram

Compatibility

The CGI Team's solution combines a series of roadway improvements with the deployment of Intelligent Transportation System (ITS) elements including adaptive ramp metering, Active Traffic Management (ATM), and virtual weigh stations. Our Team is proposing to utilize equipment, materials, systems, and procedures currently used by SHA, minimizing the addition of new elements to SHA's current transportation assets and maximizing compatibility. Our solution maximizes compatibility with current infrastructure, meeting SHA's operability/maintainability/adaptability goal for this project. Our solutions have the ability to function independently of the existing CHART system to expedite project

delivery and reduce project cost and risk. The systems will be designed so as not to preclude integration into the CHART system at a later date.

Current Transportation Infrastructure: In developing a solution, the CGI Team specifically sought to include roadway, civil, and ITS hardware elements which are compatible with current SHA standards, practices, and operations, as described below. This approach offers SHA the ability to use products which are currently stocked, are part of the Qualified Products List, are readily available from suppliers, and have familiarity with operations and maintenance personnel.

CGI Improvements will Maximize Compatibility by:

- Using equipment and vendors SHA is familiar with.
- Minimizing the addition of new elements to assets.
- Allowing future integration into CHART.
- Allowing future expansion of the system.
- Completing a systems engineering process as part of the Concept of Operations.
- Following SHA Standards and Specifications.
- Using web browser based Thin applications for Central Management Software.

Roadway Improvements: The roadway improvements proposed by the CGI Team will be designed where possible to meet AASHTO criteria, but modified as necessary based upon sound practical design approaches. The improvements will be constructed based on SHA's *Standard Specifications for Construction and Materials*, the *Book of Standards*, and other applicable SHA references/standards. These solutions will be compatible with the current infrastructure in the I-270 corridor.

Adaptive Ramp Metering: Adaptive ramp metering is a new form of traffic management for SHA. The CGI Team has defined a ramp metering system to minimize equipment new to SHA and to maximize compatibility. Many of the system

components are the exact models SHA currently uses for other applications including the SHA-standard cellular modem and antenna, the Wavetronix Smartsensor HD Radar detector, the Econolite Autoscope video detection camera, and Econolite Size S controller cabinet. However, the system will require some additional components not currently used by SHA including an Econolite 2070 controller and an Intelight 1C Module in the cabinet. For these elements, our Team has selected a vendor SHA is familiar with so there will be compatibility between the old and new equipment.

ATM: ATM is a new form of traffic management for SHA. However, this can be accomplished using many hardware components already used by SHA including dynamic message signs, the Wavetronix Smartsensor HD Radar detector, standard pedestal-mounted sign structures, and standard traffic signal mast arms. The dynamic speed limit signs (DSL) are not standard and since there are many vendors fabricating these devices, the CGI Team would coordinate with SHA during the design phase to select a DSL model acceptable to SHA and would be as compatible with existing DMS models

as possible. CCTV cameras and DMS for queue warning will be compatible to those already in use allowing the devices to be integrated into CHART through normal procedures, if desired.

Virtual Weigh Station: Virtual weigh stations are not new to SHA. The CGI Team is proposing a virtual weigh station installation compatible with SHA's current system including weigh-in-motion sensor equipment, loop

CGI Team's Proposed Software for ATM and Adaptive Ramp Metering will:

- Successfully operate outside of CHART software.
- Integrate into CHART software at a later date, if desired.
- Minimize cost and schedule risks.
- Minimize operations and maintenance costs.

detectors, CCTV camera equipment, piezo sensors, over height vehicle detector equipment, and communication equipment to include a cellular modem. Our proposal to add virtual weigh stations will require no software enhancements. The new location can simply be added to the existing software operated using web based Thin Clients by the SHA Motor Carrier Division (MCD), Cardinal Scale Manufacturing, and Maryland State Police (MSP). Our Team will coordinate with MCD, Cardinal, MSP, and Xerox/Conduent (the current vendor) to provide information and input needed to help make the new virtual weigh station locations operable. It is anticipated new sites will be integrated by working with Cardinal, MCD and the SHA Radio Shop.

Proposed Software and CHART System: The CGI Team recognizes software is a crucial aspect of this project. Software is needed to operate the adaptive ramp metering, the dynamic speed limits and queue warning strategies, and the virtual weigh stations. We recognize CHART's software cannot be modified unless the Maryland Department of Information Technology (DoIT) approves of the modification and administers the work under a DoIT contract. Moreover, it is the Team's understanding any work or enhancements to the CHART system need to be performed by others. As such, the CGI solution is to provide and implement strategies and software that can successfully operate outside of the CHART software. At the same time, the software will be configured such that it can be readily integrated into the CHART software at a later date. This approach allows SHA to implement a solution which can be tailored to this corridor, while avoiding large expenditures and risks due to modifying the existing CHART software and avoiding disruption to existing CHART activities. Additionally, our approach is to provide software which is essentially "off the shelf" so as to minimize cost and schedule risks.

Adaptive Ramp Metering Software: The adaptive ramp metering system will be developed and setup to function independently of SHA CHART, SHA Signal Shop and Montgomery County traffic signal system networks. The CGI Team proposes to use the Intelight MaxTime ramp metering software on the controllers in the field and use MaxView software to view, monitor and operate the adaptive ramp metering system from remote locations. MaxView is a web-deployed system which does not require software to be installed on SHA's operator or service technician computers. The use of MaxTime allows the ramp metering components to be very compatible with SHA systems. MaxTime is adaptable to being integrated into the CHART software or SHA Signal system should SHA desire.

Integration

ATM Software: The CGI Team has already commenced discussions with vendors known to have operational ATM software, including the vendors listed in the text box below (listed in alphabetical order). We did not select a vendor to maximize flexibility during design. The ATM software will reside on a separate server independent of the CHART system, with a workstation or web deployed application provided for SHA to monitor the ATM system and override its automatic

operations when and if required. The CGI Team will work through the systems engineering process to define the needs and requirements of the ATM system relative to what these vendors can provide with their existing products. During the preliminary design phase, the Team will work with SHA to define the ATM software package which best meets the project requirements (in terms of functionality and costs). While this ATM system will not be integrated into CHART as part of this project, compatibility of the ATM system with CHART for future integration will be considerations into the selection of the software package. The CGI Team will work with SHA and DoIT to define the necessary data and command interfaces, protocols, and methods for integrating the ATM software into the CHART system at a later date such that all I-270 data can combined with other

ATM Software Providers

- Coval
- Cubic
- Kapsch
- Q-Free
- Southwest Research
- Siemens
- TransCore

CHART data, and ATM monitoring and control can be accommodated from the CHART workstations including following all guidelines defined by DoIT.

Activities during the software design and implementation phases will include:

- Defining and installing the necessary hardware to operate the ATM software. This includes identifying the location of the hardware (e.g., the CHART facility in Hanover or SHA's Satellite Traffic Operations Center);
- Identifying the placement and communications needs for infrastructure to allow remote access of the ATM and ramp metering software, thereby allowing CHART or SHA Signal Operations operators to interact with the ATM (and ramp metering) system, including override of automated operation when deemed necessary;
- Development of software test plans;
- Development of operating parameters (e.g., rules) to ensure optimum automated operation;
- Testing of the software prior to implementation in the field, and then additional testing (e.g., acceptance test
 period) following installation of the field devices and integration of the devices with the ATM software;
- Documentation, including a user's manual; and
- Training of SHA staff on the operation of the ATM and adaptive ramp meter software.

The CGI Team recognizes the current CHART software does not currently support ATM or ramp metering technologies, however, by using the devices we have chosen for this project, if and when SHA is ready to add those features to the CHART software, our hardware will be adaptable to that change. We will work with SHA to obtain the hardware needed to operate the ATM software. In addition, we will assist in the configuration of the software when implementing the system and arrange for any needed training.

4.III MAINTENANCE, OPERATIONS AND ADAPTABILITY OF INNOVATIVE TECHNOLOGIES

The CGI Team's approach for maintaining and operating the proposed innovative technologies and strategies have been discussed earlier in this Section. Our Team recognizes it is important our proposed improvements are adaptable to future transportation technological advancements, while being compatible with existing transportation infrastructure and represent the latest state of the art technology when deployed.

Technology and operational strategies are continually evolving and advancing, and what is relatively new and leading edge today may be obsolete a decade from now. Beyond the near-term future of integrated systems lies a

The CGI Team's Improvements Are Adaptable by:

- Setting the stage for future CV and AV deployments.
- Using Ethernet networking for communication, similar to the Internet of Things.
- Not forcing SHA to make a policy decision for future deployments in order to construct our improvements.
- Bridging the gap between current technologies and future transportation technologies.
- Installing supports and communication feeds which can be utilized for future DSRC deployments.

world of Connected Vehicles (CV) and Autonomous Vehicles (AV). Connected vehicle technology will enable vehicles, roads and other infrastructure, and smartphones, to all communicate and share vital transportation information, promoting a 360-degree awareness of nearby vehicles and the transportation network itself. These evolving technologies

are not yet ready for widespread implementation, but as Connected Vehicles (CVs) become more ubiquitous along the nation's roadways. including I-270, the design and implementation of ITSbased transportation systems management and operations (TSMO) systems will change. The data rich environment provided by CVs will permit the development of more proactive and predictive

Figure 4-3. Future Transportation Technologies

algorithms for ATM and other operational strategies. Our Team recognizes CV and AV is the future of transportation technology but exactly what the future will look like is uncertain today. Our innovative improvement strategies represent the "next steps" for SHA and CHART to "bridge the gap" between today's technology and CV/AV. Moreover, once deployed, our "smart systems" will set the stage for the next future steps (refer to Figure 4-3).

While our solutions will be adaptive to future transportation technology, they will not force or commit SHA to a specific approach for the future of CV and AV. Our improvements are flexible enough to allow SHA to choose a policy direction for future solutions such as Integrated Corridor Management, the Internet of Things and CV/AV technologies, at a later date. We are avoiding large scale (and expensive) investments in gantries which will span the entire roadway with DMS signs for each lane which will likely be antiquated in a few years when CV technology gains market saturation. By using "off-the-shelf" software products and equipment SHA is already familiar with using, we intend to reduce the risk for high future costs for replacements or upgrades. Our technology based solutions of dynamic speed limits, queue warning, CCTV cameras, and ramp meters will be useful as part of a connected transportation system well into the future.

When the percentage of CVs and AVs will reach this tipping point is a matter of debate, but when it happens, the ITS infrastructure, communication network connections, and supports installed as part of our project can be used for future Dedicated Short Range Communications (DSRC) or other CV technology, perhaps making I-270 a future CV test bed. DSRC is a technology which is expected to be critical for vehicle-to-infrastructure communication as CV and AV vehicles begin to be widely deployed. It is our plan to design the ATM and ramp metering infrastructure (e.g., including spare space in the field cabinets) to accommodate and adapt to CV and AV technology in the future.

The CGI Team improvements will utilize Ethernet based communication networks for all proposed technology based solutions. Transportation and technology industry experts agree Ethernet based networks, working towards the Internet of Things architecture, will ensure our improvements are ready for the future and will not be obsolete in 10 years.

The CGI Team will ensure the newest innovations are incorporated into the design prior to agreement of a Construction Agreed Price (CAP) for constriction to avoid additional costs or change orders. Our Team has not yet selected a software vendor for the ATM system. Since several vendors provide turnkey software features meeting our project needs within the project budget, waiting to make this decision until the design phase allows us to select the package that is the latest, greatest, and most advanced at the time in terms of functionality, while balancing cost and risk concerns. Moreover, our Team recognizes the importance of security for all software products and will ensure SHA is provided the latest version of each software package with a plan for future security patches. Our Team will ensure the newest innovations for technology elements are included in the Construction Agreed Price (CAP), including all necessary integration, software, licenses and training by executing the systems engineering process and working with software vendors and SHA stakeholders through the project process. Our Team will attempt to reduce future costs to SHA by negotiating with software vendors to include the cost of future software releases in the initial implementation cost.

The CGI Team proposes to provide SHA a project which includes roadway improvements and technology-based improvements, is adaptable to the future, and minimizes new maintenance and operations costs after deployment, all while still providing significant improvements for mobility and safety which will last into the future.

Section 5

Well-Managed Project

Submitted by:

5 Well Managed Project

THE CGI SOLUTION

The CGI Team is proposing a two-pronged approach of roadway improvements and innovative technologies and techniques to maximize vehicular throughput, minimize vehicle travel times, and create a more predictable commuter trip along I-270. While the components address both recurring and non-recurring congestion, the roadway improvements focus on relieving today's recurring congestion, and the innovative technologies and techniques focus on managing today's recurring and non-recurring congestion and extending the lifespan of the roadway improvements.

Figure 5.1 summarizes the 14 roadway improvements, and three innovative technologies that comprise our Team's program of improvements, including their implementation schedule. The CGI Team will utilize a Project Management Plan to address communications, coordination, and risk management through a collaborative approach with all stakeholders. This plan will support the project goals and ensure timely implementation of the program of improvements.

5.1. KEY ELEMENTS OF THE D-B PROJECT MANAGEMENT PLAN

Past experience proves that a cohesive and collaborative Project Management Plan (PMP) that includes owner, design and construction professionals is critical to a successful D-B project. We will use our national and international experience to finalize the design of our programmed improvements and leverage our extensive regional construction experience to implement the solutions successfully.

Communications

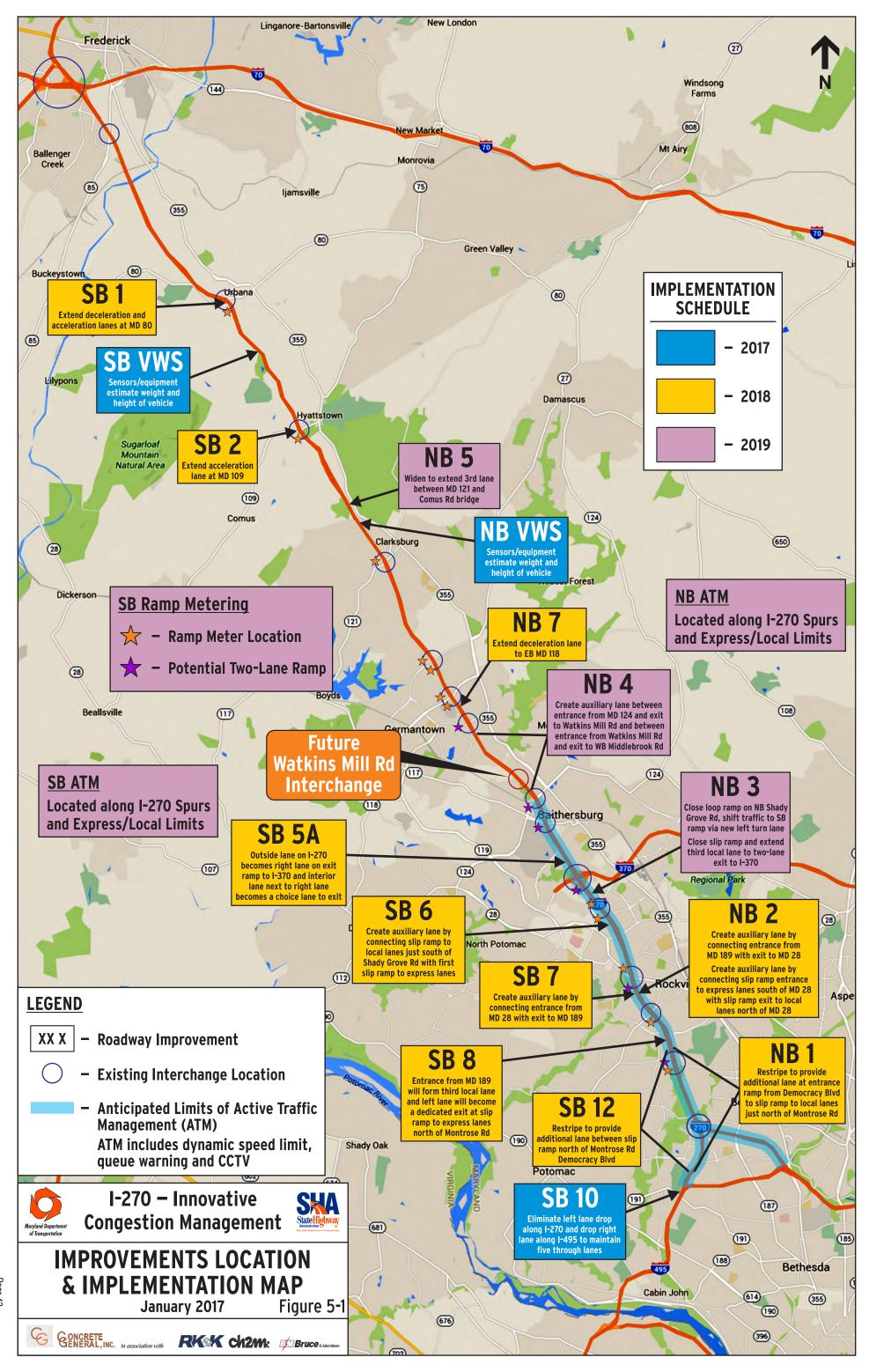
Communication and collaboration are fundamental elements of the CGI Team. We will use a task force approach to administering the project, whereby individual design disciplines are grouped into related Task Forces and responsible parties are identified for facilitating coordination and communication both inside and outside the task force.

Task Force Meetings: Task Force meetings will be held on a regular basis to review progress, verify schedule, identify coordination needs, and resolve issues. To enhance communication and collaboration, each task force will include members of the CGI Team, SHA, and reviewing/permitting agencies as applicable. Additional stakeholder and third party representatives may be added as necessary.

Progress Meetings: Regular Progress meetings will focus on ensuring that the project is meeting or exceeding project goals and expectations, including schedule and cost. The focus of these meetings will be on both design and construction, with topics to be determined as required for each meeting. Typical attendance will include CGI Team design

and construction management, task force leaders, SHA Project Management, and others such as utilities, review/permitting agencies, and stakeholders as necessary.

Partnering: SHA's formal Partnering processes for design and construction will be used by the CGI Team to enhance the collaborative nature of the project and to facilitate effective and timely issue resolution. Our Team members are regular participants in the process and recognize the significant value it brings to the project. We will encourage participation by Montgomery and Frederick counties.


Action Logs: All meetings will include action logs, identifying action items, responsible parties, and resolution timeframes.

Partnering with Stakeholders

D-B Manager Michael Higgins and Design Manager Eric Mellor will ensure that SHA and all stakeholders are active, collaborative participants during all phases of the Project, including weekly progress meetings and Task Force meetings. We will identify desired stakeholder contacts, notification requirements, and use a stakeholder interaction log to regularly report all concerns, findings, commitments, and approvals.

The action logs will be used as the basis for documenting communication needs and issue resolutions. The Task Force Leaders and CGI Team project management will be responsible for ensuring that all action items are addressed.

Document Control: We will use the Aconex file sharing and collaboration tool to ensure that our Team, SHA, permitting agencies, and stakeholders have access to the latest plan information during design to facilitate reviews and comments resolution. During construction, the document control system will ensure that all parties have the latest plans, including all revisions, and that materials certifications are received and working drawings are approved.

5 Well Managed Project

Communication with SHA, Permitting and Regulatory Agencies, Utilities and Third Parties: The CGI Team's goal is to include all parties in our normal work process, communications, and meetings. However, we recognize that this may not work for all parties, and will make necessary accommodations to ensure that all parties remain informed as necessary for the project to proceed and the project goals to be met.

Communications with the Public: The CGI Team recognizes that SHA would take the lead in communication with the public regarding the project. We are prepared to support the SHA as necessary by providing progress updates, displays, website material, and written responses to inquiries to SHA. We will attend and make presentations at public meetings set up by SHA, and develop marketing style materials to explain the improvements being made to I-270.

The CGI Team has implemented similar communication strategies on major projects in the region, including the Intercounty Connector, MD210 D-B, and the Purple Line LRT. We understand the local sensitivities and we will build upon existing relationships to make the I-270 Innovative Congestion Management project a success.

Coordination

The CGI Team will focus on proactively identifying those parties to be coordinated with and ensuring that their feedback is addressed and incorporated into the project. We will use a Task Force approach to project development and coordination, with individual Task Force leaders being responsible for identifying and facilitating all necessary coordination activities. With all parties being welcome at the regular Task Force meetings, most coordination will take place at these meetings. We will also offer the SHA and other stakeholders the ability to co-locate with the CGI Team to encourage an active role in the project development. To accommodate specific issues, stakeholders, or requirements, the CGI Team will hold specific meetings or attend meetings held by others to achieve appropriate levels of coordination.

Coordination with SHA: SHA will be an integral partner in the continued development and construction of the improvements by participating in Task Force meetings. We expect that representatives from all interested offices within SHA will be active participants in the Project Development process. This involvement is further detailed in our Work Plan.

Coordination between Construction and Design Teams: Our design and construction Teams have been sitting side by side throughout the procurement process developing the CGI Team solution. This collaborative atmosphere will be

carried forward once the contract is awarded, with the construction and design teams collaborating daily to develop the most efficient and effective final design.

Interdisciplinary Coordination: The Task Force leaders be responsible for coordination and collaboration between disciplines, including software vendor/integrator. In addition to the collaboration at the Task Force meetings, weekly progress meetings will include all Task Force leaders to ensure that designs address and are compatible with all disciplines. Task force leaders will be empowered to resolve issues quickly and to involve SHA/ stakeholders as required.

Early Stakeholder Communication

The CGI Team met with Montgomery County early during our concept development process. We have taken in account their concerns and are prepared to demonstrate how our program of improvements will address potential issues and minimize impacts.

Coordination with Other Projects: SHA delayed planned interchange improvements at I-270 / Watkins Mill Road to ensure compatibility with the innovative congestion management solutions. Improvements are also planned at I-270 / I-85. The CGI Team will coordinate our improvements with these and other planned improvements to ensure mutual compatibility and minimize impacts to these other projects. In addition, we recognize that our improvements must be coordinated with SHA's existing infrastructure, including CHART, and other adjacent local systems. Significant collaboration between technical experts from the CGI Team, SHA, and stakeholders will be necessary to ensure the entire system will function properly.

Utilities, **Permits and Third Party Coordination**: The CGI Team will use a tracking log to identify and track all potential utility relocations and permits, environmental permits and approvals, and third party coordination elements. Each item will include a schedule and party responsible for the coordination.

5 Well N

Well Managed Project

Emergency Services Coordination: Our Team will meet with Montgomery and Frederick County fire, police, and rescue services to identify impacts and mitigation strategies for emergency services for both temporary and permanent conditions. We will coordinate with the Maryland State Police regarding implementation of the virtual weigh stations.

Our Team has the demonstrated ability to successfully implement similar coordination strategies on significant projects in the region including US 29 at MD 198, MD 216, MD 355 at Montrose/Randolph Road, I-95/I-895 Interchange, and I-695 Inner Loop.

Risk Management

The CGI Team has developed robust risk management identification and mitigation processes to enable successful delivery of this project for SHA. The CGI Team's risk management plan will:

- Identify, and log on a risk register, the potential risks and issues for the program and for each improvement;
- Identify the party (CGI Team, SHA, Stakeholder) most appropriate to manage the risk;
- Develop approaches to minimize or eliminate the risk;
- Develop the necessary mitigation and contingency plans for risks that cannot be eliminated; and
- Review the risk register at each progress meeting.

While our selected improvements have, by their nature, minimized projects risks, our Team will further minimize project risks through our demonstrated experience, ability to manage complex projects, collaboration and communication with SHA and the stakeholders. A sample of project issues and risks, together with proposed mitigation, are provided below:

Software and Integration: Software identification, selection and integration is required for the ATM and Adaptive Ramp Metering aspects of our program of improvements. To mitigate risk inherent in these systems, the CGI Team will utilize FHWA's Systems Engineering Process to guide and document the process. This proven, progressive process will ensure accomplishment of the key activities that ensure the improvements achieve the project goals and address SHA and stakeholder concerns. Additionally, rather than being limited by a specific vendor's capabilities, the CGI Team will select a software vendor based on specific needs of the selected improvements.

NEPA/MEPA: Our program will be implemented as a series of distinct and separate projects with minimal NEPA/MEPA documentation expected for each. This approach, combined with our experience working with SHA OPPE preparing similar documents, allows us to streamline the process ensuring swift approvals. We will support SHA by recommending an appropriate purpose and need addressing logical termini, addressing critical elements such as noise analysis and Section 4(f)/park land coordination, and will ensure that all stakeholders are involved throughout the process.

Environmental / Right-of-Way Impacts: The CGI Team has selected improvements that will remain within the existing right-of-way. If unexpected right-of-way impacts arise, our Team is prepared to (and experienced in) assisting SHA with the acquisition of property. We will seek to minimize or avoid impacts to environmental resources to the extent practical and as required by law. Similar to our experience on the Intercounty Connector, our Team will partner with SHA and agencies early in the design process to obtain necessary permits, perform mitigation, and verify compliance during construction.

Minimize Utility Impacts and Relocations: The CGI Team has designed improvements with the goal of avoiding and/or minimizing utility impacts. Based on our history of work along I-270, we have a good understanding of the potential utility conflicts and the requirements to make new connections to existing systems. Our Team will coordinate with utilities to ensure the information we are using is accurate, impacts are minimized, and necessary connections can be made in accordance with the project schedule.

Coordination with Other Projects: The CGI Team will coordinate our improvements with Watkins Mill and other planned improvements to ensure mutual compatibility and minimize impacts to these other projects. In addition, we will coordinate our selected improvements with SHA's existing infrastructure, including CHART, and other adjacent local systems.

Additional Issues and Risks: Additional issues and risks identified by the CGI Team are summarized below.

Well Managed Project

RISK	SUMMARY OF RISK	MITIGATION MEASURES
ITS/Communications	Availability of data sourcesLimitation & condition of existing infrastructure	 CGI Team understands SHA's approach. B&M has installed & maintained SHA infrastructure CHART / Radio Shop involvement, systems/devices development
SWM/Drainage Issues	Pavement reconstruction requires SWMLimited right-of-wayDrainage in narrow shoulder	 Experts in MD process & requirements, PRD & MDE Drainage analysis of existing structures & spreads/revised drainage design
Incident Management/ Enforcement space	System in place relying on communicationLimited shoulders	 Understand existing system CHART field staff involvement - concept development & MOT
Third Party Systems	Mont. County maintains signals in CountyImpacts to adjacent arterial systems	Third Party involvement/who maintainsCommunicate system goals
Stakeholder Outreach (i.e., external groups)	 Opposition from federal, state & local agencies, communities, businesses, etc. 	Proactive & specific outreach
Scope Growth after CAP	■ Ensuring proper scope as CAP is developed	Stakeholder involvementVet scope questions/issues guarantee
Federal/State Standard Changes	Upgrade issues/costs impactsAged facility needs standards upgrades	SHA policies/agency standards knowledgeUpgraded CAP requirements
Noise	 Analysis and requirements based on improvements 	 CGI Team Understands the requirements & will work to minimize need for barriers.

5.II. DESIGN-BUILDER'S WORK PLAN

Task Forces, focused around groupings of traditional design and construction disciplines, will progress the design. Designated Task Force leaders will be responsible for coordination and collaboration between disciplines, including software vendor/integrator, and will be empowered to resolve issues quickly and to involve stakeholders as required.

Project Development

Scope Validation: During the 120-day Scope Validation Period we will verify any scope of work which could not be reasonably determined during procurement. We will document scope issues and meet with SHA to resolve.

Work Package Development: Each of our proposed improvements will stand alone on its own merits and be designed/constructed as an individual project, with an individual CAP, and individual NEPA/MEPA evaluation and permitting. The work packages may include traditional plan sets, performance specifications for final design and construction, and technology/systems development and implementation.

Design QA/QC: The CGI Team will use proven Design and Construction Quality Management Plans, which includes cross-discipline coordination, checks, construction staff input, and reporting to the Executive Committee.

NEPA/MEPA: Our Team will develop NEPA/MEPA documentation for each improvement as an individual project. We will seek to avoid or minimize impacts to environmental and cultural resources. We will provide all plans, analysis, details, background information and findings necessary, and collaborate with all stakeholders to allow SHA to obtain expedient approvals. Our schedule will include necessary time for this process.

Design Reviews: The project schedule will include time for both formal and over-the-shoulder design reviews by SHA and stakeholders. Our Team will also integrate the reviewing parties into the weekly Task Force and progress meetings. Early Procurement or Construction Work: The CGI Team, together with SHA and the stakeholders, will identify long lead time materials, phased construction, or ROW needs for which early procurement would benefit the project. Early work will be independent and severable. If desired by SHA, the CGI Team will provide ROW acquisition services.

Well Managed Project

Utilities/Permitting: The CGI Team will use utility and permit tracking logs to identify and track all potential utility relocations and environmental permits, including schedule, for each work package.

Schedule: The CGI Team will maintain a master CPM schedule using Primavera P6 showing design, review, stakeholder coordination and construction activities for our improvements/CAPs. We will also maintain a 4 Week Look Ahead Schedule, allowing easy identification of upcoming tasks, meetings, review responsibilities, and construction activities.

Risk: We will use a risk register to track and manage allocation of risks through all phases of the project. We will collaborate with SHA and the stakeholders to develop a risk sharing pool for items that are anticipated at the time of submitting the CAP but cannot be priced.

Construction Agreed Price (CAP): We will use a cost tracking log to continuously track and update the cost of individual PTCs and CAPs from inception through construction. The CGI Team proposes to prepare CAPs at approximately 65% design completion. If the CGI Team, SHA and the Independent Cost Estimator cannot agree to a Reconciled CAP price within three attempts, SHA may choose to deliver the work by other means.

Construction: The final construction value is reduced by the sum of the Design and Preconstruction services fee, D-B Construction Management Fee, and Construction Services (which includes CAPs, ROW acquisition and utility relocations). Once a CAP is approved, SHA will issue NTP for Phase Two Construction Services and construction work may proceed for the approved CAP.

Systems: Systems installation, integration and testing will be completed with functionality traced back to requirements through the Systems Engineering Process.

Safety and Maintenance of Traffic: Maintaining a safe environment for our Team's workers and the traveling public on I-270 is a commitment we take seriously. During the design phase our traffic control approach will include close collaboration with SHA and the stakeholders. As a series of smaller projects, construction impacts to traffic will be localized, but corridor wide coordination will still be necessary. Public outreach and coordination with local officials will be necessary to minimize inconvenience to the traveling public. We will implement our TMP and will continue collaboration during construction, making adjustments as necessary to accommodate changing conditions.

Services Provided by the CGI Team

The CGI Team will provide the preconstruction services necessary to negotiate the CAP (typically at 65% plan completion) for the selected improvements in accordance with the contract requirements and, specifically, as further defined by Section I.F. of the RFP. These services include:

- Coordinate with SHA, Stakeholders and 3rd Parties using meetings, partnering and design meetings, conference calls, and workshops. Preparing agendas, meeting minutes and action item lists for that coordination.
- Site visits and inspections
- OPCC and reconciliation meetings at Milestones
- Develop & update design & construction schedules
- Risk Management Plan including risk register with risk identification, assessments, mitigation and risk register
- QA/QC including design, construction, material sourcing
- Worker and Public Safety Plan
- Develop construction cost models & calculate quantities
- Data Collection (including MOT) for topographic surveys, utility designations, right-of-way mosaics, metes &

bounds surveys, soil borings, test pits, environmental features delineations, ambient noise, and traffic counts

- Develop DBE and Subcontractor plan
- Prepare and submit CAP proposal, cost model & assumptions at designated completion. Reconcile.
- Identify advanced procurement of materials
- Evaluate and provide life-cycle costs
- Develop plans, specifications and other deliverables
- Develop roadway design, IAPA, and design exceptions.
- Develop Right-of-way needs & plats
- Design and permit surface drainage, stormwater management, and erosion and sediment control, including NPDES and MDE Approvals
- Perform H&H, Drainage, and SWM design & approvals.
- Obtain CCTV inspections of existing drainage pipes

Well Managed Project

- Perform subsurface geotechnical investigations & determine existing soil, rock, and groundwater conditions
- Analyze pavement performance data & existing material conditions. Select pavement types, design, rehabilitation design, and materials.
- Structural design of bridges, culverts, walls and incidental structures
- Traffic engineering design of temporary and permanent signing, lighting, traffic signals, markings, and ITS
- Traffic Operations Analyses and Report
- Traffic Management Plan (TMP), red flag summary, Maintenance of Traffic Alternatives Analysis (MOTAA).
- HOV equivalency analysis
- Safety analysis using the HSM

- Landscape Architecture & Forest Impact Analysis, significant tree identification, forest impact plans, tree preservation plan, reforestation design and approvals
- Prepare and coordinate the JPA including applications, location map, impact plates, trilogy request, responses to MDE comments, MDE and USACE approvals
- Avoidance, minimization and Mitigation report for the JPA
- Design and approval of compensatory mitigation
- Wetland mitigation, supplemental delineation reports and stream restoration as required for permit conditions
- Utility Coordination and conflict matrix
- Support SHA public outreach including attending outreach forums, providing displays, printed materials, photos, renderings and other materials.
- Provide Aconex project management software

Quality Assurance / Quality Control

The CGI Team will develop and use a project specific Design Quality Control Plan (DQCP) to achieve design excellence. This plan is based on implementing best practices identified through our vast variety of experiences and applying those best practices with the project goals and key issues in mind. In addition to the checks, balances and certifications typically used for design-build projects, we will implement the following specific features.

Selecting the Right Team: The firms and key staff for the CGI Team have been selected specifically for their proven ability to produce design excellence on similar projects. Our key staff have current design-build experience with SHA, including obtaining the full range of environmental approvals and permits. Our sub consultants will be active members of our Team and will be fully engaged in our QA/QC program.

Design Coordination: Regular meetings will be a key element of our approach to design excellence. Disciplines will meet on a weekly basis to discuss the details of the design and coordinate with other disciplines to advance the design. Weekly progress meetings will include all key staff, critical discipline leaders, construction leadership, SHA, stakeholders and third parties as necessary to complete the work. All meetings will include agendas and meeting minutes including issue tracking/resolution, risk tracking/mitigation, stakeholder concerns/resolutions, permit log/tracking, and four-week look ahead schedules. These meetings will also be used as an opportunity to conduct over-the-shoulder reviews.

Design Document Management: During design we will use file sharing and collaboration tools to ensure that our Team, SHA, permitting agencies, and stakeholders have access to the latest design information. Our approach to design excellence will continue into the construction phase by ensuring that the latest plans are easily identifiable; readily available to construction staff; and any revisions are clearly logged.

Independent Over the Shoulder Reviews: In additional to formal QA/QC plan reviews, we will use frequent over the shoulder reviews to verify contract conformance and design quality. These reviews will be performed by independent staff who were not actively engaged in performing the work. SHA, reviewing agencies, utilities, and other impacted third parties will be included in the over the shoulder review process.

Constructability and Environmental Reviews: As a D-B project, we recognize that a major component of design excellence includes providing plans that are easily constructed with minimal impacts to mobility, the environment, and stakeholders. Our leadership will exercise good judgment and sound decision-making to ensure that the design supports the construction means and methods, phasing/work sequencing, and environmental restrictions. During construction, our design staff will remain engaged to confirm design assumptions and oversee field changes.

MDE/SHA-PRD/Permitting Agency Reviews: The CGI Team will schedule sufficient time in the design process to allow for required MDE, SHA-PRD, and Permitting Agencies to review and approve plans and issue permits. Our experience

Well Managed Project

has shown that up to three review cycles are typically necessary. The CGI Team will actively engage these agencies in the design QA/QC process in order to facilitate more effective incorporation of their requirements and concerns.

DQCP Certifications: Design packages will not be released for construction without a DQCP Certification. This certification will ensure that all elements to be constructed have been designed in conformance with the DQCP and meet the expectations of the SHA.

Review of Materials/Working Drawings: Due to the unique nature of materials and working drawing approvals that are necessary during construction, specific procedures will be developed for their approvals. These procedures will clearly outline the areas of responsibility (Contractor, Designer, SHA, Third Party) and timeframes for approvals.

5.III. MINIMIZATION OF IMPACTS

As shown by Table 5-1, below, our program of improvements minimizes environmental, right-of-way, and utility impacts.

Table 5-1. Preliminary Assessment of Impacts for CGI Proposed Improvements.

Concept	Preliminary Impact				
	Waters/Wetlands	Tree/Forest	Right-of-Way	Utilities	Noise
SB 1	None	Low	None	Low	None
SB 2	None	Low	None	Low	None
SB 5A	None	None	None	None	None
SB 6	None	None	None	None	Study Required
SB 7	None	None	None	None	Study Required
SB 8	None	Low	None	Low	Study Required
SB 10	None	None	None	None	None
SB 12	Low	Low	None	Low	Study Required
NB 1	Low	Low	None	Low	Barrier Likely
NB 2	None	Low	None	Low	Barrier Likely
NB 3	Low	Medium	None	Low	Barrier Likely
NB 4	None	Low	None	Low	Study Required
NB 5	None	None	None	Low	Study Required
NB 7	None	None	None	None	None
Virtual Weigh Stations	None	None	None	Low	None
Adaptive Ramp Metering	None	None	None	None	None
ATM	None	None	None	None	None

Environmental Impacts

Waters/Wetlands: The CGI Team expects little or no impact to waters and/or wetlands primarily because the majority of our improvements impact only the existing pavement, or a very small area outside of the existing pavement.

Trees/Forests: Impacts to trees and forests is expected to be low, with any impacts minimized through the use of steepened slopes or barrier walls. The CGI Team will make reasonable efforts to perform on-site mitigation for any tree or forest impacts as required by the regulatory agencies.

Noise: We understand that the CGI Team will be responsible for providing a noise study assessing the reasonableness and feasibleness of noise abatement in accordance with applicable regulations. SHA will be responsible for the final design and construction of noise abatement. Based on our initial assessment and current SHA/FHWA policy, we suggest that the locations noted in Table 5.1 as "Study Required" will require a full noise study but are unlikely to meet warrants

5 Well Managed Project

for a barrier. Locations noted in Table 5.1 as "Barrier likely" will require a full noise study and are likely to meet warrants for a barrier. Of the three locations likely to require a noise barrier, NB1 may be a modification to the existing noise barrier whereas NB2 and NB3 would be new barriers.

Right-of-Way Impacts

The CGI Team has specifically designed and selected improvements that are not expected to require additional right-of-way. All roadway improvements are within the existing right-of-way. Ancillary improvements such as SWM are expected to be minimal and can be accommodated within the existing right-of-way. Should the need for additional right-of-way be unavoidable, we will prepare plats and assist SHA with the acquisition of the right-of-way, recognizing that this cost will be deducted from the final contract value. Time will be included within the project schedule for any acquisitions that become necessary, and work that can be completed without the required right-of-way will be prioritized.

Utility Impacts

Based on our concept designs, the CGI Team expects only minor conflicts with existing facilities. Our process to identify and minimize utility impacts consists of the following:

Creation of Utility Mosaic. Immediately upon award, the CGI Team will undertake a program to locate and identify all utilities within the limits of work for our improvements. Initially, this effort will consist of utility research and requesting of records plans from the various utilities present in the work areas and from SHA. Using this information, a utility mosaic will be assembled covering each of the improvements. Utilities will be designated and test pits performed where utilities exist in close proximity to planned work.

Meeting with Utility Companies. Individual or group meetings will be held with the utility companies to confirm the findings of our utility investigations. The utility mosaics and concept design plans will be shared with the utility companies, and feedback will be solicited regarding the accuracy of the utility information. These meetings will also be used to establish criteria for working near or adjacent to existing facilities, as well as criteria to be used if impacts are unavoidable.

Conflict Identification. After ensuring the accuracy of the utility mosaics, potential conflicts between the existing utilities and the proposed improvements will be identified. Methods of avoiding or minimizing any conflict identified will be studied. Follow up meetings will be held with the utility companies to confirm any impacts and determine responsibilities for design and construction of any unavoidable relocations. Schedules will be developed to ensure that the utility work is accommodated within the improvement deployment schedule.

Protection of Utilities. During construction, utilities will be located and protected in accordance with the utility company requirements to ensure a safe working environment and to avoid accident utility outages.

5.IV. IMPLEMENTATION APPROACH

TIMELY IMPLEMENTATION

Figure 5.1 shows the aggressive implementation schedule proposed by the CGI Team. We will implement three of the improvements in 2017 to provide immediate benefit to I-270. Ten additional improvements will be implemented in 2017, with the remaining improvements to be implemented and complete by fall of 2018. Our Team members have local experience with all aspects of planning, permitting, design, material acquisition, construction and systems integration that are necessary for this project. In addition, our Team members have recent implementation experience for similar projects including I-66 (VDOT) and I-76 (Pennsylvania Turnpike Commission), current SHA design build experience, and decades of experience completing projects in the I-270 corridor. We will utilize a detailed design and construction schedule to ensure that all time commitments are met. We have identified several items that are critical to timely implementation of this project:

- We will initiate design on the anticipated notice to proceed date in March 2017. We expect initial coordination with SHA can begin immediately after selection in February of 2017.
- Improvements with no environmental, right-of-way or utility impacts are generally scheduled for design completion within 6 to 12 months from NTP, with construction in accordance with Figure 5-1.

Well Managed Project

- Improvements requiring more rigorous regulatory agency review, or with utility impacts, are scheduled for design completion within 12 to 18 months from NTP, with construction in accordance with Figure 5-1.
- Coordination with impacted stakeholders such as Montgomery County, Frederick County and FHWA must begin
 immediately after NTP and will be necessary for completion of the Concept of Operations for I-270. Active
 involvement by SHA in this coordination will be necessary to achieve timely implementation.
- Timely and comprehensive design reviews together with participation in task forces by SHA and stakeholders will be
 critical to maintaining schedule. We will use a design-build style approach to design and permitting reviews, with 14day review periods, comment resolution, limited review cycles, and partnering to resolve issues.
- We recognize the likely need to participate in Montgomery County's mandatory referral process. Similar to how our Team approached this process for the Intercounty Connector, we have scheduled this activity to be performed concurrently with our ongoing design activities.

Design and Construction Packages

As shown at the beginning of this section, the CGI Team's selected improvements are individual and distinct projects. We anticipate developing, permitting, and implementing each of these improvements as individual, yet coordinated, projects. Where appropriate, we may elect to combine multiple improvements into a single project or CAP, but we expect this to be in select circumstances only.

To support preparation of the individual design packages, we will begin field reconnaissance (including supplemental surveys, geotechnical investigations, and utility research/designation) immediately after notice to proceed. To increase efficiency, these activities will be performed at one time for all concepts, though they will be prioritized to support the early implementation packages.

Additional activities that apply to many or all improvements, such as our I-270 Concept of Operations will also proceed immediately such that they are complete and available to support final design efforts.

For each improvement we anticipate conducting plan reviews at 30%, 65% and 100% design completion. In accordance with the RFP, we will initiate CAP negotiation at 65% for all packages, unless by mutual agreement between the CGI Team and SHA it is apparent that CAP negotiation would be more appropriate at a different design completion level.

Throughout the design process our Team will be identifying early work items (such as utility relocations) or material acquisition (such as sign gantries) that should be considered for SHA's early procurement process.

5.V. WATKINS MILL INTERCHANGE

Compatibility of Proposed Watkins Mills Interchange

The Proposed Watkins Mill Interchange is fully compatible with the improvements selected by the CGI Team and our program of improvements (see specifically roadway improvement NB 4). Our program of improvements will perform as expected regardless of when, or if, the Watkins Mill Interchange is constructed.

Along southbound I-270 our Team is not proposing any modifications to I-270 in the vicinity of the Watkins Mill Interchange. No coordination between the projects would be required, although the addition of ramp metering to the proposed Watkins Mill Interchange would be beneficial to the I-270 corridor (see below).

Along northbound I-270, the CGI Team will be constructing an auxiliary lane between MD124 and Middlebrook Road (improvement NB 4). Some of this pavement will overlap pavement to be constructed as part of the future Watkins Mill Interchange. It will be necessary to coordinate construction schedules between the two projects to determine the most effective manner to complete the construction.

Modifications to Proposed Watkins Mill Interchange

In order to maximize the benefit provided by the Adaptive Ramp Metering proposed by the CGI Team, SHA should consider adding ramp metering equipment including signing, signals, and detection equipment to the proposed Watkins Mill Project for ramps entering I-270 southbound. We do not expect that this equipment would change the Watkins Mill Interchange Limits of Disturbance.

Submitted by:

GONCRETE ENERAL, INC. in association with RKSK Ch2m: Bruce & Merrilees

Submitted to:

Appendix A

Addenda Letters and Responses to RFIs

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

MARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION OFFICE OF HIGHWAY DEVELOPMENT 707 NORTH CALVERT STREET BALTIMORE, MARYLAND 21202

September 1, 2016

Contract No.: MO0695172 F.A.P. No.: Not Applicable Description: IS 270 Innovative Congestion Management Contract – Progressive Design-Build: Request

for Proposals (RFP)

ADDENDUM NO. 1

To All Prospective Proposers:

Please be advised that the Technical and Price Proposal Submittal Date for this contract is still scheduled for <u>January 5, 2017</u>.

The attention of prospective proposers is directed to the following revisions, additions and/or deletions to the Request for Proposals (RFP).

REQUEST FOR PROPOSALS

<u>Page No.</u> <u>Description</u>

ADDED "ITS Information" to the Additional Material.

Appendix Stipend Agreement, page 2 of 6: REVISED "Alternative Technical Concept" and "ATC" to "Proposed Technical Concept" and "PTC." Also, REVISED stipend amount in section 2.2 (a) to \$750,000.

NOTICE TO PROSPECTIVE PROPOSERS

The attention of prospective proposers is directed to the following revisions, additions, and/or deletions to the Additional Information on ProjectWise:

ADDED "I-270 ITS Devices.xlsx" and "ITS_I270.kmz" and "I270_FiberLine.kmz" and "I270_MH_FM.kmz" at the following location on ProjectWise: <a href="mailto:pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\H Additional Material\06 - ITS Information\"

Contract No.: MO0695172

Addendum No. 1 September 1, 2016

Page 2

Questions relating to this Addendum No. 1 may be directed in writing to:

Jason A. Ridgway, P.E. Director, Office of Highway Development Maryland Department of Transportation State Highway Administration e-mail address: MO069 IS 270@sha.state.md.us

During the Technical Proposal Phase, only e-mailed inquires will be accepted. No requests for additional information or clarification to any other Department or Administration office,

consultant, or employee will be considered./

GREGORY I. SLATER, DEPUTY ADMINSTRATOR FOR PLANNING, ENGINEERING,

REAL ESTATE, AND ENVIRONMENT

THIS ADDENDUM IS ISSUED TO CLARIFY, ADD TO, DELETE FROM, CORRECT AND/OR CHANGE THE CONTRACT DOCUMENTS TO THE EXTENT INDICATED AND IS HEREBY MADE PART OF THE SAID CONTRACT DOCUMENTS. COMAR 21.05.02.08 REQUIRES THAT ALL ADDENDA ISSUED BE ACKNOWLEDGED; THEREFORE, PRIOR TO SUBMITTING YOUR PRICE PROPOSAL, ATTACH THE ADDENDUM RECEIPT VERIFICATION FORM TO THE FRONT OF THE PRICE PROPOSAL FORM PACKET. FAILURE TO DO SO MAY RESULT IN THE PRICE PROPOSAL BEING DECLARED NON-RESPONSIVE.

Watkins Mill IAPA and Permits

F. Watkins Mill Interchange Plans

G. Watkins Mill Interchange Design Files

The following materials are being provided in electronic format on Projectwise. The Administration makes no representation regarding its accuracy.

H. Additional Material

- 100-Scale Mapping
- o Existing Right-of-Way mosaic file
- Inventory of Existing Structures
- Utility plans and/or as-builts
- As-builts
- o ITS Information

The following materials are being provided in electronic format on Projectwise, unless otherwise noted. This material is considered necessary for the Design-Build Team to submit a technical proposal and prepare a bid.

I. I-270 Concept Evaluation Templates

J. Manuals and Guidance

- VISSIM Modeling Techniques
- Manual for the Inspection of Highway Right of Way in Karst Areas

In general, the Microstation files included on the ProjectWise are in conformance with the MDSHA Microstation V8 CAD Standards Manual.

It is likely that most Proposers will use plot drivers that differ from the drivers used to produce the provided plans. Some of the drawings screen existing features through level symbology color 250. The manipulation of the drawing files to produce any requirements (as found elsewhere in the RFP) for as-built plans will be the responsibility of the selected Design-Builder.

Proposers are also provided with a file index provided on ProjectWise. The file is a Word Document describing all the files and files names as outlined above.

III. RULES OF CONTACT

The Procurement Officer is the Administration's single contact and source of information for this procurement.

The following rules of contact will apply during the Contract procurement process, which begins upon the submittal of the SOQ, and will be completed with the execution of the Contract. These rules are designed to promote a fair, unbiased, and legally defensible

- shall not be entitled to use information submitted by Proposer to the SHA in which the SHA determines is exempt from disclosure under the Maryland Public Information Act ("PIA"), Title 10, Subtitle 6, Part III of the State Government Article of the Annotated Code of Maryland, unless the RFP otherwise provides.
- 1.6 The SHA acknowledges that the use of any of the Work Product by the SHA or the Design-Builder is at the sole risk and discretion of the SHA and the Design-Builder, and shall in no way be deemed to confer liability on the unsuccessful Proposer.

2. Compensation And Payment.

- 2.1 Compensation payable to Proposer for the Work Product described herein shall be \$750,000.00 if any of the following conditions are met:
 - (a) The Proposer was in the competitive range and was not the most advantageous to the State or was not selected for award:
 - (b) The Proposer was selected for award, but the Contract was not executed or it was terminated by SHA for its convenience prior to issuance of a notice to proceed for events outside the control of the Design-Builder and the Design-Builder is not seeking reimbursement for design activities undertaken after notice of selection;

- (c) The Proposer was not in the competitive range, but it submitted an Proposed Technical Concept (PTC) approved by the Administration and that the Administration wishes to utilize the PTC in the final design.
- 2.2 In its sole discretion, the SHA may pay compensation to Proposer, in an amount to be determined by the SHA, for the Work Product described herein under the following conditions:
 - (a) For any Proposer meeting the criteria identified in Section 2.1, above.

Any amount paid under this subparagraph (a) will not exceed \$750,000.00 and will be subject to audit of the costs incurred by the Proposer in preparing its Technical Proposal and Price Proposal. Auditors shall have access to all books, records, documents and other evidence and accounting principles and practices sufficient to reflect properly all direct and indirect costs of whatever nature claimed to have been incurred. Failure of the Proposer or its team members to maintain and retain sufficient records to allow the auditors to verify all or a portion of the claim or to permit the auditors access to the books and records of Proposer and its team members shall constitute a waiver of the right to be paid a stipend and shall bar any recovery hereunder.

Any Proposer wishing to apply for a stipend under this subparagraph (a) shall submit the completed Agreement to the SHA concurrently with the price proposals being submitted. Eligibility of receipt of a stipend is dependent upon

MARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION OFFICE OF HIGHWAY DEVELOPMENT 707 NORTH CALVERT STREET BALTIMORE, MARYLAND 21202

October 7, 2016

Contract No.: MO0695172 F.A.P. No.: Not Applicable Description: IS 270 Innovative Congestion Management Contract – Progressive Design-Build: Request for Proposals (RFP)

ADDENDUM NO. 2

To All Prospective Proposers:

Please be advised that the Technical and Price Proposal Submittal Date for this contract has been POSTPONED from January 5, 2017 to <u>January 19, 2017</u>.

The attention of prospective proposers is directed to the following revisions, additions and/or deletions to the Request for Proposals (RFP).

REQUEST FOR PROPOSALS

Page No.	<u>Description</u>
38	REVISED the submittal deadline for Proposed Technical Concepts to November 17, 2016.
41	REVISED the submittal deadline for the Technical and Price Proposals to January 19, 2017.
57	REVISED the submittal deadline for Proposed Technical Concepts to November 17, 2016.
57	REVISED the submittal deadline for the Technical and Price Proposals to January 19, 2017.
Appendix	Price Proposal, Page 1 of 43: REVISED the submittal deadline for the Technical and Price Proposals to January 19, 2017.

Contract No.: MO0695172 Addendum No. 2 October 7, 2016

Page 2

Questions relating to this Addendum No. 2 may be directed in writing to:

Jason A. Ridgway, P.E.
Director, Office of Highway Development
Maryland Department of Transportation
State Highway Administration
e-mail address: MO069_IS_270@sha.state.md.us

During the Technical Proposal Phase, only e-mailed inquires will be accepted. No requests for additional information or clarification to any other Department or Administration office, consultant, or employee will be considered.

GREGORY I. SLATER, DEPUTY ADMINSTRATOR FOR PLANNING, ENGINEERING, REAL ESTATE, AND ENVIRONMENT.

THIS ADDENDUM IS ISSUED TO CLARIFY, ADD TO, DELETE FROM, CORRECT AND/OR CHANGE THE CONTRACT DOCUMENTS TO THE EXTENT INDICATED AND IS HEREBY MADE PART OF THE SAID CONTRACT DOCUMENTS. COMAR 21.05.02.08 REQUIRES THAT ALL ADDENDA ISSUED BE ACKNOWLEDGED; THEREFORE, PRIOR TO SUBMITTING YOUR PRICE PROPOSAL, ATTACH THE ADDENDUM RECEIPT VERIFICATION FORM TO THE FRONT OF THE PRICE PROPOSAL FORM PACKET. FAILURE TO DO SO MAY RESULT IN THE PRICE PROPOSAL BEING DECLARED NON-RESPONSIVE.

A Letter of Interest (LOI), on official letterhead of the Design-Builder, notifying the Administration whether or not the Design-Builder intends to submit a Technical and Price Proposal must be delivered no later than **December 15, 2016 prior to 12 noon** (EST). The LOI must be delivered to the following email address:

MO069_IS_270@sha.state.md.us

The LOI must be signed by individual(s) authorized to represent the Major Participant firm(s) and the lead Constructor firm(s). A Major Participant is defined as the legal entity, firm or company, individually or as a party in a joint venture or limited liability company or some other legal entity, that will be signatory to the Design—Build Contract with the Administration. Major Participant(s) will be expected to accept joint and several liability for performance of the Design—Build Contract. Major Participants are not design subconsultants, construction subcontractors or any other subcontractors to the legal entity that signs the Design—Build Contract.

If the Design-Build contracting entity will be a joint venture, or some other entity involving multiple firms, all Major Participant firms involved must have an authorized representative sign the LOI.

iii. Proposed Technical Concepts Submittal and Review

Section iii through section vii sets the process for the submittal and review of Proposed Technical Concepts (PTC). The process is intended to:

- Allow Proposers to incorporate innovation and creativity into the Proposals.
- Allow the Administration to consider Proposer PTCs in making the selection decision.
- Avoid delays and potential conflicts in the design associated with deferring of reviews of PTCs to the post-award period.
- Obtain the best-value for the public.

The Proposer is also encouraged to submit standards or specifications that are approved for usage by other state Departments of Transportation as PTCs.

The Proposer may submit PTCs for review by the Administration on or before **November 17, 2016 prior to 12 noon.** (prevailing local time). Inquiries received after that date and time will not be accepted.

All PTCs shall be submitted in writing via email only to the project email address, with a cover letter clearly identifying the submittal as a request for review of a PTC. If the Proposer does not clearly designate its submittal as a PTC, the submission will not be treated as a PTC by the Administration

The Administration will review each PTC submitted to assess the implementation potential of the technical aspects of the concept and its compatibility with the project goals. The Administration will not approve PTCs but will return comments on the PTC on its implementation potential and its compatibility with the project goals. If the Administration needs more information, the Administration will submit written questions to the Proposer and/or request a one-on-one meeting in order to better understand the details of the PTC.

Proposer's Name

Price Proposal

α	C
Container	ot
Comanici	O1

d. Location and deadline for submittal of Technical and Price Proposals

Technical Proposals and Price Proposals must be delivered no later than **January 19, 2017 prior to 12 noon** (prevailing local time). The proposal must be delivered to the following location:

Office of Procurement and Contract Management Fourth Floor, C-405 707 N. Calvert Street Baltimore, Maryland 21202

e. Number of Copies

One original and eleven (11) copies of the complete Technical Proposal shall be submitted along with one (1) electronic copy PDF file on a CD or flash drive. A single original of the Price Proposal shall also be submitted.

f. Proposal Guaranty

The Proposal Guaranty shall be delivered with the Price Proposal in a sealed business-sized envelope clearly marked as follows:

Prospective Proposer's Name

Proposal Guaranty

IS 270 – Innovative Congestion Management Project

Contract No. MO0695172

4. Effect of Submitting Proposal

Signing of the Design-Build Proposal Submission Form and Price Proposal Form, and delivery of the Proposal represents (a) an offer by the proposer to perform the Work for the Price submitted within the time(s) specified in accordance with all provisions of this RFP and (b) the Prospective proposer's agreement to all the provisions of the RFP and Contract governing requirements and procedures applicable through execution of the Design – Build Contract. The Technical Proposal will become part of the Design – Build Contract.

By so signing the above referenced terms and by delivering the Proposals, the Prospective Proposer makes the following affirmative representations.

XVII. PROPOSED PROCUREMENT SCHEDULE

Issue RFQ/RFP June 7, 2016 July 11, 2016 Final Date for RFQ Questions July 25, 2016 SOQ submittal to MSHA Reduced Candidate List (RCL) Notified August 11, 2016 One-on-One Meetings August 24-25, 2016 One-on-One Meetings September 28-29, 2016 One-on-One Meetings October 26-27, 2016 Last Day to submit PTCs November 17, 2016 Final Date for RFP Questions December 8, 2016 Letter or Interest December 15, 2016 Technical and Price Proposal Submittal January 19, 2017 Selection of Successful Proposer February 2017 Notice to Proceed (Anticipated) March 2017

This is the proposed procurement schedule for this project as of the date of the issuance of this RFQ/RFP.

STATE OF MARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION PROPOSAL FORM

Proposal by				
		Na	ame	
	A	ddress (Street a	and/or P.O. Box)	
	City		State	Zip
(<u>)</u> A.C.	Phone No.	(<u>)</u>	Fax No.	

to furnish and deliver all materials and to do and perform all work, in conformance with the Standard Specifications, revisions thereto, General Provisions and the Special Provisions in this contract to IS 270 Innovative Congestion Management located in, Frederick and Montgomery Counties, Maryland, for which Technical and Price Proposals will be received until 12:00 o'clock noon on January 19, 2017. Technical and Price Proposals shall be submitted to:

State Highway Administration
Office of Procurement and Contract Management
Fourth Floor, C-405
707 N. Calvert Street
Baltimore, MD 21202

In response to the advertisement by the Administration, requesting proposals for the work in conformance with the Contract Documents, now on file in the office of the Administration. I/We hereby certify that I/we am/are the only person, or persons, interested in this proposal as principals, and that an examination has been made of the work site, the Specifications, and Request for Proposals, including the Special Provisions contained herein. I/We propose to furnish all necessary machinery, equipment, tools, labor and other means of construction, and to furnish all materials required to complete the project at the following unit price or lump sum price.

MARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION OFFICE OF HIGHWAY DEVELOPMENT 707 NORTH CALVERT STREET **BALTIMORE, MARYLAND 21202**

November 9, 2016

Contract No.: MO0695172 F.A.P. No.: Not Applicable Description: IS 270 Innovative Congestion Management Contract -Progressive Design-Build: Request

for Proposals (RFP)

ADDENDUM NO. 3

To All Prospective Proposers:

Please be advised that the Technical and Price Proposal Submittal Date for this contract is still scheduled for January 19, 2017.

The attention of prospective proposers is directed to the following revisions, additions and/or deletions to the Request for Proposals (RFP).

REQUEST FOR PROPOSALS

Page No.	<u>Description</u>
9	REVISED the 3 rd bullet to shift the responsibility of constructing noise barriers required for the project from the Design-Builder to the Administration.
14	ADDED noise studies to the Design-Builder's services.
16	ADDED construction of any required noise abatement to the Administration's services.
45	REVISED the page limit for the Mobility goal from 16 pages to 20 pages.
Appendix	Contract Provisions: REPLACED TC-5.01.

Contract No.: MO0695172

Addendum No. 3 November 9, 2016

Page 2

Questions relating to this Addendum No. 3 may be directed in writing to:

Jason A. Ridgway, P.E.
Director, Office of Highway Development
Maryland Department of Transportation
State Highway Administration
e-mail address: MO069 IS 270@sha.state.md.us

During the Technical Proposal Phase, only e-mailed inquires will be accepted. No requests for additional information or clarification to any other Department or Administration office, consultant, or employee will be considered.

GREGORY I. SLATER, DEPUTY ADMINSTRATOR FOR PLANNING, ENGINEERING,

REAL ESTATE, AND ENVIRONMENT

THIS ADDENDUM IS ISSUED TO CLARIFY, ADD TO, DELETE FROM, CORRECT AND/OR CHANGE THE CONTRACT DOCUMENTS TO THE EXTENT INDICATED AND IS HEREBY MADE PART OF THE SAID CONTRACT DOCUMENTS. COMAR 21.05.02.08 REQUIRES THAT ALL ADDENDA ISSUED BE ACKNOWLEDGED; THEREFORE, PRIOR TO SUBMITTING YOUR PRICE PROPOSAL, ATTACH THE ADDENDUM RECEIPT VERIFICATION FORM TO THE FRONT OF THE PRICE PROPOSAL FORM PACKET. FAILURE TO DO SO MAY RESULT IN THE PRICE PROPOSAL BEING DECLARED NON-RESPONSIVE.

Act (MEPA)

- Project(s) will require NEPA approval from the Federal Highway Administration (FHWA) when federal actions will be required (e.g. design exceptions, Interstate Access Point Approval [IAPA]). If no federal action is required, then MEPA approval will be needed. Multiple environmental documents may be developed for the contract. Each separate project for an environmental document must be a standalone construction project that connects logical termini and be of sufficient length, have independent utility, and not restrict consideration of alternatives for other reasonably foreseeable transportation improvements. Any NEPA/MEPA document will be prepared by SHA. The Design-Builder will have no decision making responsibility with respect to the NEPA/MEPA process but will provide information needed about the project and possible mitigation actions.
- Public Involvement will be needed as part of NEPA/MEPA and should ensure travel shed is covered, not just the immediate project area.

- The requirements of the SHA Noise Policy must be met for the Design-Builder's improvements. However, noise barriers, if required, will be excluded from any work package or CAP, and will not be paid for from the contract budget. The Administration will be responsible for the costs associated with noise barriers and the additional impacts or requirements they incur, including additional right-of-way, utility relocations, grading, drainage, stormwater management, retaining walls, etc.
- DNR managed land (Seneca Creek State Park) is within the contract limits.

5. Minimize Environmental Impacts

- No permits have been obtained. Agency coordination will be required to secure necessary permits for any environmental impacts.
- The Design-Builder will prepare permit applications for submittal by the Administration.
- Environmental impacts due to Design-Builder's project should be minimized to the extent practical.
- Mitigation may be required by permitting agencies depending on impacts to environmental features as a result of Design-Builder's project.

6. Minimize utility and property impacts and relocations

- Utility and property impacts due to Design-Builder's project should be minimized to the extent practical.
- All costs for third party utility relocations and property impacts will be subtracted from the fixed value contract.

E. Project Status

The current status of aspects of the project is as follows:

Mapping and Survey

- Develop any Right-of-way needs for the project(s)
- Preparation of any Design Exceptions as required for the project(s)
- Design of any surface drainage conveyances, stormwater management, and erosion and sediment control and obtain any related environmental agency approvals required for the project(s) (including NPDES and MDE Approvals).
- Hydrologic and Hydraulic analyses, Drainage and Storm Water Management (SWM) Analyses, Design, and Approvals.
- Closed-Circuit Television (CCTV) inspections of existing drainage pipes as needed.
- The pavement engineering for the Project shall include, but is not limited to, the pavement investigation, pavement type selection, new pavement design, pavement rehabilitation design, and material selection.
- Perform pavement and subsurface geotechnical investigations needed to determine subsurface features and characteristics, and properties to support pavement and geotechnical engineering functions.
- Analyze pavement performance data and existing material conditions to determine the structural and functional conditions for the development of pavement engineering recommendations;
- Analyze subsurface geotechnical field and laboratory test data to determine existing soil, rock, and groundwater conditions etc. for the development of geotechnical engineering recommendations;
- Structural design for all bridges, culverts, walls and any and all other incidental structures required for the project(s).
- Traffic engineering design of any temporary and permanent signing, lighting, traffic signals, pavement markings, and Intelligent transportation systems (ITS) required for the project(s)
- Traffic Operations Analyses including the preparation of a Traffic Operations Analysis Report
- Temporary Traffic Control Design and Implementation including the preparation of a Traffic Management Plan (TMP), red flag summary, Maintenance of Traffic Alternatives Analysis (MOTAA). Additionally, attending and running TMP meetings.
- HOV equivalency analysis and submit to FHWA for approval, if required
- Safety analysis using the Highway Safety Manual (HSM) and submit to FHWA for approval, if required
- Landscape Architecture design of any roadside landscaping and stormwater management landscaping required for the project(s)
- Forest Impact Analysis, Significant tree identification, development of forest impact plans, tree preservation plan and design of any reforestation mitigation required for the project(s)
- Preparation of any necessary documents to obtain final reforestation site review approval from the Maryland Department of Natural Resources
- Prepare and coordinate the Joint Permit Application(s) (JPA) including but not limited to preparation and submittal of the JPA application(s) to SHA with attachments including location map, impact plates, trilogy request and

 Complete all work related to providing a noise study(ies) that makes a final determination on reasonableness and feasibleness related to noise abatement.

- Acquisition of Environmental Permits
- Acquisition of Right-of-Way
- Review Construction CAP proposals and compare to ICE
- Reconcile Final CAP for each phase
- Construction Management and Inspection Services
- Design and construct required noise abatement, including additional impacts or requirements they incur, such as additional utility relocations, grading, drainage, stormwater management, retaining walls, etc.

Scope Validation and Identification of Scope Issues

A Scope Validation Period of 120 days from the date of the Notice to Proceed for Design and Preconstruction Services will be provided on this contract. During the Scope Validation Period, the Design-Builder shall thoroughly verify and validate that the Design-Builder's understanding of the scope of work and its ability to complete it within the Design and Preconstruction Services Fee. Any Scope Issues determined during this period shall not be deemed to include items that the Design-Builder should have reasonably discovered prior to submission of its Technical Proposal.

If the Design-Builder intends to seek an adjustment to the Design and Preconstruction Fee due to a Scope Issue, it shall promptly, but in no event later than the expiration of the Scope Validation Period, provide the Administration in writing with a notice of the existence of such Scope Issue and basis for such Scope Issue. Within 30 days of the notice, the Design-Builder shall provide documentation that specifically explains its support for the Scope Issue, which shall include among other things: (a) the assumptions the Design-Builder made during the preparation of its Proposal that form the basis of its allegation, along with documentation verifying it made such assumptions in developing its Proposal; (b) explanation of the Scope Issue that the Design-Builder could not have reasonably identified prior to submission of the Technical Proposal; (c) specific impact on the Design and Preconstruction Services. For the avoidance of doubt: (1) The Design-Builder shall not be entitled to raise any Scope Issues that were not previously addressed with a notice; and (2) Design-Builder shall have no right to seek any relief for any Scope Issues not identified in a notice provided to the Administration during the Scope Validation Period.

Within a reasonable time after the Administration's receipt of the documentation, the parties shall meet and confer to discuss the resolution of such Scope Issues. If the Administration agrees that the Design-Builder has identified a valid Scope Issue, a change order will be executed to increase the value of the Design and Preconstruction Fee; however, the Construction Services will be adjusted to retain the overall fixed value of the contract. Notwithstanding anything to the contrary in the Contract Documents or a matter of law, the Design-Builder shall have the burden of proving that the alleged Scope Issue could not have reasonably been identified prior to the submission of the Technical Proposal and such Scope Issue materially impacts its Design and Preconstruction Services Fee.

The parties acknowledge that the purpose of the Scope Validation Period is to enable the Design-Builder to identify those Scope Issues that could not have reasonably been identified prior to the submission of the Technical Proposal. By submission of the Technical Proposal, the Design-Builder acknowledges that the Scope Validation Period is a reasonable time to enable the Design-Builder to identify Scope Issues that materially impacts its Design and Preconstruction Fee. The Design-Builder will assume and accept all risks to complete the Design and

Proposer is alerted to their responsibility to confirm that all team members have received addenda. The Proposer is solely responsible to ensure that their team has the correct information.

- i. Statement including the proposed legal structure of the Design–Builder.
- j. Include a general authorization for the Administration to confirm all information contained in the Technical Proposal submittal with third parties, and indicate limitations, if any, to such authorization.

As an attachment to the cover letter and excluded from the page limitation for this section, provide documentation that the Design Team has Professional Liability Insurance.

2. Mobility (20 Pages Maximum) – CRITICAL

Goal: Provide improvements that maximize vehicle throughput, minimize vehicle travel times and create a more predictable commuter trip along I-270.

Value Statement: Effective and reliable traffic flow along I-270 is necessary for its function as a primary commuter route and for the vitality of economic development. Describe the improvements you will provide to address and manage congestion along I-270 while reducing delay and increasing reliability.

- i. Provide the Design-Builder's improvements for maximizing vehicle throughput and minimizing vehicle travel times. Specifically, discuss how the Design-Builder's improvements will reduce recurring congestion in terms of travel time, vehicle throughput, density, intersection operations, queues and vehicle network performance, both along I-270 and on the connecting ramps and arterial roadways. CRITICAL
- ii. Discuss how the Design-Builder's improvements will provide a more predictable commuter trip, including innovative technologies or techniques that will be provided. **SIGNIFICANT**
- iii. Discuss the performance life of the improvements; that is, the time it will take for congestion levels to return to pre-construction levels and the basis for the Design-Builder's assessment of performance. IMPORTANT

3. Safety (10 Pages Maximum) – IMPORTANT

Goal: Provide for a safer I-270 corridor.

Value Statement: Safer flow of traffic will increase mobility along I-270 by reducing incidents that increase delay and reduce travel time reliability. Discuss how your improvements will increase safety along I-270.

TERMS AND CONDITIONS

TC SECTION 5 LEGAL RELATIONS AND PROGRESS

TC-5.01 INSURANCE

100 **DELETE:** In its entirety.

INSERT: The following.

TC-5.01 INSURANCE FOR DESIGN-BUILD

In addition to the provisions of GP-7.14 (Liability Insurance), the following shall apply on Administration Contracts.

The Contractor shall maintain in full force and effect third party legal liability insurance necessary to cover claims arising from the Contractor's operations under this agreement that cause damage to the person or property of third parties. The insurance shall be under a standard commercial general liability (CGL) form endorsed as necessary to comply with the above requirements and the other requirements of this Section. The State of Maryland shall be listed as an additional insured on the policy. The limit of liability shall be no less than \$1 000 000 per occurrence/\$2 000 000 general aggregate. The insurance shall be kept in full force and effect until all work has been satisfactorily completed and accepted.

When specified in the Contract Documents or otherwise required by law, the Contractor shall carry the type and amounts of insurance in addition to any other forms of insurance or bonds required under the terms of the Contract and these Specifications.

All insurance policies required by this Section, elsewhere in the Contract Documents, or otherwise required by law, shall be kept in full force and effect until all work has been satisfactorily completed and accepted. The Contractor shall be responsible for the payment of all deductibles or self-insured retentions.

All insurance policies required by this Section, elsewhere in the Contract Documents, or otherwise required by law, (other than Workers' Compensation Policies) shall include endorsements:

- (a) Stating that the State of Maryland is additional insured with respect to liability arising from the Contractor's operations under this agreement that cause damage to the person or property of third parties.
- (b) Stating that such coverage as is provided by the policies for the benefit of the additional insureds is primary and any other coverage maintained by such additional insureds (including self-insurance pursuant to the Maryland Tort Claims Act) shall be non-contributing with the coverage provided under the policies.

Addendum 3 11-09-16

- 2 of 5
- (c) Containing waivers of subrogation with respect to all named insureds and additional insureds.
- (d) Stating that the insurer has the duty to adjust claims and provide a defense with regard to such claims made against the additional insured.

All insurance policies required by this Section, elsewhere in the Contract Documents, or otherwise required by law, (including Workers' Compensation Policies) shall be endorsed to state that the insurer shall provide at least 7 days notice of cancellation or nonrenewal to:

Maryland State Highway Administration Director, Office of Construction 7450 Traffic Drive Hanover MD 21076

Evidence of insurance shall be provided to the Administration at the address listed above prior to the award of the Contract by means of a Certificate of Insurance with copies of all endorsements attached.

Any policy exclusions shall be shown on the face of the Certificate of Insurance or provided with the Certificate of Insurance.

Certificates of Insurance shall comply with all requirements of the Maryland Annotated Code, Insurance Article, § 19-116. Certificates of Insurance shall be on a form approved by the Maryland Insurance Commissioner (Commissioner). Standard Certificate of Insurance forms currently adopted for use by the Association for Cooperative Operations Research (ACORD) or the Insurance Services Office (ISO) are deemed approved by the Commissioner and are acceptable. Outdated ACORD or ISO forms (those with a revision date prior to the date of the form currently adopted for current use by ACORD or ISO) are not acceptable. The Contractor shall ensure that all required Certificates of Insurance satisfy all requirements of §19-116 of the Insurance Article, including the prohibition against the issuance of any certificate of insurance that contains false or misleading information or that purports to amend, alter, or extend the coverage provided by the policies referenced in the certificate.

The Certificate of Insurance shall be accompanied by a document (a copy of State License or letter from insurer) that indicates that the agent signing the certificate is an authorized agent of the insurer.

No acceptance and/or approval of any Certificate of Insurance or insurance by the Administration shall be construed as relieving or excusing the Contractor, or the Contractor's Surety from any liability or obligation imposed upon either or both of them by the provisions of this Contract or elsewhere in the Contract Documents.

The cost of the insurance will not be measured but the cost will be incidental to the Contract lump sum price.

3 of 5

Contractor and Railroad Public Liability and Property Damage Insurance shall be provided as specified in TC-6.05.

.01 Indemnification

The Design-Build Team shall indemnify, defend and hold the Administration and its officers, directors, employees, agents and consultants from and against all claims, actions, torts, costs, losses, and damages for bodily injury (including sickness, disease or death) and/or tangible property damage (other than to the Work itself) arising out of or resulting from the performance of the Work by the Design-Build Team, any subcontractor, subconsultant, engineer, supplier, any individual or entity directly or indirectly employed by any of them or anyone for whose acts any of them may be liable. Damages covered by the preceding sentence include, but are not limited to, all fees and charges of engineers, attorneys and all other professionals and all mediation, arbitration, court or other dispute resolution costs.

The indemnity obligation set forth in the preceding paragraph shall not be limited in any way by any limitation on the amount or type of damages, compensation, or benefits payable by or for the Design-Build Team or any subcontractor, subconsultant, engineer, supplier, or other individual or entity under Workers' Compensation acts, disability benefit acts, or other employee benefit acts.

.02 Additional Insurance Requirements

.02.1 Professional Liability Insurance

Professional Liability Insurance Policy, which covers the Indemnification Clause of this contract (paragraph .02 above), as it relates to errors, omissions, negligent acts or negligent performance in the work performance under this contract by the Designer, its subcontractors, employees and agents. The limitation of the Courts and Judical Proceedings Article states Annotated Code of Maryland Section 5-108(b) shall apply.

.02.2 Workers' Compensation Insurance

Workers' compensation, as required by the laws of the State of Maryland, including Employer's Liability Coverage and coverage for the benefits set forth under the U.S. Longshoremen and Harbor Workers' Compensation Act, the Jones Act, and other federal laws where applicable.

.02.3 Comprehensive Automobile Liability Insurance

Comprehensive Business Automobile Liability covering use of any motor vehicle to be used in conjunction with this contract, including hired automobiles and non-owned automobiles. Loading and unloading of any motor vehicle must be covered by endorsement to the automobile liability policy or policies.

Addendum 3 11-09-16

TC-5.01 INSURANCE

.02.4 Administrative & General Provisions

a. Each policy, with the exception of Workers' Compensation and Professional Liability Insurance, shall name the State Highway Administration.

b. Defense of Claims

Each insurance policy shall include a provision requiring the carrier to investigate and defend all named insured against any and all claims for death, bodily injury or property damage, even if groundless.

c. Compliance

The Design-Build Team shall be in compliance with this Section provided it procures either one policy or insurance covering all work under the contract or separate insurance policies for all segments constituting the entire project. In either case, a certificate of insurance must be filed for each policy with the Administration indicating that all required insurance has been obtained.

The Design-Build Team is responsible for assuring that insurance policies required by this Contract comply with all the requirements. The Design-Build Team is also responsible to determine that all subconsultants, subcontractors, suppliers, and all other individuals or entities performing Work for the Project carry all applicable insurance coverages set forth in this section, including, in all cases, Workers' Compensation, Automobile, and Commercial General Liability Insurance. The Design-Build Team shall indemnify and hold harmless the Administration from any claims arising from the failure to fulfill said responsibilities.

d. Reporting Provisions

Any failure to comply with reporting provisions of the policies shall not affect coverage provided to the Administration, its officers, agents and employees.

e. Separate Application

The insurance provided by the Design-Build Team shall apply separately to each insured against whom claim is made or suit is brought, except with respect to the limits of the insurer's liability.

.02.5 Notice of Cancellation or Modification

All policies of insurance provided in this Section shall be endorsed to provide that the insurance company shall notify the Administration, the Design-Build Team, and each named insured at least thirty (30) days prior to the effective date of any cancellation or modification of such policies.

TC-5.03 SUBCONTRACTING AND SUBCONTRACTORS

102 <u>INSERT</u>: The following before the paragraph titled 'Subcontractors Prompt Payment.'

Percentage of Own Workforce Required. The Design-Build Team must perform at least fifty percent of the value of the on-site construction work with its own workforce, not including the percent goal required in the contract proposal to be performed by DBE's. The Designer must perform at least fifty percent (50%) of the value of the design work with its own workforce, not including the work required by DBE's.

106 <u>ADD</u>: The following sections at the end of section 'TC-5.05 DETERMINATION AND EXTENSION OF CONTRACT TIME.'

TC-5.06 OWNERSHIP OF DOCUMENTS

All plans, specifications, inspection records, or other documents ("Documents") generated by the Design-Build Team and all consultants, subcontractors, suppliers, manufacturers performing Work on the Project are the property of the Administration. Upon request by the Administration, the Design-Build Team or any other person or entity performing Work will produce and deliver such Documents as requested, both in hard copy and electronic format.

TC-5.07 ACCESS TO AND RETENTION OF RECORDS

The Design-Build Team and its employees and Subcontractors shall make all project records available for inspection by the Project Manager and all other persons authorized by the Administration, and shall permit such representatives to interview employees during working hours. Project records include daily time reports, records of force account work, quality control or assurance documentation, inspectors reports, employment records, payrolls, equal opportunity records, construction conference records, partnering records, and any other documents in any way related to the Project substantiating payment. These records shall be retained at least three years after final acceptance of the project.

MARYLAND DEPARTMENT OF TRANSPORTATION STATE HIGHWAY ADMINISTRATION OFFICE OF HIGHWAY DEVELOPMENT 707 NORTH CALVERT STREET BALTIMORE, MARYLAND 21202

December 19, 2016

Contract No.: MO0695172 F.A.P. No.: Not Applicable Description: IS 270 Innovative Congestion Management Contract – Progressive Design-Build: Request for Proposals (RFP)

(-

ADDENDUM NO. 4

To All Prospective Proposers:

Please be advised that the Technical and Price Proposal Submittal Date for this contract is still scheduled for **January 19, 2017**.

The attention of prospective proposers is directed to the following revisions, additions and/or deletions to the Request for Proposals (RFP).

REQUEST FOR PROPOSALS

Page No.	<u>Description</u>
14	REVISED the order of the last two bullets at the bottom of the page so the language for the JPA services, which flows onto the next page, is continuous.
16	REVISED the last bullet of the Administration's Services to exclude construction, as the construction will not occur during the preconstruction phase.

Contract No.: MO0695172

Addendum No. 4 December 19, 2016

Page 2

Questions relating to this Addendum No. 4 may be directed in writing to:

Jason A. Ridgway, P.E.
Director, Office of Highway Development
Maryland Department of Transportation
State Highway Administration
e-mail address: MO069 IS 270@sha.state.md.us

During the Technical Proposal Phase, only e-mailed inquires will be accepted. No requests for additional information or clarification to any other Department or Administration office, consultant, or employee will be considered.

GREGORY I. SLATER, DEPUTY ADMINSTRATOR FOR PLANNING, ENGINEERING, REAL ESTATE, AND ENVIRONMENT.

THIS ADDENDUM IS ISSUED TO CLARIFY, ADD TO, DELETE FROM, CORRECT AND/OR CHANGE THE CONTRACT DOCUMENTS TO THE EXTENT INDICATED AND IS HEREBY MADE PART OF THE SAID CONTRACT DOCUMENTS. COMAR 21.05.02.08 REQUIRES THAT ALL ADDENDA ISSUED BE ACKNOWLEDGED; THEREFORE, PRIOR TO SUBMITTING YOUR PRICE PROPOSAL, ATTACH THE ADDENDUM RECEIPT VERIFICATION FORM TO THE FRONT OF THE PRICE PROPOSAL FORM PACKET. FAILURE TO DO SO MAY RESULT IN THE PRICE PROPOSAL BEING DECLARED NON-RESPONSIVE.

- Develop any Right-of-way needs for the project(s)
- Preparation of any Design Exceptions as required for the project(s)
- Design of any surface drainage conveyances, stormwater management, and erosion and sediment control and obtain any related environmental agency approvals required for the project(s) (including NPDES and MDE Approvals).
- Hydrologic and Hydraulic analyses, Drainage and Storm Water Management (SWM) Analyses, Design, and Approvals.
- Closed-Circuit Television (CCTV) inspections of existing drainage pipes as needed.
- The pavement engineering for the Project shall include, but is not limited to, the pavement investigation, pavement type selection, new pavement design, pavement rehabilitation design, and material selection.
- Perform pavement and subsurface geotechnical investigations needed to determine subsurface features and characteristics, and properties to support pavement and geotechnical engineering functions.
- Analyze pavement performance data and existing material conditions to determine the structural and functional conditions for the development of pavement engineering recommendations;
- Analyze subsurface geotechnical field and laboratory test data to determine existing soil, rock, and groundwater conditions etc. for the development of geotechnical engineering recommendations;
- Structural design for all bridges, culverts, walls and any and all other incidental structures required for the project(s).
- Traffic engineering design of any temporary and permanent signing, lighting, traffic signals, pavement markings, and Intelligent transportation systems (ITS) required for the project(s)
- Traffic Operations Analyses including the preparation of a Traffic Operations Analysis Report
- Temporary Traffic Control Design and Implementation including the preparation of a Traffic Management Plan (TMP), red flag summary, Maintenance of Traffic Alternatives Analysis (MOTAA). Additionally, attending and running TMP meetings.
- HOV equivalency analysis and submit to FHWA for approval, if required
- Safety analysis using the Highway Safety Manual (HSM) and submit to FHWA for approval, if required
- Landscape Architecture design of any roadside landscaping and stormwater management landscaping required for the project(s)
- Forest Impact Analysis, Significant tree identification, development of forest impact plans, tree preservation plan and design of any reforestation mitigation required for the project(s)
- Preparation of any necessary documents to obtain final reforestation site review approval from the Maryland Department of Natural Resources

- Complete all work related to providing a noise study(ies) that makes a final determination on reasonableness and feasibleness related to noise abatement.
- Prepare and coordinate the Joint Permit Application(s) (JPA) including but not limited to preparation and submittal of the JPA application(s) to SHA with attachments including location map, impact plates, trilogy request and

- Acquisition of Environmental Permits
- Acquisition of Right-of-Way
- Review Construction CAP proposals and compare to ICE
- Reconcile Final CAP for each phase
- Construction Management and Inspection Services

Design required noise abatement

Scope Validation and Identification of Scope Issues

A Scope Validation Period of 120 days from the date of the Notice to Proceed for Design and Preconstruction Services will be provided on this contract. During the Scope Validation Period, the Design-Builder shall thoroughly verify and validate that the Design-Builder's understanding of the scope of work and its ability to complete it within the Design and Preconstruction Services Fee. Any Scope Issues determined during this period shall not be deemed to include items that the Design-Builder should have reasonably discovered prior to submission of its Technical Proposal.

If the Design-Builder intends to seek an adjustment to the Design and Preconstruction Fee due to a Scope Issue, it shall promptly, but in no event later than the expiration of the Scope Validation Period, provide the Administration in writing with a notice of the existence of such Scope Issue and basis for such Scope Issue. Within 30 days of the notice, the Design-Builder shall provide documentation that specifically explains its support for the Scope Issue, which shall include among other things: (a) the assumptions the Design-Builder made during the preparation of its Proposal that form the basis of its allegation, along with documentation verifying it made such assumptions in developing its Proposal; (b) explanation of the Scope Issue that the Design-Builder could not have reasonably identified prior to submission of the Technical Proposal; (c) specific impact on the Design and Preconstruction Services. For the avoidance of doubt: (1) The Design-Builder shall not be entitled to raise any Scope Issues that were not previously addressed with a notice; and (2) Design-Builder shall have no right to seek any relief for any Scope Issues not identified in a notice provided to the Administration during the Scope Validation Period.

Within a reasonable time after the Administration's receipt of the documentation, the parties shall meet and confer to discuss the resolution of such Scope Issues. If the Administration agrees that the Design-Builder has identified a valid Scope Issue, a change order will be executed to increase the value of the Design and Preconstruction Fee; however, the Construction Services will be adjusted to retain the overall fixed value of the contract. Notwithstanding anything to the contrary in the Contract Documents or a matter of law, the Design-Builder shall have the burden of proving that the alleged Scope Issue could not have reasonably been identified prior to the submission of the Technical Proposal and such Scope Issue materially impacts its Design and Preconstruction Services Fee.

The parties acknowledge that the purpose of the Scope Validation Period is to enable the Design-Builder to identify those Scope Issues that could not have reasonably been identified prior to the submission of the Technical Proposal. By submission of the Technical Proposal, the Design-Builder acknowledges that the Scope Validation Period is a reasonable time to enable the Design-Builder to identify Scope Issues that materially impacts its Design and Preconstruction Fee. The Design-Builder will assume and accept all risks to complete the Design and

Request for Proposals – Questions and Responses

The following questions were received on September 2, 2016.

Question 1:

Please provide the SHA I-270 accident data in Excel Spreadsheet format from SHA OOTS TDSD's ACRES system to aid with the expedited review and analysis of data during the Technical Proposal phase of the I-270 project.

Response 1:

Crash data in Excel format has been posted on ProjectWise at the following location:

pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\E_Appendices\04 - Existing Crash Data\Accident Data\

Question 2:

Please provide Synchro files which were used to develop signal timing for signalized intersections in the VISSIM network to aid with the review and analysis of solutions during the Technical Proposal phase of the I-270 project.

Response 2:

Synchro files are not available. The existing signal timing sheets were used for 2015 design year and minor signal timing adjustments were made to traffic signals with excessive delays and queues for 2040 no-build design year.

Question 3:

Will SHA provide consistent parameters such as number of runs, seeds, seeding time for the VISSIM runs so that all teams provide comparable results for SHA to evaluate?

Response 3:

As stated on Page 48 of the Request for Proposals (RFP), "The Proposer shall use VISSIM version 7.00-13, shall follow SHA's VISSIM Modeling Techniques, shall not modify calibration parameters, such as vehicle inputs, vehicle routes, driving behavior, link behavior type, lane change distance, speed distributions and decisions without providing justification to the SHA and must use the simulation parameters and random seeds as provided in the VISSIM files when reporting results."

The following questions were received on September 7, 2016.

Question 4:

Please provide the following: schedule and plans for MD 85 at I-270 project, MD 121 at I-270 project, and schedule for I-270 at Watkins Mill project.

Response 4:

The Watkins Mill Interchange is planned to be re-advertised in 2017; however, a precise schedule is undetermined and will depend on the magnitude of the design changes (if any) that will be required to accommodate the I-270 Innovative Congestion Management (ICM) Contract.

The I-270/MD 121 Interchange Improvements Project is in the planning phase. Information can be found at the following project website:

http://apps.roads.maryland.gov/WebProjectLifeCycle/ProjectInformation.aspx?projectno=MO4261115

Final review plans for the I-270/MD 85 (Phase 1) Interchange Reconstruction Project (Contract No. FR3885171) have been posted to ProjectWise at the location below. Additionally, Plans, Specifications, & Estimate (PS&E) plans for a stream stabilization project (Contract No. MO1605174) have been posted to ProjectWise at the location below:

 $pw: \SHAVMPWX. shacadd. ad. mdot. mdstate: SHAEDMS01 \Documents \Design-Build \MO0695172 \E_Appendices \11 - Other Projects \$

The latest advertisement, bid, and notice to proceed (NTP) dates for these projects can be found in the Contractor's Ad Schedule on SHA's website:

http://www.roads.maryland.gov/pages/contractadschedule.aspx

Question 5:

Please provide the following: 100 scale mapping north of the Watkins Mill project.

Response 5:

The SHA will not provide additional 100 scale mapping. A planimetrics file for the area north of the 100 scale mapping has been posted to ProjectWise at the following location:

pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\H_Additional Material\07 - Planimetrics\mTO_planimetrics_I270.dgn

Question 6:

Please provide the following: crash data in MS Excel format.

Response 6:

See question 1.

Question 7:

Please provide the following: traffic counts in 15 minute increments and in MS Excel format.

Response 7:

Two MS Access databases have been posted to the ProjectWise location below, one for I-270 and one for Montgomery and Frederick Counties. A data dictionary has been included to explain

the columns in the tables. Also, the locations of the counts have been included in shape and KMZ formats.

pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\E Appendices\02 - Existing Traffic Counts\15 minute counts\

Ouestion 8:

Please provide the following: speed data in 15 minute increments (collected at the same time as the traffic counts).

Response 8:

Speed, Travel Time Index (TTI), and Planning Time Index (PTI) data for the I-270 mainline (from the spurs to I-70), the I-270 collector distributor (CD) lanes, and I-495 (from American Legion Bridge to the spurs) has been posted to ProjectWise at the following location:

pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\E_Appendices\10 - 2015 Avg Weekday INRIX Data\

Question 9:

Please provide the following: Excel sheet for I-270 Concept Evaluation 042516 Final.pdf.

Response 9:

The Excel files used to generate said document had been posted to ProjectWise at the following location:

pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\I I-270 Concept Evaluation Templates\files\

Question 10:

Please provide the following: origin-destination data and 5 year interval traffic projections through 2040.

Response 10:

Origin-destination data and land use information in 5 year increments have been posted to ProjectWise at the following location:

 $pw: \SHAVMPWX. shacadd. ad. mdot. mdstate: SHAEDMS01 \Documents \Design-Build \MO0695172 \E_Appendices \09 - MWCOG\ Travel\ Demand\ Model\ Outputs \Appendices \Design-Build \MO0695172 \E_Appendices \OHADD \Appendices \OHADD \Appendices \OHADD \Appendices \OHADD \Appendices \Appendices \OHADD \Ap$

Question 11:

Please provide the following: small structure inventory for Frederick County.

Response 11:

The following file on ProjectWise has been updated to include the maps for Frederick County:

 $pw:\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\H_Additional\ Material\03-Inventory\ of\ Existing\ Structures\Inventory\ Maps\Small\ Structures.pdf$

Three additional small structures (10182X0, 10358X0, and 10359X0) have been added to the following ProjectWise folder:

pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\H_Additional Material\03 - Inventory of Existing Structures\Other Structures\

Question 12:

Please provide the following: utility designation north of the Watkins Mill Project, right-of-way (ROW) mosaic north of the Watkins Mill Project, pavement borings/geotech info north of the Watkins Mill Project, and wetland delineation and environmental features north of Game Preserve Road.

Response 12:

The extent of additional base information required to complete design will be highly dependent on the concept; therefore, the additional data collection needed to complete the project is included in the pre-construction services to be provided by the Design-Builder.

Question 13:

Please provide the following: pavement structure numbers of all shoulders.

Response 13:

The SHA has not performed any design to date. Pavement design is included in the preconstruction services to be provided by the Design-Builder. Prospective proposers may, at their will and discretion, perform preliminary calculations during the procurement phase.

Question 14:

Please provide the following: noise model north of Watkins Mill.

Response 14:

The SHA will not provide additional noise models. Should the project require noise analyses, the Design-Builder shall develop the required noise models, analyses and reports as part of the preconstruction services.

The following questions were received on September 12, 2016.

Question 15:

Our Team is requesting access to view and use the "Explore and Visualize Crashes" tool within the RITIS (Regional Integrated Transportation Information System). This tool will be beneficial to the project by allowing our team to view more detailed crash data to better identify the deficiencies along I-270.

Response 15:

Proposers may request one team member to be provided RITIS access. If access is desired, please submit a request to the project email address along with the name and email address of the user to whom RITIS access will be given.

Question 16:

In reference to RFQ/RFQ Article XII.B.7, is it acceptable to use VISSIM Version 8.00-10 in lieu of Version 7.00-13?

Response 16:

VISSIM version 7.00-13 shall be used. However, additional supporting information related to the technical proposal may be included in the Appendix.

The following questions were received on September 27, 2016.

Question 17:

Please provide clarification on the schedule of prices as shown in the RFP. All three bid items are shown as lump sum, but the RFP describes a design development process involving SHA, the DB team and public/stakeholders as required by SHA design development policies. Throughout the design process, it is likely that the construction scope will evolve with stakeholder and SHA input. For clarity, will the lump sum prices also evolve as the scope becomes better defined in the design period?

Response 17:

The contract budget is \$100,000,000 and this budget is fixed. As noted in the question, the proposed concept and final construction scope shall continue to evolve during design, as is usual for all design processes and projects, prior to reconciliation of a Construction Agreed Price (CAP). However, the Design and Preconstruction Services Fee should be considered to be a "Guaranteed Maximum Price" or upset limit. It shall include all design and preconstruction services needed to deliver the scope of improvement proposed by the Design-Builder.

The Construction Management Fee shall include all profit, general and administrative costs, regional and home office overhead, and other indirect costs, as specified in Article XII.C.2 beginning on page 48 of the RFP.

The Construction Services Fee is determined by subtracting the Design and Preconstruction Services Fee and Construction Management Fee from the total contract budget. Regardless of what the final construction scope becomes, each construction package price will be reconciled and have its own agreed upon CAP. The sum of all the CAPs, any necessary right-of-way acquisition costs, and utility relocations costs will not exceed the Construction Services Fee, which is a "Guaranteed Maximum Price" or upset limit.

If there is a scope change during the design and preconstruction services, then it will be handled by the appropriate contract specifications. However, the Administration does not intend to

increase the value of the contract and the Design-Builder will need to propose modifications to stay within budget.

Question 18:

What level of design and plans related to PTCs are required for the Technical Proposal submittal?

Response 18:

Per General paragraph of Article XII.B (Technical Proposal) in the RFP (page 42), "The Technical Proposal submittal shall contain concise narrative descriptions and graphic illustrations, drawings, charts, plans and specifications that will enable the Administration to clearly understand and evaluate the capabilities of the Design - Builder and the characteristics and benefits of the proposed solutions." Proposers are responsible for determining the necessary level of detail that will enable the Administration to clearly understand and evaluate the capabilities of the Design - Builder and the characteristics and benefits of the proposed solutions.

Question 19:

Since each PTC is being evaluated on its own merits, and with its own VISSIM analysis, please clarify what should be submitted with the final Technical Proposal? Is a VISSIM model for each PTC required, or one model that combines each of the PTCs selected by the DB for inclusion in their Technical Proposal?

Response 19:

One VISSIM model that combines each of the PTCs selected by the Design-Builder for inclusion in the Technical Proposal shall be submitted. Please refer to Article XII.B.7 in the RFP (page 48).

Question 20:

We request that SHA consider revising the Technical Proposal due date to either December 21st or January 18th.

Response 20:

In Addendum No. 2 the Technical Proposal due date was revised to January 19, 2017.

Question 21:

Is there any VISSIM calibration report available? If so, please provide.

Response 21:

A VISSIM calibration memorandum has been posted on ProjectWise at the following location:

 $pw:\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\E_Appendices\03 - VISSIM Traffic Models\I-270 Modeling Calibration Methodologies Memorandum.pdf$

Question 22:

Can SHA provide any origin-destination traffic data for the GP and HOV lanes within the corridor used to develop existing and 2040 traffic volumes for the corridor?

Response 22:

See response to question 10.

Question 23:

We have been unable to locate any CAD files on PW that support the TNM validation that has been done, including Microstation files with the NSA shapes, the measured receptors and the TNM validation model layouts. Will SHA provide these files to all proposers?

Response 23:

MicroStation files with the NSA shapes, the measured receptors and the TNM validation model layouts will not be provided.

Question 24:

Special Provision Insert, TC-5.01 Insurance, page 2, 6th paragraph requires "Any policy exclusions shall be shown on the face of the Certificate of Insurance or provided with the Certificate of Insurance." All policies have numerous standard exclusions which are usual and customary in the industry. Listing all these exclusions in or attached to the certificate of insurance would be an unnecessary administrative burden. Please consider the following amendment, which we believe is the true intent of this requirement, "Any policy Policy exclusions applicable to the requirements herein shall be shown on the face of the Certificate of Insurance or provided with the Certificate of Insurance."

Response 24:

This is a standard Special Provision for all Administration contracts and will not be modified.

The following questions were received on October 6, 2016.

Question 25:

If our proposed solution requires additional staff to operate, beyond the existing MDOT / CHART manpower capabilities, is the additional staffing to be included in the current \$100M budget? If yes, for what period of time (years) would the staff need to be provided? Will additional staffing (temporary or permanent) be SHA employees, contract employees, or staff provided by the Design Builder? Will staff be located in an existing MDOT / CHART facility. If yes, which existing facility?

Response 25:

No, the contract budget does not include long-term Operations and Maintenance (O&M) costs. The budget does include design, construction, integration, testing, system documentation, training and anything else needed to turn over to the State a fully functional & operational system.

Though long-term O&M costs are not included in the budget, as part of their Technical Proposal Submittal, Proposers are responsible for evaluating impacts to O&M, and justifying and documenting anticipated O&M requirements. Please refer to the Operability/Maintainability/Adaptability goal in the RFP. The SHA needs to clearly understand the impacts the project will have on its O&M programs.

Question 26:

If our proposed solution requires "back-office" computers and other equipment, shall they be housed in an existing MDOT / CHART facility. If yes which one? If no, would the Design Builder be required to provide such facilities and would the cost be included in the current \$100 Million budget?

Response 26:

Housing back-office computers and equipment in MDOT, SHA and/or CHART facilities is potentially feasible, but not required. Proposers would need to confirm that the proposed location would be implementable, assuring basic system support such as telecommunication connectivity, a reliable power supply, accessibility for maintenance and system redundancy.

Proposers will design the system and should propose where the best location would be. There are numerous alternatives – e.g. the Statewide Operations Center, the Hanover Traffic Signal Shop, the Glen Burnie Data Center, District 3, etc. Proposers shall determine the most practical solution that meets the goals of the project. As noted above, using a State facility is feasible.

Regardless of where the equipment is housed, the Design-Builder shall provide all required equipment and facilities to turn over to the State a fully functional & operational system, as noted in response 25, the cost for which must be paid for from the contract budget.

Question 27:

If existing MDOT / CHART facilities are being utilized for proposed operational activities, is the Design Builder responsible for any improvements to the facility (physical improvements or new equipment/connectivity) as part of the \$100 Million budget? Please provide any existing plans or requirements for where equipment or staffing might be housed at the proposed MDOT / CHART facility including IT and computer facilities so we can estimate the cost of any improvements. Please arrange for access to the proposed facility for the Design Builders designers and estimators.

Response 27:

The cost of improvements to MDOT facilities shall be paid for from the project budget if the improvements are required for the Design-Builder to provide a fully functional system at project completion. The Design-Builder is not responsible for facility improvements unrelated to the project.

Your request for existing plans/information is too broad. Also, SHA does not know the equipment/staffing requirements for your proposed solutions and would be unable to determine potential housing locations. However, to help Proposers conceptualize potential housing

locations, Proposers may visit SHA facilities. To make an appointment, Proposers may send an email request to the project email address, specifying which facility and potential dates.

Question 28:

Will maintenance of any new field ITS devices need to be covered in our \$100 Million budget? If so, for what time period and to what extent is expected?

Response 28:

No. See response to question 25.

The following questions were received on October 10, 2016.

Question 29:

The RFP allows for resubmittal of PTC's after receiving initial feedback from SHA, but it does not specify a due date. Can a PTC be resubmitted after the 11/17 Last Day to submit PTC's, if the initial submittal was made prior to 11/17?

Response 29:

Yes.

Question 30:

We request permission to engage in joint discussions with FHWA and the SHA noise barrier team on proper implementation of Federal Highway Noise Regulations and Guidance. If you concur with this request, please provide appropriate point of contact.

Response 30:

Proposers may meet with the SHA Noise Team by sending a request to the project email address. If additional guidance from FHWA is needed, SHA will follow up and report back to the Proposer(s).

Question 31:

A fiber optic exists along I-270. Can this fiber optic be utilized for the project?

Response 31:

The Administration has determined that up to 4 fibers may be dedicated to this project.

The following question was received on October 13, 2016.

Question 32:

The RFP requests us to "Discuss what modifications would be needed to the proposed Watkins Mill Interchange project to be compatible in a safe and efficient manner with your Innovative Congestion Management improvements." In order to properly reply to that question may we please have the latest Watkins Mill Interchange plans to review so the proper analysis can be made.

Response 32:

The Watkins Mill Interchange plans were previously posted on ProjectWise on June 7, 2016. The Proposer shall discuss what modifications would be needed to the proposed Watkins Mill Interchange as shown in that information.

The following questions were received on October 15, 2016.

Question 33:

Please furnish the 2015 Calibration Report for the I-270 Vissim models.

Response 33:

See response to question 21.

Question 34:

Please furnish contact information for Network Maryland.

Response 34:

Contact information for Network Maryland can be found on the Maryland Department of Information Technology's (DoITs) website.

Question 35:

Page 2 of the RFQ/RFP indicates that all costs for ROW acquisition will be subtracted from the established cost for Construction Services, and that ROW acquisition will be completed by the Administration. Please specify and generally describe applicable SHA costs related to ROW acquisition, e.g. purchase cost, legal fees, assessment fees, GEC fees, SHA staff, etc.

Response 35:

Only the final negotiated purchase cost of the ROW will be subtracted from the Construction Services Fee. All SHA labor and overhead—including that of our ROW specialists who will make first offers, negotiate, prepare documentation, etc.—will <u>not</u> be subtracted from the contract budget. Please note, development of ROW needs and plats are included in the Design & Preconstruction Services, and, therefore, will be subtracted from the contract budget.

The following questions were received on October 17, 2016.

Question 36:

As indicated in the RFQ/RFP, the Mobility Section in our Technical Proposal is of Critical Importance is 16 pages and will represent 50% of our Technical score The other sections representing the remaining 50% are 30 pages are rated only Important. We request that the page count for the Mobility Section be increased to accurately represent the relative level of importance and scoring of our proposal. A suggested page count for the Mobility Section is 25-30 pages.

Response 36:

The Administration will increase the page count to 20 pages for the Mobility section with a future addendum.

Question 37:

We request that full page explanatory graphics not count against the total page count of a specific section when included in the Technical Proposal (and not the appendix).

Response 37:

The specified page limits shall include full page explanatory graphics.

The following questions were received on October 18, 2016.

Question 38:

Can SHA provide GIS information for existing stormwater management BMPs, drainage areas and storm drains along the I-270 corridor in Montgomery County and Frederick County?

Response 38:

Available GIS information has been posted to ProjectWise at the following location:

pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\H_Additional Material\08 - SWM GIS maps\

Question 39:

Please confirm the IS 270 Congestion Management contract shall be all-inclusive and not rely on any follow-up SHA or County contracts, such as future overlays to repair any stripping eradication efforts, to meet SHA or RFP requirements.

Response 39:

No resurfacing projects on I-270 are funded or programmed in the near future. Proposed improvements for the I-270 Innovative Congestion Management contract shall be all-inclusive and not rely on improvements provided in other projects.

The following questions were received on October 31, 2016.

Question 40:

Please confirm that since this is not a capacity addition project, but a congestion management and reduction project of existing roadway traffic that noise analysis and potentially new noise walls, or modifications to existing noise walls or other mitigation efforts, will NOT be required.

Response 40:

Per the RFP Contract Provisions, General Provisions, Terms and Conditions and Technical Requirements, the Design-Builder shall comply with all Federal, State and local laws, ordinances and regulations applicable to the activities and obligations associated with this project. The Design-Builder is responsible for determining whether noise mitigation will be required to implement the Design-Builder's proposed improvements. Please note that noise analysis and mitigation may be required if, based on the scope of improvements, the NEPA defined project is considered Type I. Refer to the MDOT SHA Highway Noise Policy and 23 CFR 772 for additional information related to the definition of Type I projects.

Question 41:

Please confirm that if no new full time mainline or CD lanes are added to the existing I-270 typical section, noise analysis and potentially new noise walls or modifications to existing noise walls or other mitigation efforts will NOT be required.

Response 41:

See response to question 40. Full-time use is not a consideration for the determination of a Type I project. Part-time shoulder use would fall under the definition of a Type I project. Refer to FHWA's Use of Freeway Shoulder for Travel for additional information.

Question 42:

Please confirm that if revisions to current entrances and exit ramp configurations along the I-270 corridor are proposed, noise analysis and potentially new noise walls, or modifications to existing noise walls or other mitigation efforts will NOT be required.

Response 42:

See response to question 40.

Question 43:

If a noise analysis is performed utilizing current criteria on the existing I-270 configuration and traffic, (without any or with only minor improvement such as the installation of gantry's, detection or ramp metering made by the Design Builder) and the results indicate additional noise mitigation is required, will the design builder be required to provide such mitigation as part of the \$100 Million dollar budget? If so what would be the limit of the mitigation – the entire corridor from the I-495 juncture to the I-70 interchange - or other limits.

Response 43:

All costs for noise mitigation required by the Design-Builder's project(s) to comply with all applicable Federal, State and local laws, ordinances and regulations, shall be a part of the contract budget. This includes any required Right-of-way and or Utility Relocations needed as a result.

Multiple environmental documents may be developed for the contract. Each separate project for an environmental document must be a standalone construction project that connects logical termini and be of sufficient length, have independent utility, and not restrict consideration of alternatives for other reasonably foreseeable transportation improvements. If the project is determined to be a Type I project, the level of mitigation required and the limits of that mitigation would be determined based on any noise analysis done for the environmental document(s) to meet applicable Federal, State and local laws, ordinances and regulations.

The following questions were received on November 2, 2016.

Question 44:

It was noted that the wetlands and waterways shapes and delineation report were a draft. Have they been finalized?

Response 44:

The wetland delineation report has been finalized and posted to ProjectWise at the location below:

 $pw: \SHAVMPWX. shacadd. ad. mdot. mdstate: SHAEDMS01 \Documents \Design-Build \MO0695172 \E_Appendices \06 - Wetland Delineations \$

Also, the shape files have been updated and replaced at the location below. Included is a CAD file of the wetlands and waterways (mEF I270 16.1019.dgn).

pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\B Survey and Topographic Files\02 - Environmental Features Files\

Question 45:

Since noise mitigation does not contribute directly to meeting the project goals, would MDOT consider utilizing a separate funding mechanism for noise barriers?

Response 45:

Yes. The Administration has decided to use another funding source(s) for the construction of noise barriers. This will be reflected in Addendum No. 3.

The Design-Builder shall identify in its proposal where noise barriers may be required, including approximate locations and areas. As part of its design and preconstruction services, the Design-Builder will be responsible to complete all work related to providing a noise study to make a final determination on reasonableness and feasibleness related to noise abatement for the Design-Builder's project(s) to comply with all applicable Federal, State and local laws, ordinances and regulations.

The SHA will be responsible for final design and construction of any required noise abatement and the additional impacts or requirements they incur, including additional utility relocations, grading, drainage, SWM, retaining walls, etc.

Please note, responses to questions 40, 41, and 42 still apply. Also note, this response (45) supersedes the first paragraph of response 43.

The following questions were received on November 14, 2016.

Question 46:

Please provide a copy of the SHA application for Federal funding under the Integrated Corridor Management (ICM) program.

Response 46:

The requested document has been posted to ProjectWise at the location below:

 $pw: \SHAVMPWX. shacadd. ad. mdot. mdstate: SHAEDMS01 \Documents \Design-Build \MO0695172 \H_Additional\ Material \O9-Integrated\ Corridor\ Management \Additional\ Material\O9-Integrated\ Corridor\ Material\O9-Integrated\ Corridor\$

Question 47:

With regard to communications for ITS field devices such as CCTV cameras, message signs, and ramp meters, we understand there are four (4) existing dark fibers on the corridor that are available for use by the design-builder. If so:

- a) How do we obtain the exact locations of existing fiber conduits, pull boxes, and splice vaults?
- b) Are we able to break into the fiber duct at any point to add additional pull boxes and splice vaults?
- c) Can we splice into existing fibers at any new/existing pull box or splice vault?
- d) Can we add additional fiber within the existing conduits?
- e) Are there spare conduits in the existing ITS duct bank?
- f) Does SHA have any mandatory standards on communication architecture or equipment? For instance, is there a requirement for Cisco-supplied switches or for GB Ethernet?

Response 47:

There are four (4) existing dark fiber strands on the corridor that are available for use by the Design-Builder. The locations of these strands were previously posted to ProjectWise and can be found at the following location:

pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\H Additional Material\06 - ITS Information\

These four (4) fibers are a part of the MDOT's Resource Share Agreement (RSA) with Level 3. Only these four dark fiber strands are available for the Design-Builder to use. There are no other existing strands or conduits available for the Design-Builder's use. Level 3 owns the strands and requires that any splicing of the strands be performed by Level 3's certified splicers. Any associated cost for that splicing shall be part of the project budget. The RSA does allow for the ability to add new pull boxes and/or splice vaults but does not allow adding fiber to the existing conduits. Any new pull boxes and/or splice vaults must be coordinated with Level 3, and locations must be approved by Level 3. If the Design-Builder's solutions require additional conduit/fiber, the Design-Builder will be required to construct these new resources as part of their project.

SHA does not have any mandatory standards on communication architecture or equipment. However, the Administration values a project which will provide for ease of operations and maintenance. It is the Design-Builder's responsibility, per the RFP, to describe how its approach, including communication architecture or equipment, will ensure the SHA will have a fully functional system that is easily maintainable.

Question 48:

We request the SHA re-evaluate the DBE participation goal of 25% for the Design and Preconstruction phase of the project.

The Construction portion of this phase involves only Estimating and Project Management (no construction). It is unrealistic to ask the Construction firm selected to subcontract out ¼ of its estimating and or management functions. Those two key functions are never subcontracted out by any Construction firms as no firm would allow these two key functions to be performed

outside of their organizations from both a propriety and leadership standpoint. This fact is recognized in the DBE requirements included in SHA's CMAR program where DBE participation is not required for this phase of the project. The following is taken from one of the recent CMAR RFQ's. "The overall DBE participation goal will be 0% of the total Contract price for the Preconstruction Services. Due to the nature of the Contractor's role in the Preconstruction Design phase, the Administration has determined that there are insufficient subcontracting opportunities to justify a DBE goal on the Preconstruction Design phase."

The above will therefore require that the full 25% of Design and Preconstruction services be shifted to the Engineering portion of the fee putting a DBE component of approx. 35% to 40% on the designer. As an innovative project requiring "World Class" expertise to identify and implement new innovative solutions specialize senior staff will be required from the firms other national or international offices. That staff is generally only found in large multinational engineering and planning firms - not local small DBE organizations. There are specific areas where DBE firms can be utilized (e.g. Outreach, Survey, Subsurface investigations, etc.) but these tasks do not come close to equaling 25% of the total Design and Preconstruction fee.

We respectfully request the Design and Preconstruction DBE requirement be lowered to no more than 5% to 10% of the total Design and Preconstruction fee. If desired by SHA, the resulting decrease in DBE dollars can be shifted to the Construction portion of the project so as to provide the same total DBE participation for the full \$100 million dollar project budget as previously desired.

Response 48:

On Design-Build projects, typically 30% of the portion of the contract price allocable to professional services requires good faith effort to achieving DBE/MBE participation. Understanding that, in addition to the professional services, that the Contractor's preconstruction services are included in the Design and Preconstruction Services Fee, the Administration determined that overall 25% was a realistic MBE goal contract to be in line with 30% of professional services allocable to MBE participation. This would allow all preconstruction services to be completed the Contractor with a similar level of MBE for professional services to other Design-Build contracts. We believe there are other areas for DBE participation above those identified such as highway, traffic, drainage, stormwater management, erosion and sediment control, permitting, noise analysis, etc.

Ouestion 49:

On normal DB and CMAR projects the different sections of the technical proposal are divided between several different groups to review and score totally independently. Will that be same on this project. Will the Technical Proposal be reviewed by three independent groups, do the individual groups see the other sections, and are the given the appendix?

On this project, that is so non typical and innovative, we request SHA review the above assumed procedures and have one team review and score the entire document. As a minimum we believe, if independently scored, the teams should have access to the entire document, including the appendix.

Response 49:

Yes, the technical proposal will be broken down into individual Evaluation Factors and evaluated independently by different evaluation teams as described in the RFP beginning on page 50. This is SHA's standard evaluation process that serves the organization well, regardless of the nature of the project.

The following question was received on November 27, 2016.

Question 50:

On page 41 Item 4 of the RFP "Effect of Submitting a Proposal" it states we are to "perform the work for the price submitted within the time(s) specified". We have found no time to be specified in the RFP for completion and Section B on pages 42 thru 47, which details what is to be included in our technical proposal, does not request a schedule or completion date. We therefore assume individual completion dates will be assigned to each construction package at the time the CAP's are determined. Please confirm our assumption or inform us where the completion date is specified or requested.

Response 50:

The schedule for design and completion of construction for each CAP will be determined by the Design-Builder as part of the submittal of its Technical and Price Proposal. See Response 2 (R2) in the Notice to Prospective Proposers dated June 17, 2016. The completion date shall be provided on Page 41 of 43 of the Price Proposal Form Packet.

The following question was received on December 1, 2016.

Question 51:

As a follow up to question number 49: Will the reviewers of the individual sections have access to the full technical proposal, including the appendix?

Response 51:

As stated in the RFP on page 51, "Each Evaluation Team will only be given the section or sections for each specific Evaluation Factor or Factors they are rating and not the Technical Proposals in its entirety. Evaluations will be limited to the information provided in the specific Evaluation Factor section and will not consider information provided in other sections." Each Evaluation Team will have access to the appendix, which is not rated. It should be noted the Evaluation Teams determine the initial technical ratings. The Evaluation Committee, which determines the overall technical ratings, will have access to the entire Technical Proposal and appendix.

The following questions were received on December 5, 2016.

Question 52:

RFQ Article XII.B.5.ii (Page 47) requires the proposer to "Discuss the services to be provided by the Design-Builder." Please clarify what services are to be addressed in this section of the Technical Proposal.

Response 52:

Discuss the Design and Preconstruction Services, and any other services the Design-Builder will provide that will best meet or exceed the goals of the project.

Question 53:

In the definition of Construction Agreed Price on pages 3 and 4 of the RFP, it states that a CAP "shall include all final design..." Please define "final design".

- Is this the design effort required to progress the design to 100% from the 65% state used for negotiation of the CAP?
- If the cost to progress the design from 65% to 100% is included in the CAP, what further design effort, if any, is required if SHA elects to bid a package competitively?

Response 53:

Final design for a work package, the cost of which is included in the CAP, is the design effort required to complete design for that work package. For example, if the CAP is initiated at 65% design, final design is the effort required to progress design from 65% to 100% release for construction drawings, including revisions/redlines. If the CAP is initiated at 90% design, final design is the effort required to progress design from 90% to 100% release for construction drawings, including revisions/redlines. Proposers shall identify in their proposals at what percent design completion (e.g. 65%, 90%, 100%, etc.) CAPs will be initiated. If SHA rejects the Design-Builder's price and bids the package competitively, no further design effort will be required by the Design-Builder. The Administration will terminate the process and complete design by some other means for that work package.

Question 54:

In the second paragraph addressing Construction Agree Price on page 4, it is noted that, "A proportionate amount of the Construction Management Fee will be included in the CAP." Is it the intent of the PDB process for the total amount of all executed CAPs to equal the sum of the Construction Management Fee bid item and the Construction Services Fee bid item, less any amount paid to third parties for ROW acquisition and utility relocation? If so, this seems inconsistent with the paragraph's first sentence that says, "A zero-dollar change order will be executed to subtract the amount of the CAP, and any associated right-of-way and utility relocation costs, from the Construction services costs..." (Emphasis added.)

Response 54:

Assuming the entire budget were to be spent and there were multiple independent projects, then the sum of the CAPs and amount paid to third parties for ROW acquisition and utility relocation for each project would add up to the Construction Services Fee submitted as part of the Price Proposal. Likewise the Construction Management Fee for each project would add up to the Construction Management Fee submitted as part of the Price Proposal.

Page 4 of the RFP goes on to state, "For example, if the Construction Management Fee was five percent when compared to the Construction services costs, this amount will be added to the CAP and subtracted from the original Construction Management Fee as part of the change order. Payment for the Construction of the project will be paid through an agreed upon work

breakdown structure." Thus the change order pulls the CAP, ROW costs, and utility relocation costs from the Proposal Construction Services Fee, and pulls a proportionate amount from the Proposal Construction Management Fee. The purpose of the net zero dollar change order is to approve the CAP and create a pay item for it.

Question 55:

In the event that SHA executes its right to competitively bid a PS&E package, will there be any further obligation under this contract to provide design, preconstruction, or construction management services?

Response 55:

All Design and Preconstruction Services in the contract shall be provided until the Administration terminates the contract.

There is no obligation to perform Construction Management (CM) services until a CAP is accepted. If a CAP is not accepted, then the Design-Builder is not obligated to provide CM services for that work package. If a CAP is not accepted, this does not release the Design-Builder from its obligation to perform CM services for other CAPs that have been accepted.

Question 56:

On the bottom of Page 4 of the RFP in Section I.A, there is the subtitle **Design and Preconstruction Services**. The ensuing paragraph seems to be addressing the contract as a whole, including the Construction Management Fee and Construction Services Fee. Is there an inconsistency here?

Response 56:

The SHA is entering into a contract with the Design-Builder to complete the Design and Pre-Construction Services as required in the Technical Proposal. If SHA is agreeable to the CAP(s), then a net zero dollar change order will be executed for a CAP to include the PS&E package of that CAP. The Design-Builder cannot proceed with any Construction Services until SHA has approved a CAP and issued Notice to Proceed for the CAP.

Question 57:

At the bottom of RFQ page 48 in Section XII.C.2, it is noted that regional and home office overhead costs are to be included in the Construction Management Fee. No further guidance on overhead cost is provided in the ensuing table. Please clarify where to allocate the cost for establishing and maintaining a project office on the jobsite.

Response 57:

An engineer's office would be included in a CAP.

Question 58:

At the bottom of RFQ page 48 in Section XII.C.2, it is noted that general and administrative costs are to be included in the Construction Management Fee. Does this include all costs for indirect items such as Bond, insurance premiums, permits, licenses, and success fees? Might not

a separate mobilization bid item for a fixed amount of say \$1,500,000.00 be appropriate for such one-time expenses?

Response 58:

If a separate mobilization item were included in the Schedule of Prices (SOP), it would apply to all work packages; however, each work package must be independent and severable. Like all other work items necessary for construction (e.g. construction stakeout, maintenance of traffic, class 1 excavation, etc.), mobilization for each work package will be included the CAP for that specific package. Permits and licenses are also included in the CAP(s). Any cost associated with providing requirements to submit a proposal, such as Proposal Guaranty for the overall \$100 M contract, may be included in the Design and Preconstruction item.

Regarding Success Fees, refer to Response 4 (R4) in the Notice to Prospective Proposers dated June 17, 2016.

Question 59:

Please confirm that the "Traffic Control Plan Certification" is not relevant to this contract.

Response 59:

The Traffic Control Plan Certification Contract Provision should be completed with Option 3 checked as it is the Design-Builder's responsibility to provide any traffic control plan.

Question 60:

TC-4-02 Failure to Maintain Traffic indicates a \$1,000 per day deduction for failure to maintain the project. Please clarify if this is only applicable to active work zones or if it is applicable to the entire length of I-270.

Response 60:

TC-4.02, Failure to Maintain Project, is applicable to the work as defined in GP-5.11, Maintenance of Work During Construction.

Question 61:

TC-7.05 addresses retainage on Progress Payments. Is it the intention of the Authority to hold retainage on the Design and Preconstruction Services Fee? Is this necessary when the Authority is only paying for "services actually provided and invoiced" as stated on in XII.C on page 48?

Response 61:

Retainage applies to all work under the contract.

Question 62:

Should execution of the Buy American Steel Form (Page 3 of 43 of the Contract) be deferred until CAP negotiation?

Response 62:

The Price Proposal form needs to be completed in its entirety and no portion of it can be deferred to a CAP.

Question 63:

The standard MDOT MBE Form A on Page 15 of 43 includes a certification referencing the "total dollar amount of the Contract" although the goal at the time of submission is only applicable to design work. Please clarify how this form is to be completed.

Response 63:

The form should be completed for the Design and Preconstruction Services. See response 56.

The following question was received on December 6, 2016.

Question 64:

We have had difficulty reproducing some of the results in the evaluation templates provided by SHA. We would like to be able to replicate the results to ensure the validity and comparability of all team's results.

Response 64:

The model must be run in **32-bit mode** to replicate the VISSIM model results that SHA has provided for every MOE.

The following question was received on December 7, 2016.

Question 65:

Does the Watkins Mill Interchange Project impact Level 3?

Response 65:

Yes. Design plans for the proposed relocation of Level 3 have been posted to ProjectWise at the following location:

 $pw: \SHAVMPWX. shacadd. ad. mdot. mdstate: SHAEDMS01 \Documents \Design-Build \MO0695172 \F_Watkins Mill Interchange Plans \Level 3 Relocation \$

The following questions were received on December 8, 2016.

Question 66:

In the *General Requirements* on page 2 of Section I.A, it states that the Design-Builder shall complete all design and construction work in two phases, Phase IV - Final Design and Phase V – Partnering during design and construction, Review Shop Drawings, Revisions, Redesign Under Construction, As-Built Plans and provisions for expert court testimony. Please clarify the intent or significance of Phase IV and Phase V in the context of either this two-phase procurement or the two-phase contract.

Response 66:

The intent is to ensure that the consulting services provided and tasks performed by the Design-Builder during both phases of the contract comply with the Administration's policies and

procedures and the requirements set forth in "Volume II -Specifications for Consulting Engineers' Services," dated 1986.

Question 67:

A definition of *Opinion on Probable Construction Cost* (OPCC) is provided on page 3 in Section I.A. Please confirm that the OPCC is simply the aggregate construction cost of anticipated improvements and that these costs are expected to be incorporated into CAPs as the "Construction, labor, equipment, and materials and all incidentals necessary to complete the Construction of the package."

Response 67:

The OPCC is the actual Construction cost the Design-Builder estimates to build all aspects of a Construction package.

Question 68:

On page 4 as part of the definition of a CAP, it states that SHA will consider establishing a risk sharing pool with the Design-Builder during the Design and Preconstruction phase. Please clarify whether the funding for this risk sharing pool is from within or outside of the \$100 million fixed value of the contract.

Response 68:

Risk sharing pools must come from the contract's fixed budget.

Question 69:

In the *General Requirements* in Section I.A and again in Section I.F *Scope of Services / Description of Work*, there are multiple references to "milestones". Please define these milestones.

Response 69:

Proposers shall determine what milestones are needed to deliver a well-managed project.

Question 70:

Section XII.C.1 defines the *Design-Builder Design and Preconstruction Services Fee*, noting that payment will be based on services actually provided and invoiced.

- a. Subsequent language requires the Design-Builder to provide a fee breakdown. Is this Design-Builder requirement relevant to Proposal content or is this just guidance on how the successful proposer (the Design-Builder) is to bill for post-Award design services?
- b. The final sentence of this segment indicates the Design-Builder shall provide a breakdown for each firm showing the estimated direct labor breakdown, estimated direct expenses, approved audited overhead, and profit. Is this also guidance on how the successful proposer (the Design-Builder) is to bill for post-Award design services for work performed by the Lead Designer and any subconsultants?

Response 70:

The fee breakdowns are not merely guidance. They are required of all Proposers in their Price Proposals.

Question 71:

Section XII.C.2 indicates that the Proposer will provide a breakdown of all components used in establishing the fee. Is this Proposer requirement relevant to Proposal content? If so, where in the Proposal should this information be provided?

Response 71:

This requirement shall be provided with the Price Proposal.

Question 72:

In response to Question #48, it was noted that "the Contractor's preconstruction services are included in the Design and Preconstruction Services Fee." Assuming that the table provided at the top of page 49 is applicable to the entire contract and not just to the Construction Phase, please provide guidance or examples for other types of Contractor costs that can be included in the fee for design and preconstruction services. Alternately, please confirm that the table on page 49 is only applicable to the Construction Phase thereby allowing Contractor project costs to be classified as preconstruction services during the Design Phase.

Response 72:

The table on page 49 is applicable to the Design-Builder's Construction Management services, which support the Construction Services and are not needed for nor applicable to the Design & Preconstruction Services.

Question 73:

Regarding ground mounted signs along the corridor: If a sign is proposed to be relocated without changing the content of the sign, does the sign material need to be upgraded to MUTCD standards?

Response 73:

Upgrading existing facilities to current standards when no safety or operational issues exist is not a contract goal. Existing signs that are not impacted and will remain in place do not necessarily need to be upgraded to MUTCD standards. However, once the Design-Builder changes the conditions in which that sign exists, including the sign's location or message, the sign should be upgraded to current MUTCD standards.

Question 74:

For signs mounted on cantilever or sign bridges: If a sign must be relocated to a different location without changing the content of the sign, does the sign material need to be upgraded to MUTCD standards?

Response 74:

Yes. See response 73.

Question 75:

If a sign remains in place with a different message, does the sign material need to be upgraded to MUTCD standards?

Response 75:

Yes. See response 73.

Question 76:

If a sign with the same message must be temporarily removed and replaced on a new structure in the same location without changing the message, or a different location on the same structure without changing the message, does the sign material need to be upgraded to MUTCD standards?

Response 76:

Yes. See response 73.

Question 77:

Are there any restrictions for including discussion of costs in the technical proposal?

Response 77:

No.

Question 78:

For the final proposal, can the PTC's and other Appendix data be presented in only electronic format and provide the required copies for the technical and cost proposal only?

Response 78:

Proposals shall include hard copies of the Concept Evaluation Templates. All other appendix materials may be saved onto a flash drive.

Question 79:

We would like to request the following data for six scenario years including the years 2015, 2020, 2025, 2030, 2035, and 2040:

- A.Four OD trip tables for all scenarios, which are inputs to the 4th iteration highway assignment. These OD trip table names are i4_AM.VTT, i4_MD.VTT, i4_PM.VTT and i4_NT.VTT.
- B.Two highway assignment loaded networks for all scenarios, which are outputs from the 4th iteration highway assignment. These loaded network names are i4_HWY.NET and i4_HWYMOD.NET.
- C. The full MWCOG model transmittal folder with input files, scripts and all the supporting input data.

Response 79:

The MWCOG model input files and the documentation necessary to run the model successfully have been posted to ProjectWise at the following location:

pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\H Additional Material\10 - MWCOG model\

Proposers can use these files to run the interim year models and generate loaded networks and time of day trip tables. This model set represents version 2.3.57a, the 2015 CLRP and Round 8.4 land use assumptions.

The following question was received on December 11, 2016.

Question 80:

We understand this is past the due date for questions and apologize for this late clarification request; however, we believe it may be in the Administration's best interest to provide additional information to the proposers on formatting of the Technical Proposal and Appendix. The only guidance provided is that the Technical Proposal (including appendix) shall be in a 3-ring binder and any "Charts, exhibits, and other illustrative and graphical information may be on 11"-by-17" paper, but must be folded to 8.5"-by-11", with the title block showing. An 11"-by-17" sheet will be considered only one page."

It may be inconvenient to unfold and then refold each sheet individually as your team reviews the material and we may not be able to fit, in a reasonably sized single 3-ring binder, if trifolded. We respectfully request the appendix be allowed in its own 11"x17" binder with unfolded sheets.

Response 80:

The appendix can be in its own 11"x17" binder with unfolded sheets. Also, see Response 78.

The following question was received on December 16, 2016.

Question 81:

Question 70 addressed a cost breakdown that must be provided by the Design-Builder. Question 71 addressed a cost breakdown that must be provided by the Proposer. In both cases, the SHA response indicates that the required breakdown must be provided with the Price Proposal. It is mandated on RFP page 40 that the "Price Proposal shall be submitted on the Price Proposal Form supplied by the Administration..." Would the aforementioned Article XII.C breakdowns be a supplement to the 43-page Price Proposal Form since there does not seem to be an appropriate place for inclusion within those 43 pages.

Response 81:

Yes, the cost breakdown should be a supplement submitted with the Price Proposal Form.

The following question was received on December 19, 2016.

Question 82:

We have been unsuccessful in exporting the document

"Ver2.3.57a_Conformity_2015CLRP_Rnd8_4_Xmittal.zip" located in the following folder on ProjectWise:

 $pw: \SHAVMPWX. shacadd. ad. mdot. mdstate: SHAEDMS01 \Documents \Design-Build \MO0695172 \H \Additional \Material \10-MWCOG \mbox{ model} \$

We believe this is due to the zip folders size (25.48 GB). Would you please consider breaking this folder into smaller zip files, or extracting the files into the 10-MWCOG model folder so that we can download the information and put it to use on this project?

Response 82:

The files that were in the zip file "Ver2.3.57a_Conformity_2015CLRP_Rnd8_4_Xmittal.zip" have been extracted and placed at the following location on PW: pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\H_Additional Material\10 - MWCOG model\Ver2.3.57a_Conformity_2015CLRP_Rnd8_4_Xmittal\

The following questions were received on December 23, 2016.

Question 83:

The fifth paragraph of TC-5.01 indicates that Workers' Compensation policies are the only exceptions to an endorsement requirement. Please note that such endorsements are not commercially available on a Professional Liability insurance policy because of the nature of the coverage. Accordingly, we request listing of Professional Liability insurance as an exception.

Response 83:

Professional Liability insurance may be an exception.

Question 84:

TC Section 5 Article .02.1 is an additional requirement for the Professional Liability Insurance Policy to provide various indemnifications. Please note that such indemnifications are not commercially available because of the nature of the coverage. Accordingly, we request deletion of this requirement.

Response 84:

This is a standard Special Provision for all Administration contracts and will not be modified.

Question 85:

TC Section 5 Article 02.4a establishes a requirement to name the State Highway Administration in various insurance policies, presumably meaning that the Administration must be named as an Additional Insured. Consistent with the questions addressing endorsements and indemnifications and with the nature of errors and omissions coverage, we request that Professional Liability Insurance be listed with Workers' Compensation as an exception to this requirement.

Response 85:

The said article states, "Each policy, with the exception of Workers' Compensation <u>and Professional Liability Insurance</u>, shall name the State Highway Administration."

Question 86:

TC Section 5 Article 02.4b uses "named insured" as an identifier, as was the case in 02.4a. Please consider revising the reference to Additional Insureds, assuming this is the intent of the requirement.

Response 86:

The said language, "named insured," is consistent with other provisions in SHA's Standard Specifications for Construction and Materials, 2008.

Question 87:

TC Section 5 Article 02.5 requires the insurance company to notify the Administration, the Design-Build Team, and each insured about policy cancellation or modification. The industry-standard Notice of Cancellation to Others will trigger appropriate notifications if a policy is cancelled, but it will not react to modifications. We suggest that the obligation for notification of policy modifications be eliminated or assigned to the design-builder. Alternately, could the Administration provide an example Notice of Cancellations to Others endorsement that they have accepted in the past?

Response 87:

This is a standard Special Provision for all Administration contracts and will not be modified.

The following question was received on December 24, 2016.

Question 88:

A safety and resurfacing project (Contract No. MO1865177) has appeared on the contractor's advertisement schedule. It appears to be located on I-495 near the southern end of the I-270 contract. The advertisement date is 2/14/17 and the NTP date is 5/22/17. Are plans available?

Response 88:

Yes. Plans have been posted to ProjectWise at the following location: pw:\\SHAVMPWX.shacadd.ad.mdot.mdstate:SHAEDMS01\Documents\Design-Build\MO0695172\E_Appendices\11 - Other Projects\MO1865177 - IFB_PS&E- Design Plans.pdf

The following question was received on January 4, 2017.

Question 89:

Article VIII.B on page 23 of the RFP mandates meeting or exceeding the DBE Participation Goal for work performed under the Design and Preconstruction Fee bid item. Please clarify this requirement. Does the reference to a goal only pull in the goal for 25% DBE participation, or does this reference also pull in the subgoals for 9% female participation and 6% African-American participation?

Response 89:

The Design-Builder shall meet or exceed the DBE goals, including sub-goals, required by the Contract Provision AFFIRMATIVE ACTION REQUIREMENTS UTILIZATION OF MINORITY BUSINESS ENTERPRISES FOR STRAIGHT STATE CONTRACTS (page 3 of 10).

The following question was received on January 9, 2017.

Question 90:

The RFP states that the Contract MBE goal as shown in the Appendix is only applicable to the Design and Preconstruction item in the Price Proposal. The Design and Preconstruction item includes significant cost for items such as 'costs associated with providing requirements to submit a proposal, such as the Proposal Guaranty' (per Response 58) and the contractually required ACONEX project management software. There is no ability to provide MBE participation for these items or to help meet the MBE goal via the considerable construction to be performed under the CAPS, forcing the entire MBE participation for the Design and Preconstruction to be achieved via professional services participation. Is it SHA's intent that the MBE goal be achieved on the entire value of the Design and Preconstruction item, or may the MBE goal be interpreted to apply only to those professional services being provided by the Lead Design Firm and its subconsultants?

Response 90:

25 percent of the Design & Preconstruction Services Fee provided with the Price Proposal must be MBE. As mentioned in Response 48, the MBE goal has been adjusted down from what a typical design-build project would require to account for Preconstruction Services and Aconex costs. Also note, the Design-Builder is not required to include the Proposal Guaranty in the Design & Preconstruction Services Fee. The Design-Builder may elect to include the Proposal Guaranty in the Construction Services Fee.

The following questions were received on January 10, 2017.

Question 91:

Has the Maryland State Highway Administration issued a wage determination for the project based upon the (Anticipated) Notice to Proceed Date of March 2017?

Response 91:

Prevailing wage rates will be established with the CAP.

Question 92:

Will the Maryland State Highway Administration consider establishing indexed base cost for petroleum based products (diesel fuel, hot mixed asphalt pavements and slurry seal) and structural steel?

Response 92:

Any adjustments will be included in the CAP. Depending on the scope of the CAP, typical SHA adjustments for asphalt binder, pavement density, asphalt mixture, pavement surface profile, and diesel fuel will be included. While SHA does not have a standard structural steel adjustment, this can be discussed with the CAP and potentially included in a risk sharing pool.

The following question was received on January 11, 2017.

Question 93:

Please confirm the design builder must provide Aconex project management software for this project. The cost of providing that software from March 2017 thru March 2020 is almost 1/4 of a million dollars. In addition after that date access to the data base to retrieve the project records would not be available unless additional payments are made by SHA on a yearly basis. Several members of our team have existing service agreement with other software firms for similar Project Management tools that could be made available for use on this project for no cost and would provide the SHA the availability to recover their Project Records at no cost after March 2020.

Response 93:

Confirmed. The Design-Builder is to provide Aconex project management software per the RFP.

Submitted to:

Appendix B

CGI Team PTCs and SHA Responses

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

PROPOSED TECHNICAL CONCEPT 1

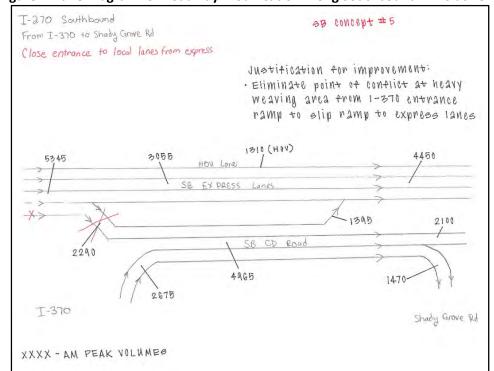
ROADWAY MODIFICATIONS TO SOUTHBOUND I-270 AT I-370

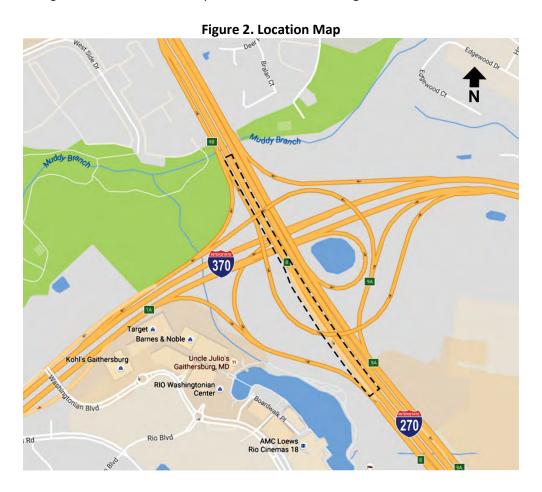
A. DESCRIPTION

Just north of I-370, southbound I-270 widens from four lanes to five lanes. Approximately one-quarter mile south, within the I-270/I-370 interchange, two lanes diverge from the right to form the barrier-separated collector-distributor/local lanes. The four leftmost lanes continue south as the I-270 mainline/express lanes (the second lane from the right is a choice lane). 2,290 vehicles diverge to the two local lanes and 4,365 vehicles continue on the four express lanes (including the HOV lane).

Approximately one-quarter mile south of the diverge (approximately 750 feet after the barrier separation begins), the two-lane entrance ramp from I-370 merges with the two local lanes. Approximately one-quarter mile south of this merge, a slip ramp diverges from the local lanes to the express lanes. During the AM peak hour 2,675 vehicles enter from the I-370 ramp, and 1,395 of those vehicles weave across the local lanes to access the slip ramp to the express lanes. This dense, short weave section causes recurring peak period congestion that spills back onto the mainline of I-270.

Under this PTC, access to the local lanes from southbound I-270 would be closed. This would eliminate the weave conflict between the I-370 entrance ramp and downstream slip ramp, eliminating congestion from the local lanes spilling back onto southbound I-270. The existing lane configuration, proposed modifications, and existing traffic volumes are shown in **Figure 1**.




Figure 1. Lane Diagram for Roadway Modification Along Southbound I-270 at I-370

Under this PTC, traffic on southbound I-270 would access the local lanes using the slip ramp between

Shady Grove Road and Gude Drive. Southbound I-270 traffic that currently uses the local lanes to exit at Shady Grove Road would have to divert to new routes, with most vehicles likely to exit I-270 at I-370 and use other routes to arrive at their destination.

B. LOCATION

This PTC is located along southbound I-270 at the diverge of the local lanes from the mainline within the I-370 interchange. The location of this improvement is shown in **Figure 2**.

C. ANALYSIS

This PTC advances the project goals of increased mobility and safety. In addition, the PTC could be implemented in a configuration that would require no long-term operations or maintenance cost.

1. Mobility

Closing the entrance to the local lanes and therefore eliminating the weave conflict between the I-370 entrance ramp traffic and existing traffic in the local lanes will eliminate a recurring congestion point. This congestion spills back onto I-270 and results in congestion along the southbound I-270 mainline. Closing the access to the local lanes will result in more traffic in the express lanes; however, the additional volume would be less than the capacity of the four-lane express lanes section (including the HOV lane). The existing and proposed traffic volumes are shown in **Table 1**. Note that the proposed volumes assume that

approximately 1,100 vehicles that would have accessed the local lanes to exit at Shady Grove Road would exit from southbound I-270 prior to this point (likely at the I-370 interchange).

Table 1. Existing and Proposed AM Peak Hour Volumes Along Southbound I-270 through the I-370 and Shady Grove Road Interchanges

	Existing Condition			Proposed Condition				
Location	Ramp	Local	Slip	Express	Ramp	Local	Slip	Express
		Lanes	Ramp	Lanes ¹		Lanes	Ramp	Lanes ¹
I-370 Bridge	N/A	N/A		6,655	N/A	N/A	N/A	5,555
Local Lanes Entrance		2 200	2,290 N/A		IN/A	0		
I-370 Entrance	2,675	2,290		4,365	2,675	0		
Between I-370 Entrance and Slip Ramp		4,965			2,67	2,675		
Slip Ramp to Express	N/A 3,570	1,395		N/A		1,395		
Between Slip Ramp and		3,570	N/A	5,760		1,280	N/A	6,950
Shady Grove Road Exit								
Shady Grove Road Exit	1,470	1,470 N/A 2,100 610 N/A 2,710 380			370²	910		
Between Shady Grove Road Exit and EB Entrance	N/A				N/A			
Shady Grove Road EB Entrance	610				610			
Between Shady Grove Road EB and WB Entrances	N/A				N/A	1,520		
Shady Grove Road WB Entrance	380				380			
Slip Ramp from Express	N/A	3,090	780	4,980	N/A	1,900	1,880 ³	5,070

¹ Includes 1,310 vehicles in HOV lane. All other express lanes volume is in three general-purpose lanes.

2. Safety

The weave section along the southbound I-270 local lanes between the I-370 entrance ramp and slip ramp is a high accident location. Removing the weave will eliminate the major source of conflicts along this section of I-270. In addition, eliminating the congestion that spills back from the entrance to the local lanes would reduce congestion-related accidents along southbound I-270 approaching this location.

D. POTENTIAL IMPACTS

There would be no roadway, right-of-way, infrastructure, or environmental impacts from this PTC. The work to close the access to the local lanes could include a permanent or temporary barrier. This could be implemented without impacting the existing infrastructure. No other work would be needed outside of the existing roadway section.

As noted above, traffic that currently uses the local lanes to access the exit at Shady Grove Road would

² Assumes 1,100 vehicles who currently use this ramp will exit I-270 north of this location. Actual diverting volume to be determined during detailed traffic analysis.

³ Assumes SB I-270 traffic that previously exits at start of local lanes will use this slip ramp (minus volumes that diverted north of the start of the local lanes).

have to divert to another exit from I-270. Considering that all traffic wanting to make this movement would be coming from the north, with the proximity of the I-370 interchange and the existing roadway network, it is likely that most of these vehicles would use the I-370 interchange and other surface streets to reach their destination. Additional traffic analysis is needed to identify the potential impacts to the overall system from the influx of these diverting vehicles.

E. OTHER PROJECTS

TBD.

F. ADMINISTRATION RISK

This PTC would divert some southbound I-270 traffic from the Shady Grove Road exit ramp to other exits along I-270. Additional analysis is needed to determine if any signal modifications would be needed to accommodate the diverted traffic. If so, SHA would have to coordinate with Montgomery County on the changes.

G. DESIGN-BUILDER RISK

TBD.

H. COST/SCHEDULE BENEFITS

TBD.

I. RELATED PTCs

The following PTCs could be implemented in conjunction with this PTC to improve overall operations:

 None. This PTC does not require other PTCs though it would preclude the implementation of other technology-based management or roadway PTCs.

J. MISCELLANEOUS

TBD.

Larry Hogan, Governor Boyd K. Rutherford, Lt. Governor

Pete K. Rahn, *Secretary*Gregory C. Johnson, P.E., *Administrator*

October 6, 2016

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 1 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 22, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

- 1. Generally, the concept appears to be a reasonable solution to address the goals of this contract
- 2. Please determine if there are any operational impacts to the existing infrastructure (e.g. I-370 ramps, the slip ramp between Shady Grove Road and Gude Drive, etc.) due to the closure proposed in this PTC.
- 3. A National Environmental Policy (NEPA) document and an Interstate Access Point Approval (IAPA) approved by the Federal Highway Administration (FHWA) will be required prior to establishing a Construction Agreed Price (CAP). In preparation of the IAPA, the Design-Builder must meet the requirements of the FHWA Interstate System Access Informational Guide.
- 4. Please clarify if the intention is to make this a permanent or temporary closure. If temporary, please clarify how the closure would be implemented and when it would operate. If permanent, please provide more details regarding how the access would be closed and what would become of the existing infrastructure, such as the existing pavement.
- 5. If the PTC is resubmitted, please provide detailed information for the following PTC sections: Other Projects, Design-Builder Risk, Cost/Schedule Benefits, and Miscellaneous.

Michael Higgins, P.E. Page Two

Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069_IS_270@sha.state.md.us.

Sincerely,

Jason A. Ridgway, P.E.
-Director, Office of Highway Development

cc: Mr. Mark W. Miller, Concrete General, Inc.

PROPOSED TECHNICAL CONCEPT 2

ROADWAY MODIFICATIONS TO THE MERGE OF THE I-270 WEST SPUR AND I-495

A. DESCRIPTION

Currently at the merge of the southbound I-270 West Spur with the outer loop of I-495, each roadway carries three lanes. The I-495 outer loop flies over the I-270 West Spur and merges on the right side. At the point of the merge, the left lane on the I-270 West Spur drops. This lane operates as an HOV lane during the AM peak period. The three lanes of the outer loop continue, creating a five-lane section. The AM peak hour volume from the I-270 West Spur is 5,435 vehicles. The AM peak hour volume from the I-495 outer loop is 4,480 vehicles. During the AM peak period, recurring congestion at the merge backs up onto the I-270 West Spur.

Under this PTC, the three lanes from the southbound I-270 West Spur would be maintained and the right lane from the I-495 outer loop would drop at the merge. The existing lane configuration, proposed modifications, and existing traffic volumes are shown in Figure 1.

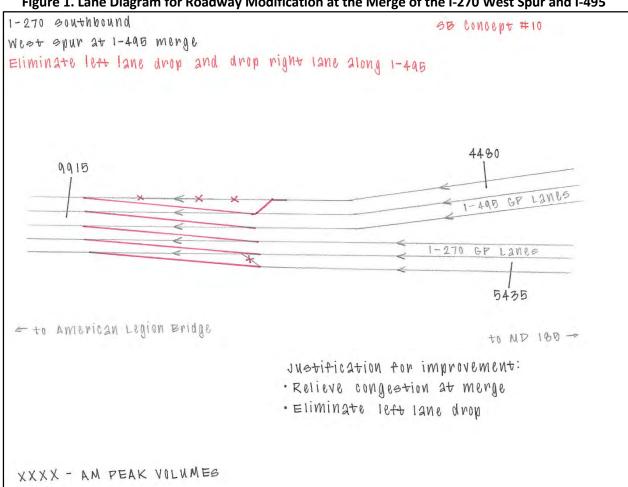
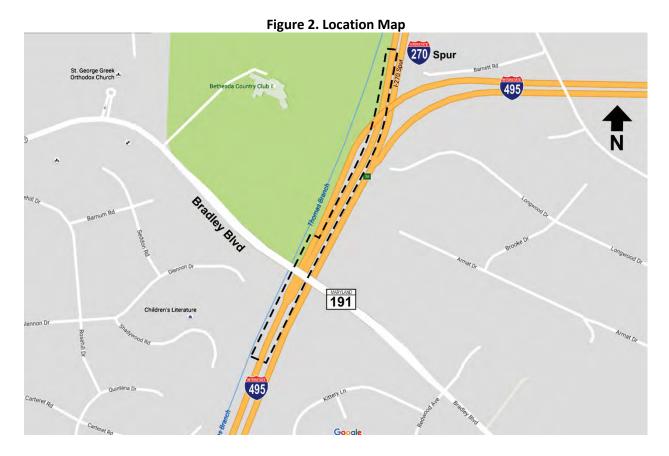



Figure 1. Lane Diagram for Roadway Modification at the Merge of the I-270 West Spur and I-495

B. LOCATION

This PTC is located at the merge of the southbound I-270 West Spur and the I-495 outer loop. The location of this improvement is shown in Figure 2. Page B-7

C. ANALYSIS

This PTC advances the project goals of increased mobility and safety. In addition, the PTC could be implemented in a configuration that would require no long-term operations or maintenance cost.

1. Mobility

Reconfiguring the merge to maintain the I-270 West Spur lanes and drop the right I-495 outer loop lane better accommodates the existing traffic volumes. The existing I-495 outer loop traffic volumes during the AM peak hour is 4,480 vehicles, which could be accommodated in two travel lanes. In contrast, the existing southbound I-270 West Spur traffic volumes during the AM peak hour is 5,435 vehicles, which requires three travel lanes. Reconfiguring the merge will eliminate the merging from the HOV lane into the more heavily utilized lanes from the I-270 West Spur. This will be replaced by merging from the right I-495 outer loop lane into the less heavily utilized lanes from I-495. This change should reduce congestion and improve mobility along the southbound I-270 West Spur.

2. Safety

Reconfiguring the merge should reduce congestion along the southbound I-270 West Spur, reducing congestion-related accidents.

D. POTENTIAL IMPACTS

There would be no roadway, right-of-way, infrastructure, or environmental impacts from this PTC. The work to reconfigure the merge could be accomplished through resurfacing, restriping, and minor signing changes.

N	one.
G	. DESIGN-BUILDER RISK
N	one.
Н.	COST/SCHEDULE BENEFITS
TE	BD.
ı.	RELATED PTCs
Tł	 following PTCs could be implemented in conjunction with this PTC to improve overall operations: None. This PTC does not require other PTCs though it would preclude the implementation of other technology-based management or roadway PTCs.

E. OTHER PROJECTS

J. MISCELLANEOUS

TBD.

F. ADMINISTRATION RISK

TBD.

Boyd K. Rutherford, *Lt. Governor*

Pete K. Rahn, Secretary Gregory C. Johnson, P.E., Administrator

October 6, 2016

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 2 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 22, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

- 1. Generally, the concept appears to be a reasonable solution to address the goals of this contract.
- 2. Please document any degradation of traffic operations on I-495.
- 3. A National Environmental Policy (NEPA) document and an Interstate Access Point Approval (IAPA) approved by the Federal Highway Administration (FHWA) will be required prior to establishing a Construction Agreed Price (CAP). In preparation of the IAPA, the Design-Builder must meet the requirements of the FHWA Interstate System Access Informational Guide.
- 4. If the PTC is resubmitted, please provide detailed information for the following PTC sections: Other Projects, Design-Builder Risk, Cost/Schedule Benefits, and Miscellaneous.

Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069 IS 270@sha.state.md.us.

Sincerely,

Jason A. Ridgway, P.E.

unacabel

Director, Office of Highway Development

cc: Mr. Mark W. Miller, Concrete General, Inc.

PROPOSED TECHNICAL CONCEPT 3

ROADWAY MODIFICATIONS TO NORTHBOUND I-270 AT SHADY GROVE ROAD AND I-370

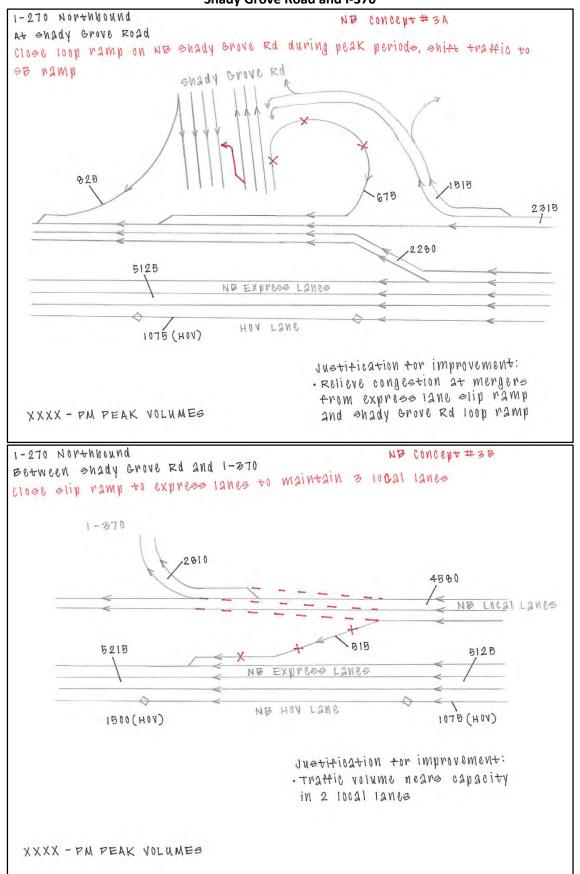
A. DESCRIPTION

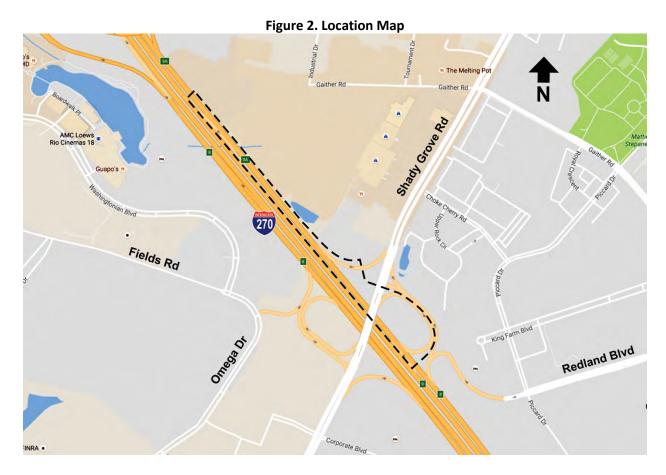
Along the northbound I-270 CD Road/local lanes through the Shady Grove Road interchange, there is a complex mix of lane drops, merges, weaves, and diverges. From south to north, the local lanes configuration varies as follows:

- Two lanes widen to three lanes approaching the Shady Grove Road exit ramp,
- The right two lanes drop at the exit ramp; one local lane continues,
- There are simultaneous merges on the left, from two slip ramp lanes from the express lanes, and from the right from the loop entrance ramp from northbound Shady Grove Road,
- The loop ramp merges and three local lanes continue; the left lane is striped as an auxiliary lane,
- The lane from the entrance ramp from southbound Shady Grove Road merges on the right; three local lanes continue,
- The left lane becomes a slip ramp to the express lanes; two local lanes continue,
- A lane is added on the right approaching the I-370 exit ramp, and
- The three lanes split to four lanes (with a center choice lane), with two lanes going to I-370 and two local lanes continuing north.

This complex configuration results in recurring congestion along the local lanes. In addition, the location of the simultaneous merges (slip ramp and loop ramp) is a noted high crash location.

Under this PTC, multiple roadway improvements are proposed:


- 1. Eliminate the simultaneous merge by closing the loop entrance ramp from northbound Shady Grove Road to the local lanes (the ramp could be removed or access to it closed). The ramp movement to the northbound local lanes would be accommodated by providing a left turn spur for northbound traffic to the existing southbound Shady Grove Road entrance ramp. The Shady Grove Road lane configuration and existing traffic signal would be modified to accommodate left turn storage and a left turn phase for the spur ramp.
- 2. Eliminate weaving in the I-270 local lanes between Shady Grove Road and I-370 by closing the slip ramp from the local lanes to the express lanes between Shady Grove Road and I-370.
- 3. Provide additional capacity between Shady Grove Road and I-370 by maintaining three local lanes from the existing local to express slip ramp drop to the I-370 exit ramp.


The existing lane configuration, proposed modifications, and existing traffic volumes are shown in **Figure 1** and **Figure 2**.

B. LOCATION

This PTC is located along the northbound I-270 local lanes through the Shady Grove Road interchange to the I-370 interchange. The location of this improvement is shown in **Figure 3**.

Figures 1 and 2. Lane Diagrams for Roadway Modification Along NB I-270 at Shady Grove Road and I-370

C. ANALYSIS

This PTC advances the project goals of increased mobility and safety. In addition, the PTC could be implemented in a configuration that would require no long-term operations or maintenance cost. The mobility and safety benefits are presented in **Table 1**.

Table 1. Mobility and Safety Benefits Resulting from Roadway Modifications to Northbound I-270 at Shady Grove Road and I-370

PTC Element	Mobility	Safety		
1. Close NB SGR loop ramp;	Eliminates a merge along the	Eliminates the simultaneous		
provide left turn spur to SB	local lanes; the 675 PM peak	merge along the local lanes.		
SGR ramp	hour vehicles that use this ramp			
	can be accommodated on the			
	SB SGR ramp.			
2. Close slip ramp from local to	Eliminates a weave section along the local lanes.			
express lanes				
3. Provide three local lanes	Provides additional capacity to	Provides sufficient capacity to		
between SGR and I-370	accommodate the traffic that	prevent/reduce recurring		
	would have exited at the slip	congestion along the local lanes		
	ramp to the express lanes			

D. POTENTIAL IMPACTS

A new left turn spur would be constructed within the wooded northeast infield area of the Shady Grove Road interchange. No other environmental impacts are anticipated. Shady Grove Road would have to be

resurfaced/restriped to eliminate the right side lane drop to the loop ramp and provide a left turn lane for the spur ramp. The existing traffic signal east of the Shady Grove Road Bridge would have to be modified to accommodate a left turn phase. There would be no right-of-way impacts.

E. OTHER PROJECTS

TBD.

F. ADMINISTRATION RISK

Shady Grove Road is a Montgomery County road. Changes to the road, ramp terminals, and existing signal east of the Shady Grove Road Bridge would have to be approved by Montgomery County.

The proposed improvements along Shady Grove Road, the interchange ramps, and the northbound I-270 local lanes would require an MEPA/NEPA study. It is likely that the level of review would fall in the Programmatic Categorical Exclusion (PCE), and therefore, SHA would have the authority to approve the PCE. However, it would necessitate analysis of noise, air quality, socio-economic, cultural, and natural environmental impacts in accordance with MEPA/NEPA. There is the potential that impacts are more extensive than initially anticipated a Categorical Exclusion (CE) would be required. In that case, additional coordination and approval may be needed with FHWA and other state/federal agencies.

The improvements under this PTC would change access to I-270, both within the Shady Grove Road interchange (reconfiguring access from NB Shady Grove Road to NB I-270) and between the local and express lanes (closing the slip ramp north of Shady Grove Road). These change would require an IAPA and FHWA approval.

Providing three local lanes between Shady Grove Road and I-370 can be done within the existing roadway section of the local lanes; however, reconfiguring the road to narrow lanes and shoulders may be needed for a short segment. These modifications would require design exceptions for both lane width and shoulder width. SHA does have the delegated authority from FHWA to approve these design exceptions.

G. DESIGN-BUILDER RISK

TBD.

H. COST/SCHEDULE BENEFITS

TBD.

I. RELATED PTCs

The following PTCs could be implemented in conjunction with this PTC to improve overall operations:

Ramp metering of nearby upstream ramps.

J. MISCELLANEOUS

TBD.

Larry Hogan, *Governor* Boyd K. Rutherford, *Lt. Governor*

Pete K. Rahn, Secretary
Gregory C. Johnson, P.E., Administrator

October 6, 2016

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 3 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 22, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

- 1. Generally, the concept appears to be a reasonable solution to address the goals of this contract
- 2. Please determine if there are any operational impacts to the existing infrastructure.
- 3. A National Environmental Policy (NEPA) document and an Interstate Access Point Approval (IAPA) approved by the Federal Highway Administration (FHWA) will be required prior to establishing a Construction Agreed Price (CAP). In preparation of the IAPA, the Design-Builder must meet the requirements of the FHWA Interstate System Access Informational Guide.
- 4. Please clarify if the intention is to close the loop ramp from northbound Shady Grove Road permanently or temporarily. If temporarily, please clarify how the closure would be implemented and when it would operate. If permanently, please provide more details regarding how the access would be closed and what would become of the existing infrastructure, such as the existing pavement.
- 5. Section D, Potential Impacts, definitively states there would be no right-of-way (ROW) impacts. While ROW could potentially be avoided, please note this PTC would likely require elements that often do impact ROW (e.g. stormwater management).
- 6. Travel lane widths on I-270 less than 12 feet and shoulder widths less than AASHTO standards will require an approved design exception, including a safety analysis, prior to establishing a CAP.
- 7. If the PTC is resubmitted, please provide detailed information for the following PTC sections: Other Projects, Design-Builder Risk, Cost/Schedule Benefits, and Miscellaneous.

Michael Higgins, P.E. Page Two

Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069 IS 270@sha.state.md.us.

Sincerely,

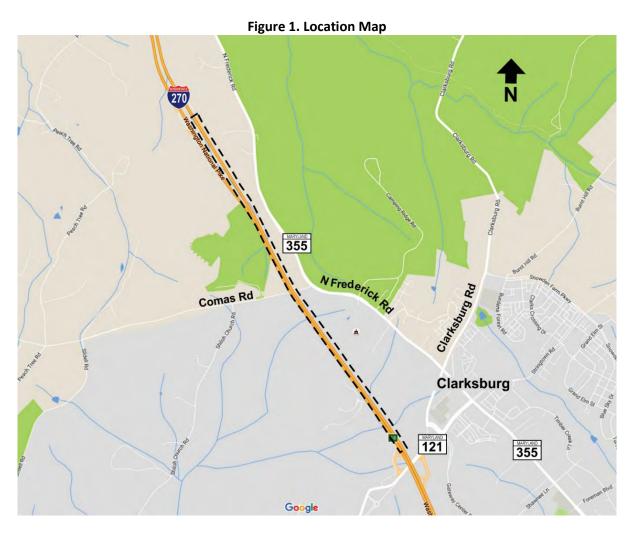
Jason A. Ridgway, P.E.

Director, Office of Highway Development

cc: Mr. Mark W. Miller, Concrete General, Inc.

PROPOSED TECHNICAL CONCEPT 4

ROADWAY MODIFICATIONS TO NORTHBOUND I-270 LANE CONFIGURATION NORTH OF MD 121


A. DESCRIPTION

Along northbound I-270, the leftmost lane is designated as an HOV lane during the PM peak period ends. This designation ends at the interchange of I-270 and MD 121 (Clarksburg Road). Approximately one-half mile north of MD 121, the right lane on northbound I-270 drops and the northbound direction is reduced from three to two lanes. These two lanes continue north to I-70, with auxiliary lanes in some locations. The northbound PM peak hour volume north of MD 121 is 4,665 vehicles. During the PM peak period, a recurring bottleneck forms from the location of the right lane drop.

Under this PTC, the third lane on northbound I-270 would be maintained between MD 121 and the weigh station approximately 2.4 miles north of MD 121 during peak periods. The right lane would drop at the weigh station.

B. LOCATION

This PTC is located along northbound I-270 from the lane drop north of MD 121 to the weigh station. The location of this improvement is shown in **Figure 1**.

C. ANALYSIS

This PTC advances the project goals of increased mobility and safety. In addition, the PTC could be implemented in a configuration that would require no additional long-term operations or maintenance cost outside of regular roadway maintenance.

1. Mobility

Maintaining a third lane north of MD 121 will provide additional capacity for the 4,665 PM peak vehicles for approximately two miles and will offer a greater distance for vehicles to merge from the right lane into the existing two lanes. The existing traffic volumes would not change; however, the density of the bottleneck at the existing lane drop will be reduced. Reconfiguring the number of lanes will provide a greater distance between the end of the HOV lane designation and reduction in the number of lanes. This change should reduce congestion resulting from vehicles slowing to merge and improve mobility along northbound I-270.

2. Safety

Providing a greater distance for vehicles to merge into two lanes should reduce the density of the bottleneck and related congestion along northbound I-270, therefore reducing congestion-related accidents.

D. POTENTIAL IMPACTS

The third lane would be implemented through resurfacing and restriping the existing paved width. The two lanes would be narrowed by one foot each to provide additional width for the right shoulder to act as a peak period lane. Multiple turn-offs would be provided to provide refuge for vehicles during the PM peak period. The amount of shoulder reconstruction would be limited to the greatest extent possible. However, any full depth pavement reconstruction would require stormwater management treatment. There could be environmental impacts from the limited widening and stormwater management treatment. There would be no right-of-way impacts from this PTC.

E. OTHER PROJECTS

TBD.

F. ADMINISTRATION RISK

The proposed improvements along northbound I-270 would require an MEPA/NEPA study. It is likely that the level of review would fall in the Programmatic Categorical Exclusions (PCE), and therefore, SHA would have the authority to approve the PCE. However, it would necessitate analysis of noise, air quality, socioeconomic, cultural, and natural environmental impacts in accordance with MEPA/NEPA. There is the potential that impacts are more extensive than initially anticipated a Categorical Exclusion (CE) would be required. In that case, additional coordination and approval may be needed with FHWA and other state/federal agencies.

Providing a peak period shoulder lane would likely require restriping northbound I-270 to narrow the travel lanes to provide additional width in the right shoulder. These modifications would require design exceptions for lane width (and potentially shoulder width). SHA does have the delegated authority from FHWA to approve these design exceptions.

G. DESIGN-BUILDER RISK

TBD.

H. COST/SCHEDULE BENEFITS

TBD.

I. RELATED PTCs

The following PTCs could be implemented in conjunction with this PTC to improve overall operations:

• Active Traffic Management.

J. MISCELLANEOUS

TBD.

Larry Hogan, Governor Boyd K. Rutherford, Lt. Governor Pete K. Rahn, Secretary Gregory C. Johnson, P.E., Administrator

October 6, 2016

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 4 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 22, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

- 1. Generally, the concept appears to be a reasonable solution to address the goals of this contract.
- 2. Section D, Potential Impacts, definitively states there would be no right-of-way (ROW) impacts. While ROW could potentially be avoided, the PTC states this strategy may require stormwater management, an element that often impacts ROW.
- 3. Section D, Potential Impacts, states multiple turn-offs would be provided for vehicle refuge during the PM peak period. Please specify the number of turn-offs to be provided, or the spacing. Please specify the minimum length of the turn-off (including tapers), or provide a sketch/detail.
- 4. A National Environmental Policy (NEPA) document and an Interstate Access Point Approval (IAPA) approved by the Federal Highway Administration (FHWA) will be required prior to establishing a Construction Agreed Price (CAP). In preparation of the IAPA, the Design-Builder must meet the requirements of the FHWA Interstate System Access Informational Guide.
- 5. The extension of the third lane would be considered a Type I project and require a noise analysis and appropriate mitigation as required by the SHA Noise Policy and the Code of Federal Regulations.
- 6. Travel lane widths on I-270 less than 12 feet and shoulder widths less than AASHTO standards will require an approved design exception, including a safety analysis, prior to establishing a CAP.
- 7. If the PTC is resubmitted, please provide detailed information for the following PTC sections: Other Projects, Design-Builder Risk, Cost/Schedule Benefits, and Miscellaneous.

Michael Higgins, P.E. Page Two

Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069_IS_270@sha.state.md.us.

Sincerely,

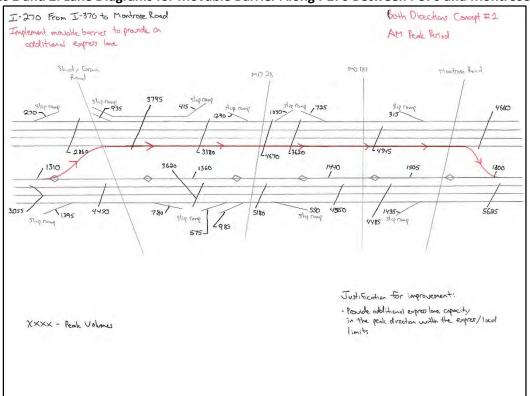
Jason A. Ridgway, P.E.

nemarabele

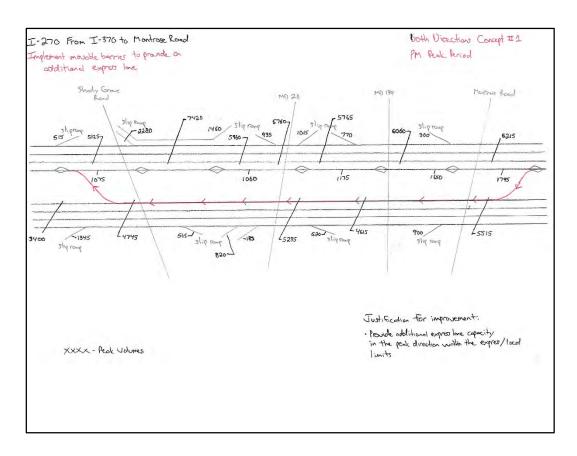
Director, Office of Highway Development

cc: Mr. Mark W. Miller, Concrete General, Inc.

PROPOSED TECHNICAL CONCEPT 5


MOVABLE BARRIER ON I-270 BETWEEN MONTROSE ROAD AND I-370

A. DESCRIPTION


Along the express lane section of I-270 between Montrose Road and I-370, there are three general purpose lanes and one peak period HOV lane in each direction. In the southbound direction, the diverge to the local lanes develops within the I-370 interchange and the local and express lanes merge back together approximately one-half mile south of Montrose Road. In the northbound direction, the local lanes diverge from the express lanes approximately one-half mile south of Montrose Road and the local and express lanes merge back together approximately one-half mile north of MD 124 (Montgomery Village Avenue). The AM peak hour volume in the southbound direction reaches 7,425 vehicles in the four express lanes, including the HOV lane. The PM peak hour volume in the northbound direction reaches 8,010 vehicles in the four express lanes, including the HOV lane.

Under this PTC, movable barrier would be utilized to create a fifth express lane in the peak direction along I-270 between Montrose Road and I-370 during peak periods. The express lane configuration in the off-peak direction would be reduced to three total lanes. Median crossovers would be provided at both ends of the movable barrier limits to provide access/egress to the lanes. The new peak period lane, which would operate in contra-flow (NB in the leftmost SB lane during PM; SB in the leftmost NB lane during the AM) would operate as a general purpose lane. The location of the HOV lanes would be maintained.

The existing lane configuration, proposed modifications, and existing traffic volumes are shown in **Figure 1** and **Figure 2**.

Figures 1 and 2. Lane Diagrams for Movable Barrier Along I-270 Between I-370 and Montrose Road

B. LOCATION

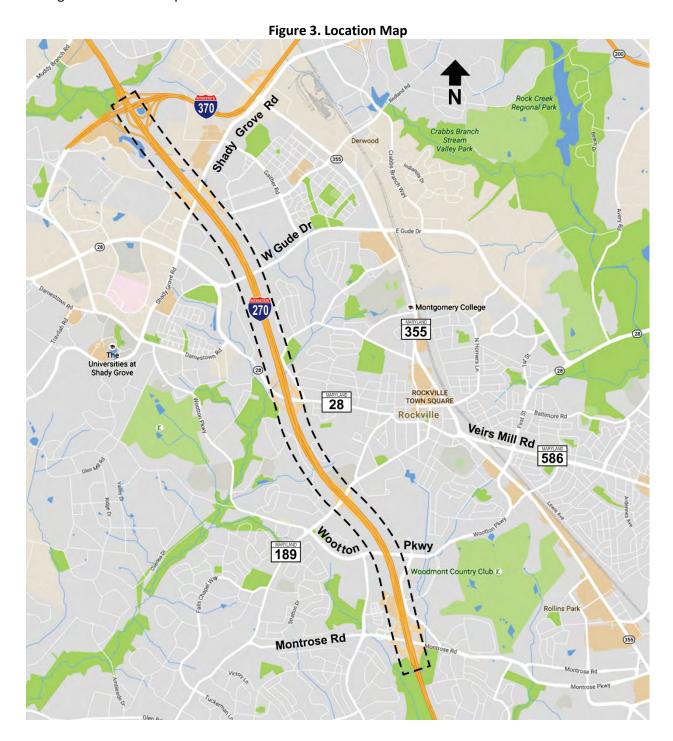
This PTC is located along the I-270 express lanes from the Montrose Road interchange to the I-370 interchange. The location of this improvement is shown in **Figure 3**.

C. ANALYSIS

This PTC advances the project goals of increased mobility and safety. Additional operations and maintenance costs associated with the deployment of moveable barrier would result from this PTC.

1. Mobility

Adding a fifth lane in the peak direction along I-270 will create additional capacity to better accommodate existing traffic volumes. Reducing the number of lanes in the off-peak direction will result in more traffic in three express lanes; however, the volume would still be less than the capacity of three lanes. The existing PM peak hour volume in the southbound direction reaches 5,515 in four express lanes, including the HOV lane. The existing AM peak hour volume in the northbound direction reaches 4,660 vehicles in four express lanes, including the HOV lane. This change to the peak direction lane configuration should reduce congestion and improve mobility along the I-270 express lanes between Montrose Road and I-370.


In addition, the contra-flow lanes created by the movable barrier would operate as true express lanes, as there would be only one entrance and exit (at the endpoints). This would allow drivers whose destinations are beyond the limits of the express/local section to avoid having to mix with any traffic that is entering or exiting at the many slip ramps within this section.

2. Safety

Providing an additional lane of capacity should reduce congestion in the peak direction along the I-270 express lanes, reducing congestion-related accidents.

3. Operability and Maintainability

There would be ongoing operations and maintenance costs associated with a movable barrier system. This include the maintenance of the movable barriers. Two movable barriers would be needed with this PTC, one for deployment of the northbound contra-flow lane (along SB I-270) and one of the deployment of the southbound contra-flow lane (along NB I-270). Two movable barrier vehicles would be needed to move the barrier, one for each direction, and these vehicles require upkeep, storage, and must be manned during movable barrier operations.

D. POTENTIAL IMPACTS

Two median crossovers would have to be constructed at the ends of the movable barrier system limits. This would require removal of the existing median barrier and at least some reconstruction of the existing median shoulders. The existing express lanes may have to be narrowed slightly to provide width within the existing lanes for the movable barrier to be deployed without having contra-flow vehicles travel partially on the existing median shoulder.

No work would be needed outside of the existing roadway section. There would be no right-of-way or environmental impacts from this PTC.

E. OTHER PROJECTS

TBD.

F. ADMINISTRATION RISK

SHA would be taking on the responsibility of a system that would have to be operated and maintained. Agreements would have to be reached on who would operate and maintain the system (SHA, the movable barrier vendor, or a third party). A long-term cost structure would have to be developed to understand the annual operating cost and overall life cycle costs for a movable barrier system.

G. DESIGN-BUILDER RISK

It is likely that CGI would procure the movable barrier system as part of the ICMC. A better understanding is needed on what the implementation cost would be, and the ability of a movable barrier vendor to provide a length of barrier needed for the proposed PTC.

H. COST/SCHEDULE BENEFITS

TBD.

I. RELATED PTCs

The following PTCs could be implemented in conjunction with this PTC to improve overall operations:

Active Traffic Management.

J. MISCELLANEOUS

TBD.

Boyd K. Rutherford, Lt. Governor

Pete K. Rahn, Secretary
Gregory C. Johnson, P.E., Administrator

October 6, 2016

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 5 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 22, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

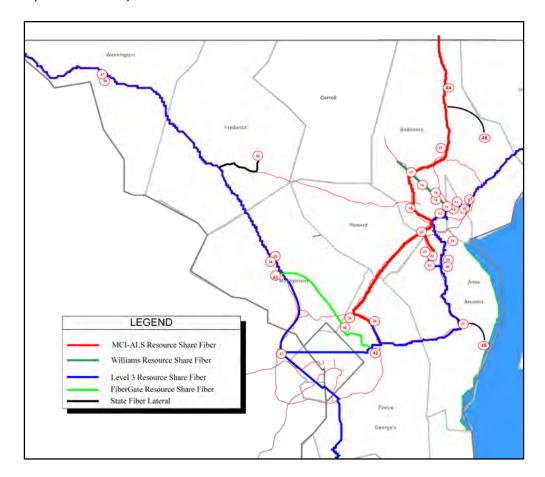
- 1. Generally, the concept appears to be a reasonable solution to address the goals of this contract.
- 2. For clarity, please provide a typical section(s).
- 3. Please elaborate on Safety, including incident management.
- 4. If potential costs, or a range of costs, of the Barrier Transfer Machines (BTMs) and moveable barrier are available, please provide in the Operability & Maintainability section.
- 5. Please clarify how the crossovers will be closed for the non-peak direction of traffic.
- 6. Travel lane widths on I-270 less than 12 feet and shoulder widths less than AASHTO standards will require an approved design exception, including a safety analysis, prior to establishing a Construction Agreed Price (CAP).
- 7. A National Environmental Policy (NEPA) document and an Interstate Access Point Approval (IAPA) approved by the Federal Highway Administration (FHWA) will be required prior to establishing a Construction Agreed Price (CAP). In preparation of the IAPA, the Design-Builder must meet the requirements of the FHWA Interstate System Access Informational Guide.
- 8. This would be considered a Type I project and require a noise analysis and appropriate mitigation as required by the SHA Noise Policy and the Code of Federal Regulations.
- 9. If the PTC is resubmitted, please provide detailed information for the following PTC sections: Other Projects, Design-Builder Risk, Cost/Schedule Benefits, and Miscellaneous.

Michael Higgins, P.E. Page Two

Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069_IS_270@sha.state.md.us.

Sincerely,

Jason A. Ridgway, P.E. Director, Office of Highway Development


cc: Mr. Mark W. Miller, Concrete General, Inc.

PROPOSED TECHNICAL CONCEPT 6

USE MDOT SHARED RESOURCE FIBER OPTIC CABLE ALONG I-270

A. DESCRIPTION

In order to provide a communication link to proposed SHA Intelligent Transportation System (ITS) devices, our team proposes to utilize existing MDOT Shared Resource fiber optic cable, owned by Level 3 Communications, which is located along the I-270 corridor. The figure below shows the path of the existing fiber optic through the corridor. The existing SHA ITS devices utilize leased communication lines, typically T1 or Cellular, which require monthly service fees. The MDOT Shared Resource fiber optic cable does not required a monthly service fee.

B. LOCATION

This PTC will be used throughout the I-270 corridor to connect proposed ITS devices to the Maryland Statewide Operations Center (SOC).

C. ANALYSIS

Based on information gathered by the Concrete General Team, MDOT (SHA/MDTA) has access to 48 resource shared fibers, free of charge. MDOT has access to 20 of the fibers, 12 are reserved and 16 are used by network Maryland.

Use of the MDOT Shared Resource fiber would achieve the project goals by reducing the

operations/maintenance costs for deployment of ITS devices along the corridor. Connection to the fiber optic cable would result in a one-time capital cost for splicing as opposed to monthly service fees which are currently paid to Verizon, AT&T or Sprint.

D. POTENTIAL IMPACTS

The use of this PTC will reduce the operation cost associated with installation of new ITS devices within the corridor.

E. OTHER PROJECTS

The Maryland Transportation Authority of Maryland Department of Transportation currently utilizes MDOT Shared Resource fiber owned by Level 3 Communications along I-95 for ITS devices.

F. ADMINISTRATION RISK

The SHA will need to confirm that the agreement with Level 3 Communications allows for the shared resource fiber to be utilized by SHA for ITS devices. SHA would need to confirm that two to four of the 20 fiber strands allocated to MDOT/SHA are available for use by SHA ITS devices.

G. DESIGN-BUILDER RISK

In order to tie into the Level 3 fiber optic cable, a request must be submitted through MDOT's Department of Information Technology (DOIT). DOIT than coordinates with Level 3 including providing them location, splice details and owner contact information. Level 3 hires a contractor to complete the splicing. Since the splicing is coordinated through and completed by a third party outside of the Design-Build Team, a risk of delay and schedule impact would be associated with the fiber splicing work. However, since the current SHA procedures require a service request to be filed and installed with a third party utility, such as Verizon, the risk is not much different than the current procedure.

H. COST/SCHEDULE BENEFITS

SHA currently pays approximately \$500 per month for T1 communication services associated with ITS devices which require high speed streaming data communication for video images. SHA currently pays approximately \$35 per month for cellular communication services for ITS devices which require medium or low speed data communication, such as for dynamic message signs, speed detectors, etc.

Under the existing system design, every new ITS device would require a new communication service and the associated monthly service charge. This would further increase SHA CHART's monthly ITS service bill.

If the Shared Resource fiber optic cable is used to connect the proposed ITS devices back to the SHA SOC, there would be no monthly service charge. The only cost would be associated with completing the splices into the level 3 fiber optic cable during construction. Typically the cost for splicing is \$5,000 per device location.

I. RELATED PTCs

The following PTCs could be implemented in conjunction with this PTC to improve overall operations:

- Active Traffic Management. Fiber could be used for ATM devices.
- Ramp metering. Fiber could be used for ramp metering system.
- Connector metering. Fiber could be used for ramp metering system.

- Enhanced detection. Fiber could be used for ramp metering system.
- Integrated Corridor Management. Fiber could be used for ramp metering system.

J. MISCELLANEOUS

TBD.

Larry Hogan, Governor Boyd K, Rutherford, Lt. Governor

Pete K. Rahn, Secretary Gregory C. Johnson, P.E., Administrator

October 6, 2016

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 6 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 22, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

1. The Administration is currently investigating how many fibers, if any, can be dedicated to the project. Once determined, additional information will be provided.

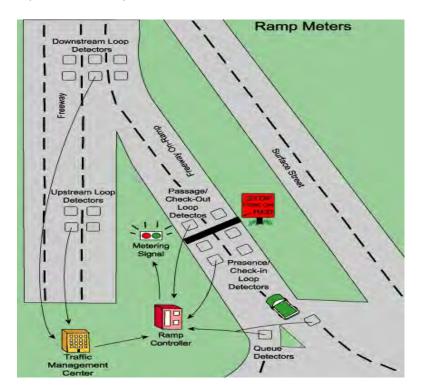
Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069 IS 270@sha.state.md.us.

Sincerely,

Jason A. Ridgway, P.E.

Kumanalul

Director, Office of Highway Development


cc: Mr. Mark W. Miller, Concrete General, Inc.

PROPOSED TECHNICAL CONCEPT 7 Adaptive Ramp Metering

A. DESCRIPTION

It is proposed to implement arterial-to-freeway ramp metering throughout the I-270 corridor. Ramp metering is a strategy that involves the use of a traffic signal(s) deployed on a ramp to control the rate at which vehicles enter a freeway. By controlling the rate at which vehicles are allowed to enter a freeway, the flow of traffic onto the freeway becomes more consistent, smoothing the flow of traffic on the mainline and allowing more efficient use of existing freeway capacity.

A typical ramp metering layout is shown below (noting that other types of detectors may be used rather than loops, particularly on the freeway).

All ramps will be equipped with queue management systems to manage the impact on the arterial road network at each location (e.g., if the ramp queues reach the queue detectors at the top of the ramp, the metering rate is relaxed or metering is discontinued). Connections between the ramp meter controller and local intersection controllers feeding the ramp may also be included as part of queue management.

It is envisioned that most metered ramps will operate as part of an area-wide metering control system. With such an adaptive ramp metering approach, metering rates are not set based solely on time of day or on the freeway flow in the immediate vicinity of the ramp. Rather, metering rates are based on freeway flows and ramp conditions throughout a zone – for example, upstream metering rates may become more restrictive in response to downstream ramps exceeding their capacity (queues backing up). The overall goal of adaptive ramp metering is to keep the freeway traffic flow from breaking down while equalizing the ramp delays throughout the corridor. Such area-wide control provides more options in optimizing mainline capacity and reducing the amount of overall system delay by using multiple ramps to control traffic at any given bottleneck or congested location.

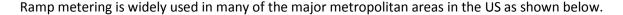
B. LOCATION

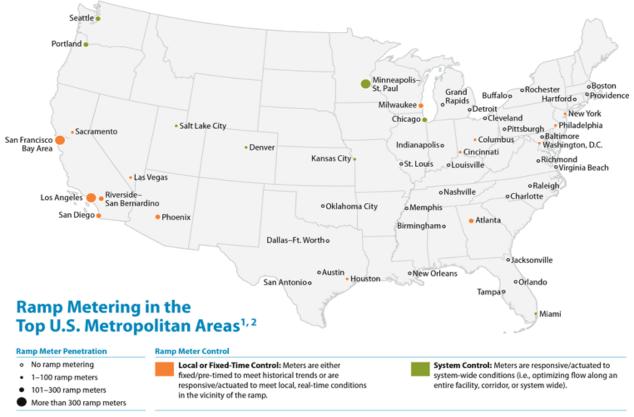
It is currently proposed to implement metering at every arterial to freeway on-ramp in the northbound and southbound directions. This includes up to 39 ramps. Each ramp is currently being assessed for its suitability for metering (e.g., ramp capacity relative to demands) and the impact on the freeway congestion. Therefore, the final number of ramps to be metered may be less than this number.

C. ANALYSIS

Ramp metering has been successfully applied at numerous locations in the United States, promoting both mobility and safety goals. Some of the results are summarized below:

- Portland, Oregon: 43 percent reduction in peak period collisions and 173 percent increase in average travel speed.
- Seattle, Washington: 39 percent reduction in collision rate and 52 percent reduction in average travel time.
- Minneapolis, Minnesota: 24 percent reduction in peak period collisions 16 percent increase in peakhour travel speed
- Long Island, New York: 15 percent reduction in collision rate and 9 percent increase in average travel speed


D. POTENTIAL IMPACTS


Assessment of the storage capacity and merge speed will be made for each ramp to determine whether metering can be successfully installed with minimum impact on the surface streets and to ensure appropriate acceleration onto the freeway. In some instances, it may be necessary to widen a ramp (i.e., add a lane) to increase storage. The area of metering may be reduced based on overall costs and benefits; but having area-wide, adaptive metering throughout the project corridor should help to reduce any institutional and jurisdictional concerns.

Right-of-way impacts are not foreseen, nor are environmental permitting needs (although queued vehicles at a meter can produce a "hot spot" for emissions, the improved flow and reduced emissions more than outweighs this). There may be environmental issues to address should it be determined that widening a ramp will help operations and reduce the probability of queues backing up onto the surface street.

The additional hardware – meter signals, controllers, and detection – will require on-going maintenance to ensure proper operation.

E. OTHER PROJECTS

Note: 1. According to the 2010 United States Census, metro areas have a population greater than one million people 2. Ramp metering information is current as of 2014.

F. ADMINISTRATION RISK

Coordination with the local communities, such as Montgomery County, coupled with the use of queue override strategies and area-wide adaptive metering, will be important to ensure that ramp queues do not back up onto the arterial street network.

New adaptive ramp metering algorithms (e.g., fuzzy logic as used in Seattle, SWARM as used in southern California) will need to be integrated into the CHART system or SHA's signal shop, including the development of the associated databases. In addition, since signals in Montgomery County are operated by the County, any required interfaces with their signal system will need to be investigated.

G. DESIGN-BUILDER RISK

A software developer/integrator will need to be added to the Team to provide the area-wide metering algorithms and to integrate into the CHART system or SHA's signal shop. On the positive side, by determining the extent of need for this concept, the design team will be in a better position to determine an appropriate partner.

H. COST/SCHEDULE BENEFITS

To be developed as part of the in-depth analysis.

I. MISCELLANEOUS

As ramp metering is new to Maryland, a public outreach and education program is strongly recommended prior to an immediately following start-up. An enforcement presence should also be considered during the first few months as well.

Larry Hogan, Governor Boyd K. Rutherford, Lt. Governor

October 12, 2016

Pete K. Rahn, Secretary
Gregory C. Johnson, P.E., Administrator

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 7 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 28, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

- 1. Generally, the concept appears to be a reasonable solution to address the goals of this contract.
- 2. To achieve the project goals, the Design-Builder must provide a fully functional system at project completion. Integration is a critical component for the success of this PTC. Please discuss in detail how this PTC will be integrated. Section D. Potential Impacts should address impacts to CHART.
- 3. Section B. Location: Please finalize the locations where ramp metering will be applied.
- 4. Section D. Potential Impacts does not provide a preliminary analysis of potential impacts related to utilities, safety, and life cycle project & infrastructure costs.
- 5. Section F. Administration Risk appears to defer the decision for which algorithm to utilize until after Notice to Proceed. Please add a note the Design-Builder must consider the cost of any algorithm in its proposal. Consider whether exploring pros and cons of different algorithms during the PTC process would be beneficial to reducing risk.
- 6. The Office of CHART & ITS Development, through its Statewide Operations Center (SOC) and regional District 3 Traffic Operations Center (TOC 3), acknowledges it will likely have a role in supporting the operations of any elements of an Advanced Traffic Management System (ATMS). This role will need to be consistent with technical capabilities of MDOT SHA's operations program. For the project to be a success, any PTC should reflect these capabilities.
- 7. Clearly describe how any ATMS system elements will operate to facilitate the overall solution's ability to meet the goals of the project.

- 8. The existing CHART ATMS resides within the security firewalls of the Maryland Department of Transportation (MDOT) Enterprise network. As such, any integration and data sharing between ATMS elements of the I-270 PTCs will need to comply with network security and system integration requirements as identified by MDOT and the Maryland Department of Information Technology (DoIT).
- 9. The development of the CHART ATMS software is conducted under a contract managed by the Office of CHART & ITS Development, with specific goals and separate contract requirements. Any modifications to the CHART ATMS software will be conducted under the CHART ATMS contract. Although integration between the CHART ATMS and I-270 ATMS elements is feasible, proposers should not make the success of the I-270 Innovative Congestion Management project contingent on adding functionality to the CHART ATMS. Also note, the CHART ATMS is an information management and advisory system for coordination of response to events on the roadway system. As such, it has not been developed to operate safety sensitive devices (e.g. traffic signals) in real time, which would require robust, instantaneous communications and frequent feedback on device and system status.
- 10. The CHART system communicates with field infrastructure in two ways: through wireless modems for Dynamic Message Signs, Highway Advisory Radios, Roadway Weather Information Systems and Traffic Speed Sensors, and through a combination of T-1 and fiber optics for cameras streams. CHART accesses fiber optic communication as a customer of Network Maryland and T-1 services from local telecommunications providers. The telecommunications architecture of the CHART system does not currently utilize dedicated circuits for point-to-point connectivity between central servers and field devices. It is also important to note that the CHART system central servers currently reside in an MDOT data center in Glen Burnie; not at the Statewide Operations Center in Hanover, MD.
- 11. If the PTC is resubmitted, please provide detailed information for the following PTC section(s): Cost/Schedule Benefits.

Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069 IS 270@sha.state.md.us.

Sincerely,

Jason A. Ridgway, P.E.

(kumanalue

Director, Office of Highway Development

cc: Mr. Mark W. Miller, Concrete General, Inc.

PROPOSED TECHNICAL CONCEPT 8 Freeway-to-Freeway Connector Metering

A. DESCRIPTION

It is proposed to implement metering on the freeway to freeway connectors within the I-270 corridor. Connector metering should be viewed as an extension of the adaptive ramp metering proposed in another PTC prepared by the Team, thereby providing full control of the rates at which <u>all</u> vehicles are allowed to enter the corridor, and further smoothing the flow of traffic on I-270. It also provides greater equity between all I-270 users regardless of whether they enter I-270 from a surface street or from another freeway.

The operation of connector metering is analogous to metering of surface street ramps as shown in the picture to the right (from California), including detectors along the entire length of the connector for setting metering rates and for queue management along the connector. The primary differences include:

- Multiple lanes are typically metered, and this may require some sort of alternate lane metering (i.e., vehicles are released alternating between lanes), or platoon metering where 2 or 3 vehicles are released for each green indication.
- Some form of notice is required informing drivers that metering is in operation (as shown in the picture below) well in advance of the metering locations. Dynamic speed limits (part of Active Traffic Management as described in

another PTC) may also be used to slow traffic down prior to the metering spot.

B. LOCATION

Candidate locations include the following:

- I-495 (Beltway) NB onto I-270 NB
- I-495 (Beltway) WB onto I-270 NB
- I-370 WB onto I-270 SB
- I-370 WB onto I-270 NB
- I-370 EB onto I-270 SB
- I-370 EB onto I-270 NB

C. ANALYSIS

Each connector ramp will be assessed for its suitability for metering and potential impacts on freeway congestion and operations – both I-270 and the connecting freeways (i.e., I-495 and I-370).

Connector metering has been implemented on over a 100 freeway-to-freeway connectors in San Diego, Los Angeles, and Minneapolis recent decades resulting in positive improvements in mobility and safety.

D. POTENTIAL IMPACTS

Right-of-way impacts are not foreseen, nor are environmental permitting needs (although queued vehicles at a meter can produce a "hot spot" for emissions, the improved flow and reduced emissions more than outweighs this). Safety issues surrounding the stopping of vehicles on a freeway to freeway connector ramp will be carefully assessed and speed management of the joining ramp will also be considered.

The additional hardware – meter signals, controllers, and detection – will require on-going maintenance to ensure proper operation.

E. OTHER PROJECTS

As noted above, connector metering has been implemented on over a 100 freeway-to-freeway connectors in San Diego, Los Angeles, and Minneapolis recent decades resulting in positive improvements in mobility and safety.

F. ADMINISTRATION RISK

Coordination with the Maryland Transportation Authority (operator of the ICC) and local communities, coupled with the use of queue management strategies, will be important to ensure that queues on the connectors do not back up onto the freeway.

Connector metering and the associated queue management requirements for each connector will need to be integrated into the new adaptive ramp metering algorithms (refer to ramp metering PTC) that will be integrated into the CHART system or SHA signal shop.

G. DESIGN-BUILDER RISK

As noted in the PTC for ramp metering, a software developer/integrator will need to be added to the Team to provide the area-wide metering algorithms and to integrate into the CHART system or SHA signal shop. This developer / integrator and their algorithms will need to be able to accommodate connector metering. On the positive side, by determining the extent of need for this concept, the design team will be in a better position to determine an appropriate partner.

Page B-39

H. COST/SCHEDULE BENEFITS

To be developed as part of the in-depth analysis.

I. MISCELLANEOUS

As connector metering will be new to Maryland, a public outreach and education program is strongly recommended prior to an immediately following start-up. An enforcement presence should also be considered during the first few months as well.

Larry Hogan, Governor Boyd K. Rutherford, Lt. Governor

October 12, 2016

Pete K. Rahn, Secretary Gregory C. Johnson, P.E., Administrator

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 8 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 28, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

- 1. Generally, the concept appears to be a reasonable solution to address the goals of this contract.
- 2. To achieve the project goals, the Design-Builder must provide a fully functional system at project completion. Integration is a critical component for the success of this PTC. Please discuss in detail how this PTC will be integrated. Section D. Potential Impacts should address impacts to CHART.
- 3. Section B. Location: Please finalize the locations where Freeway-to-Freeway Connector Metering will be applied.
- 4. Section C. Analysis: Once your assessment is complete, please elaborate and provide a more thorough/detailed analysis justifying the use of the PTC and how it advances the project goals.
- 5. Section E. Other Projects: Please elaborate and identify specific locations. If post-construction results are available, please provide.
- 6. Section D. Potential Impacts does not provide a preliminary analysis of potential impacts related to utilities and life cycle project & infrastructure costs. Please elaborate on safety. If guidance, statistics, or studies from other states (or countries) related to safety is available, please provide.
- 7. Section F. Administration Risk appears to defer the decision for which algorithm to utilize until after Notice to Proceed. Please add a note the Design-Builder must consider the cost of any algorithm in its proposal. Consider whether exploring pros and cons of different algorithms during the PTC process would be beneficial to reducing risk.

Michael Higgins, P.E. Page Two

- 8. This PTC will require coordination with the Federal Highway Administration (FHWA) and a formal coordination letter will need to be sent to FHWA; however, an Interstate Access Point Approval (IAPA) will not be required.
- 9. Please refer to comments 6 thru 10 in SHA's letter for PTC 7 dated October 12, 2016.
- 10. If the PTC is resubmitted, please provide detailed information for the following PTC section(s): Cost/Schedule Benefits.

Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069 IS 270@sha.state.md.us.

Sincerely,

Jason A. Ridgway, P.E.

Director, Office of Highway Development

cc: Mr. Mark W. Miller, Concrete General, Inc.

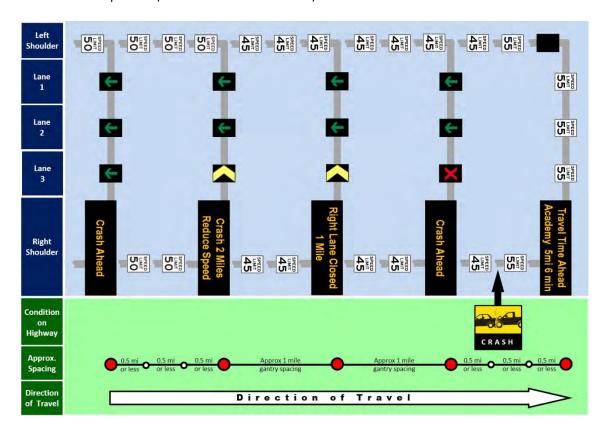
PROPOSED TECHNICAL CONCEPT 9 Active Traffic Management (ATM)

A. DESCRIPTION

It is proposed to implement Active Traffic Management (ATM) – consisting of the following combination of strategies:

- Dynamic Speed Limit (DSL) This strategy, which has also been called variable speed limit, adjusts speed limit displays based on real-time traffic, roadway, and/or weather conditions. DSL can either be enforceable (regulatory) speed limits or recommended speed advisories. This "smoothing" process helps minimize the differences between the lowest and highest vehicle speeds, which often contribute to crashes and shockwaves in the traffic flow
- Dynamic Lane Assignment (DLA)—This strategy, also known as dynamic lane use control, involves
 dynamically closing or opening of individual traffic lanes as warranted and providing advance
 warning of the closure(s) to drivers, typically through dynamic lane control signs, to safely merge
 traffic into adjoining lanes well before the lane blockage, thereby smoothing the traffic flow . DLA
 is often installed in conjunction with dynamic speed limits.
- Queue Warning (QW)—This strategy involves real-time displays of warning messages (typically
 on dynamic message signs) along a roadway to alert motorists that queues or significant
 slowdowns are ahead, thus reducing rear-end crashes and improving safety. QW is often included
 as part of DSL and DLA strategies to provide additional information to motorists as to why the
 speed limit has been reduced and/or why the lane(s) is closed ahead.

An example of an ATM gantry is shown below. The DMS over each lane can be used for both variable speed limit displays and for dynamic lane use control (although not simultaneously). Speed limit signs may also be installed on the gantry poles as shown below. Should some sort of hard shoulder running be deployed, one of these DMS would also be installed over the shoulder.



Initial deployments of ATM in the United Kingdom (known as Managed Motorways) spaced the gantries such that the driver was presented with a "continuum of information with 'intervisibility' of signs on successive gantries for the driver." This resulted in gantry spacing of between 600 meters (0.37 miles) to 1,000 meters (0.62 miles). On the M42 in the United Kingdom, the gantry spacing is 500 and 800 meters Page B-43

(0.33 to 0.5 mile). The spacing of gantries for the initial deployment of ATM in the Washington State (Seattle) and Minneapolis systems followed this same concept, with gantries located at roughly 0.5 mile intervals on average.

In England, these earlier ATM implementations and design concepts are now considered conservative, and experience indicates that greater gantry spacing may be appropriate. The U.K. Highways Agency analyzed a new application of the Managed Motorways toolkit, with the overall aim of delivering "schemes that will provide comparable benefits to those expected of current Managed Motorways schemes, but at a reduced cost and with shorter timescales for implementation." The current philosophy is that spacing needs to be sufficient so that drivers know they are still on a controlled roadway. The ATM design concepts in the UK are now based on providing driver information – including speed limits, lane availability and closures, and text legends (e.g., queue warnings) – at intervals not exceeding 1,500 meters (0.93 mile). A full gantry – supporting the over-the-lane DMS for speed limits and lane control displays, and a DMS for other messages (e.g., queue warning) – is always located immediately downstream of an on-ramp(s). Other signage between junctions, and in accordance with the maximum spacing interval noted above, consist of a side-mounted DMS.

This "hybrid" approach is proposed for I-270. It would consist of full gantries every mile (or less in some locations due to on-ramps) augmented with side-mounted dynamic speed limit signs located between gantries – will be explored. (Refer to schematic below).

In addition to the gantry / support poles and the signs, each ATM location will also include a cabinet with DMS controller, power feed, and communications feed. It is also envisioned that some sort of detector (e.g., microwave / radar) will also be included at each location, along with antennas for future Connected Vehicle DSRC and / or Wi-Fi. (This is addressed in another PTC)

B. LOCATION

Preliminary analysis of the I-270 corridor for potential use of ATM was based on the guidance and procedures described in the recently published FHWA document "ATM Feasibility and Screening Guide" (http://www.ops.fhwa.dot.gov/publications/fhwahop14019/index.htm), coupled with an initial review of crash data and congestion information. ATM will be further analyzed for implementation along the following segments listed below in priority order:

- NB and SB between the Beltway and just north of Montgomery Village Ave (Exit 11), including both spurs connecting to the Beltway, approximately 26 directional miles;
- Extend this ATM in the NB direction further north to north of Rt. 121 (Exit 18), approximately 7 directional miles; and,
- SB between Rt. 85 (Exit 31)) and Rt. 109 (Exit 22), approximately 9 directional miles in the vicinity of the truck scales.

C. ANALYSIS

This PTC advances the project goals of increased mobility and safety.

Safety - The segments noted above have the highest number of crashes along the corridor. The majority of crash types are rear-end, followed by fixed object and then sideswipe. Additionally, nearly all of the fixed object crashes involves guard rail, and it may very well be that many of these fixed object crashes were the result of an effort to avoid a sideswipe crash. The majority of the probable causes for the crashes are "followed too closely" and "too fast for conditions". ATM has proven to significantly reduce such types of crashes thereby enhancing safety. For example,

- ATM along NB I-5 in the Seattle, Washington area resulted in a 4.1 percent decrease in crashes over a 3-year period, while during the same period, the SB segment of I-5 (without ATM) experienced a 4.4 percent increase in the number of crashes.
- ATM along WB I-35 in Minneapolis, Minnesota resulted in a 9 percent reduction in fatal plus injury crashes, while the reduction in property damage only crashes was 20 percent.
- In both the Seattle and Minneapolis examples, the roadways were already actively managed via ramp metering, incident management, and traveler information prior to the implementation of ATM, making the reduction in crashes even more impressive.
- Even greater reductions in crashes have occurred following ATM deployment in Europe; although their systems also include automated speed enforcement.

Mobility – The ATM strategies noted above focus mostly on improving safety. However, by reducing the number of crashes, there is a corresponding reduction in non-recurrent congestion. Additionally, these ATM strategies can reduce turbulence in freeway traffic flow, reducing the number of shockwaves and helping to prevent flow breakdown from occurring.

D. POTENTIAL IMPACTS

Right-of-way impacts are not foreseen, nor are environmental permitting needs for ATM. The additional hardware – DMS, controllers, and the associated detection for obtaining real-time data – will require ongoing maintenance to ensure proper operation.

E. OTHER PROJECTS

As noted above, ATM systems have been installed in the Seattle and Minneapolis areas. Other recent ATM deployments include I-66 in northern Virginia, and Portland, Oregon (dynamic speed limits only).

F. ADMINISTRATION RISK

By definition, ATM involves automated operation including the posting of the appropriate speed displays. Current DSL algorithms are somewhat "reactive" in their operation in that the speed displays are set based on the measured 85th percentile speed downstream from the displays. This logic is not applied independently to each DSL location (i.e., side-mounted and gantries), but rather is based on data from a series of consecutive DSL display locations – sometimes called a troupe – along the roadway. Work is underway to develop more proactive algorithms, including predictive algorithms. Moreover, Speed displays and changes in these displays will be subject to configurable rules. These will be a user-input to the database, and should include such considerations as:

- Maximum and minimum speeds that can be displayed;
- The minimum time between changes in posted speeds at each location (e.g., 2 to 5 minutes); and,
- The maximum change in speed displays (e.g., increases and decreases of 5 or 10 MPH) at individual signs, and between consecutives gantry/side-mounted sign locations to create a reasonable speed "funnel."

The development and implementation of dynamic speed algorithms and DSS, and their integration into the CHART system including the definition and input of various operational rules, are part of this PTC Dynamic lane and queue warning message do require operator involvement; but this can be greatly aided – and even automated – by the use of a **Decision Support System (DSS)**. The 2006 FHWA scanning tour of ATM systems in Europe identified several recommendations, including "an expert system that deploys the strategy based on prevailing roadway conditions without requiring operator intervention. It is critical that this expert system be reliable and accurate to gain the trust and acceptance of the public."

A (DSS) – can be very useful in "automating" the lane control displays for dynamic lane assignment (DLA) and the queue warning and other text messages on the larger DMS. A DSS continuously monitors data and other performance parameters collected from the detection subsystem and operator input (e.g., confirmed incidents, location, severity, number of lanes blocked, anticipated duration; scheduled events) along with equipment status and time of day and day of week. Through a series of IF, AND, OR, and THEN logical statements, this DSS implements the most appropriate response plan, either automatically or with operator confirmation (e.g., approval of the entire plan, or each individual step of the plan on a sequential basis).

Another administrative issue for SHA involves dynamic lane assignment. Most systems either use a Yellow Chevron or Yellow Diagonal Arrows to indicate the need for drivers to start the merge out of a lane. While, the RED X and GREEN ARROW is included in the MUTCD, the yellow chevrons and diagonal arrows are not. Accordingly, SHA will need to request approval from FHWA for using these displays as an "MUTCD Experiment" (as other locations have done).

G. DESIGN-BUILDER RISK

A software developer / integrator will need to be added to the Team to provide the ATM software, including decision support systems, and to integrate these additional capabilities into the CHART system. Several software vendors provide these features, and are continually making improvements to the algorithms and logic. During final design, the Concrete General Team will refine the system requirements, interview several of these vendors — including software demos (to which SHA and CHART staff will be

invited) to determine compliance, and then select the most cost-effective solution.

H. COST/SCHEDULE BENEFITS

To be developed as part of the in-depth analysis.

I. MISCELLANEOUS

As ATM is new to Maryland, a public outreach and education program is strongly recommended prior to and immediately following start-up. An enforcement presence should also be considered during the first few months as well.

Larry Hogan, Governor Boyd K. Rutherford, Lt. Governor

October 12, 2016

Pete K. Rahn, Secretary Gregory C. Johnson, P.E., Administrator

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue

Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 9 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 28, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

- 1. Generally, the concept appears to be a reasonable solution to address the goals of this contract.
- 2. To achieve the project goals, the Design-Builder must provide a fully functional system at project completion. Integration is a critical component for the success of this PTC. Please discuss in detail how this PTC will be integrated. Section D. Potential Impacts should address impacts to CHART.
- 3. Section B. Location: Please finalize the location(s) where this PTC will be applied.
- 4. Section D. Potential Impacts, does not provide a preliminary analysis of potential impacts related to utilities and life cycle project & infrastructure costs.
- 5. Please refer to comments 6 thru 10 in SHA's letter for PTC 7 dated October 12, 2016.
- 6. If the PTC is resubmitted, please provide detailed information for the following PTC section(s): Cost/Schedule Benefits.

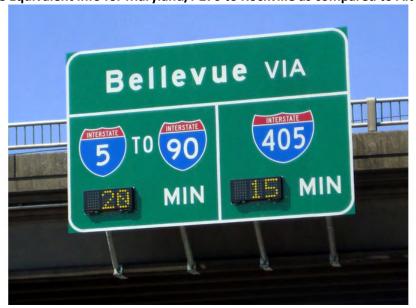
Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069_IS_270@sha.state.md.us.

Sincerely,

Jason A. Ridgway, P.E.

Director, Office of Highway Development

cc: Mr. Mark W. Miller, Concrete General, Inc.


PROPOSED TECHNICAL CONCEPT 10 Integrated Corridor Management (ICM)

A. DESCRIPTION

It is proposed to implement Integrated Corridor Management (ICM) along segments of the I-270 Corridor. ICM consists of the operational coordination of multiple transportation networks and cross-network connections comprising a corridor on an ongoing and regular basis. Efforts to date to improve the operations and management of the surface transportation network have tended to focus on individual modes and agency networks. In 2006, the U.S. Department of Transportation (USDOT), a joint effort of FHWA and the Federal Transit Administration initiated the ICM initiative with the expectation that "corridors offer an opportunity to operate and optimize the entire system as opposed to the individual networks."

ICM involves numerous approaches and strategies as idenitifed in FHWA documentation. Many of these are addressed in other technology-based PTCs, including coordinated operation between ramp meters and arterial traffic signals, dynamic lane use controls and speed limits via ATM, and restricting ramp access. Other ICM strategies to be addressed a part of this PTC for I-270 include the following:

Suggest / promote route shifts roadways from I-270 to parallel arterial streets via en-route traveler
information devices (e.g., DMS, 511) advising motorists of congestion ahead, crashes, and / or
differences in travel times between alternative routes, such as shown below. It is also envisioned that
this information will be provided to third-party information service providers as well.

Can Use Equivalent info for Maryland/I-270 to Rockville as compared to Alt Routes

Modify arterial signal timing to accommodate traffic shifting from freeway. Montgomery County is in
the process of evaluating traffic adaptive control for subsequent implementation in the County's
transportation management system. With traffic adaptive control, any changes in arterial traffic flows
are rapidly accommodated in changed signal timings.

It is noted that ICM concepts are nothing new to SHA. The agency submitted a proposal to USDOT in 2006 to be one of the ICM Pioneer Sites. This proposal focused on I-270 between the Beltway and the Montgomery County / Frederick County line. More recently (in 2014), SHA submitted a proposal to FHWA

for ICM Deployment Planning Grant project focusing on I-95, MD 295 (Baltimore-Washington Parkway), and US 1 between MD 32 and I-695 (Baltimore Beltway).

B. LOCATION

The ICM concepts will be applied to the length of the I-270 project area and MD 355 (a divided signalized arterial that parallels I-270), along with the numerous roadways connecting these two routes (e.g., I-70, MD 80, MD 109, MD 121, Father Hurley Boulevard, MD 118, Middlebrook Road, MD 124, MD 117, I-370, MD 28, MD 189). This is very similar to the area identified in the 2006 ICM proposal.

C. ANALYSIS

This PTC advances the project goal of increased mobility, by providing drivers with actionable information in real time (e.g., comparative travel times between I-270 and MD 355), thereby allowing them to make informed choices as to the "best" route to take to their destination. Technology-based strategies are used to optimize operations along these routes and the connecting roadways, including adaptive signal control on the arterials, adaptive ramp metering, and active traffic management.

Preliminary analyses of ICM for San Diego and Dallas have indicated benefit-cost ratios of between 7:1 to 25:1.

D. POTENTIAL IMPACTS

Right-of-way impacts are not foreseen, nor are environmental permitting needs for ICM. Assuming that Montgomery County moves forward and implements adaptive signal control in their transportation management system, additional detector deployment will likely be required along MD 355 and the various routes connecting 355 with I-270 to provide real-time journey times and to enable traffic adaptive operation along these arterials. Additional CCTV along the connecting routes and MD 355 may also be required. (CCTV coverage along I-270 is addressed in another PTC). This additional hardware, along with the travel time signs and controllers located on I-270 and on the arterials, will need to be maintained.

E. OTHER PROJECTS

The ICM initiative started with foundational research in 2005, followed by the selection of several pioneer sites to develop ICM concept of operations, and subsequently the deployment of ICM systems in San Diego and Dallas. These two systems are now being evaluated.

F. ADMINISTRATION RISK

Additional software – for calculating (and possibly predicting) the travel times along I-270, MD 355, and the connecting routes for various key destinations will be required. Moreover, the Decision Support System (DSS) discussed in the ATM PTC will be expanded to address ICM-based scenarios and associated diversions. This software and integration into the CHART system, including the definition and input of various operational rules, are part of this PTC. In addition, if signals and travel times are incorporated into one system, integration of signal operations into the CHART system would need to be addressed as this functionality is currently not in operation.

It will also be necessary to enter into an agreement with Montgomery County and potentially Frederick County addressing ICM operations, potential diversion scenarios, and maintenance responsibilities for hardware (signs, detectors) installed on the arterial network.

G. DESIGN-BUILDER RISK

A software developer / integrator will need to be added to the Team to provide the ICM software noted above, and to integrate these additional capabilities into the CHART system.

H. COST/SCHEDULE BENEFITS

To be developed as part of the in-depth analysis.

I. MISCELLANEOUS

As ICM concepts – particularly the comparative travel times – are new to Maryland, a public outreach and education program is strongly recommended prior to and immediately following start-up.

Larry Hogan, Governor Boyd K. Rutherford, Lt. Governor

Pete K. Rahn, Secretary Gregory C. Johnson, P.E., Administrator

October 12, 2016

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 10 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 28, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

- 1. Generally, the concept appears to contribute positively to addressing the goals of this contract; however, some potentially significant challenges to implementing this PTC have not been addressed. Specifically, a number of agreements with 3rd parties may be required. Please state how these agreements will be executed and what Concrete General is sure it can deliver.
- 2. To achieve the project goals, the Design-Builder must provide a fully functional system at project completion. Integration is a critical component for the success of this PTC. Please discuss in detail how this PTC will be integrated. Section D. Potential Impacts should address impacts to CHART.
- 3. Section D. Potential Impacts does not provide a preliminary analysis of potential impacts related to utilities and life cycle project & infrastructure costs. Also, Section D assumes Montgomery County will implement adaptive signal control. What are the impacts assuming Montgomery County does not implement adaptive signal control?
- 4. Please refer to comments 6 thru 10 in SHA's letter for PTC 7 dated October 12, 2016.
- 5. If the PTC is resubmitted, please provide detailed information for the following PTC section(s): Cost/Schedule Benefits.

Michael Higgins, P.E. Page Two

Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069_IS_270@sha.state.md.us.

Sincerely,

Jason A. Ridgway, P.E.

Director, Office of Highway Development

cc: Mr. Mark W. Miller, Concrete General, Inc.

PROPOSED TECHNICAL CONCEPT 11 Enhanced Detection and Incident Management

A. DESCRIPTION

The GCI Team proposes to implement enhanced detection to support other technology-based strategies (e.g., active traffic management, ramp metering) and also in association with upgraded Incident Management capabilities throughout the corridor.

The enhanced detection component may be accomplished through an expanded purchase of data from a third-party vendor such as INRIX, which already supplies travel-time data to SHA; deployment of SHA-owned field devices, or a combination of both approaches. This PTC may also include innovative business relationships with organizations such as Waze to share data in mutually beneficial ways, beyond simply pushing incident data from CHART to the third party application as is currently done. Detection will likely include speeds, volumes, vehicle classification, journey times, incident detection and road weather conditions, in addition to real-time video.

Upgraded Incident Management will focus on using enhanced detection to more quickly identify and initiate response to incidents, along with augmenting the existing Emergency Traffic Patrols with additional agency-owned resources and/or private – sector resources to be deployed during peak periods.

B. LOCATION

Enhanced detection will be implemented on the entire footprint of the corridor from the Beltway Spurs to the northern terminus at I-70. This will include all access/egress points and ramps.

Camera coverage will be improved to provide 100% coverage of the entirely of the project footprint, including ramps. Existing cameras will be augmented by full color PTZ cameras mounted on poles at roadside and/or on existing and new sign gantries.

RWIS to collect road weather data will be placed at the Montrose Road interchange, the Route 124 Interchange, the Father Hurley Boulevard interchange and the MD 80 Interchange.

Upgraded incident management will be accomplished via additional Emergency Traffic Patrol vehicles and staff to be utilized during peak period. For the section from Father Hurley Boulevard to the northern terminus, vehicles will be based in the Frederick Satelite TOC and will run continuously during peak period, with at least one vehicle traveling in each direction on a constant basis. For the section from Father Hurley to I-495, vehicles will be based at the Montgomery County Shop on Quince Orchard road and will likewise run continuously in each direction during peak period. This PTC will investigate broadening the existing partnership with State Farm as well as finding other private sector sponsors.

C. ANALYSIS

Enhanced Detection is a crosscutting approach that will support all other technology-based PTCs. The first analysis to be undertaken is the "make or buy" analysis to determine whether it is more cost efficient to purchase detection data entirely from a third party, to deploy SHA-owned and maintained field detection, or to develop a hybrid solution combining both options. Once this is determined, the next analysis will be a cost/benefit calculation to determine the dollar value of the additional data derived from Enhanced Detection.

D. POTENTIAL IMPACTS

Potential impacts are virtually non-existent if the third party purchase option is pursued, and are minimal under either a hybrid or entirely SHA-owned option. Placement of field devices such as sidefire (or over the lane) radar (RTMS) units, microwave detection and CCTV can be accomplished entirely within existing right of way, and in most cases can be mounted on existing and proposed future poles or gantries. Geotechnical borings, utility relocations and environmental permitting are not required, and the impacts to safety would be confined to a few lane closures during device placement. Life-cycle maintenance costs for these devices are minimal and are estimated at 2% of construction cost annually.

If the decision is made to rely entirely or primarily on INRIX Data, there are some considerations and impacts. The INRIX XD data segments are nominally 250 meters (273 yards) in length, with updates provided once every minute. The use of these data will likely impact gantry spacing such that the sign displays are closely aligned with the INRIX segment boundaries. It is also envisioned that existing ATM software may need to be modified to work with the INRIX data. The current state of the art in ramp metering software and the associated algorithms for automatically determining metering rates is to rely more on INRIX data for average speed information. If it is determined to use the INRIX XD data, as described, this will likely prove adequate for ATM strategies, although approaches and sign display strategies that are based on per-lane volumes and speeds will not be possible.

The final location and design of the gantries will need to be coordinated with the INRIX segment boundaries (information which is proprietary, and will therefore require some sort of confidentiality agreement). It is also envisioned that additional software costs will be incurred to accommodate the INRIX data streams. As for ramp metering strategies, it is doubtful if the INRIX data will work with existing ramp metering algorithms. Future applications of ATM and ramp metering will need to take advantage of the information provided by INRIX and other data providers, taking advantage of "big data" concepts. This will require a transition over time to include major changes to the current ATM and ramp metering software and associated logic. In the future, cooperative vehicle data (i.e. Connected Vehicles) may be used as a primary detection source for speed drop and other incidents. Therefore, the system will be designed in such a way to allow this data to be incorporated into the incident detection system.

For upgraded incident management, impacts include the operations and maintenance costs of the vehicles and the need to hire, train and compensate additional drivers.

E. OTHER PROJECTS

Enhanced detection under all three of the potential models has been implemented in support of Active Traffic Management projects across the nation and the globe. Examples include I-66 in Virginia, I-90 in Seattle, I-35 in Minneapolis and I-70 in Colorado. Additionally, DOTs such as PennDOT have decided to move away from fixed detectors owned by the Department and rely more heavily on travel time information provided by INRIX.

SHA through CHART has been a leader in incident management, and this PTC extends and expands this excellent program.

F. ADMINISTRATION RISK

There is little risk related to liability or institutional issues for SHA or third parties. The primary risk is the rapidly changing state of detection technology, methodologies and business arrangements. If SHA invests in a fully-owned Enhanced Detection System the risk is the technology may become quickly obsolete (e.g., Connected Vehicle technology rapidly expands and becomes more ubiquitous), or that the third party

Page B-55

purchase option proves to be a preferred business model. If SHA elects to rely entirely on third-party data, the risk is that the third party may, for a variety of reasons, become unable or unwilling to provide the required data, in the required formats.

An additional risk is the public perception that Enhanced Detection may be a form of government intrusion into the private lives of citizens.

G. DESIGN-BUILDER RISK

The risk to the Design/Build Team is similar to the risks to SHA for the fully owned, hybrid or fully purchased options.

H. COST/SCHEDULE BENEFITS

Enhanced Detection can be implemented immediately under a fully purchased approach, or within one year under a fully owned option. The costs of the various detection options, and the impacts from and with other PTCs, is currently being analyzed.

I. MISCELLANEOUS

Enhanced Detection is a crosscutting and supporting PTC that is essential to implementation of any PTCs for Active Traffic Management, Ramp Metering or geometric improvements.

Larry Hogan, Governor
Boyd K. Rutherford, Lt. Governor

Pete K. Rahn, Secretary
Gregory C. Johnson, P.E., Administrator

October 12, 2016

Michael Higgins, P.E. Concrete General, Inc. 8000 Beechcraft Avenue Gaithersburg MD 20879

Dear Mr. Higgins:

The Maryland Department of Transportation's State Highway Administration's (SHA) is in receipt of Proposed Technical Concept (PTC) No. 11 for the I-270 Innovative Congestion Management Progressive Design-Build contract (Contract No. MO0695172), submitted by your Design-Build Team on September 28, 2016. The SHA has completed our review of the PTC and offers the following comments for your consideration in the further development of your technical concepts and proposal:

- 1. Generally, the concept appears to be a reasonable solution to address the goals of this contract.
- 2. The PTC must clearly define what the Design-Build Team can and will deliver. Regarding upgraded incident management, the Administration questions Concrete General's ability to augment existing Emergency Traffic Patrols, and to develop/enhance relationships with Waze, State Farm, etc. Please clarify how Concrete General will implement these strategies should they be proposed.
- 3. Section C, Analysis: Please finalize the "make or buy" decision that Concrete General is proposing, present the analysis behind the selected option, and update the other Sections of the PTC accordingly.
- 4. Please refer to comments 6 thru 10 in SHA's letter for PTC 7 dated October 12, 2016.
- 5. If the PTC is resubmitted, please provide detailed information for the following PTC section(s): Cost/Schedule Benefits.

Any questions or communications regarding the response to this PTC should be directed to Mr. Jason A. Ridgway, Director, Office of Highway Development at the project specific email address, MO069_IS_270@sha.state.md.us.

Sincerely,

Jason A. Ridgway, P.E.

Director, Office of Highway Development

rumaialu

cc: Mr. Mark W. Miller, Concrete General, Inc.

Appendix C

Detailed Concept Descriptions

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

The program of improvements proposed by the CGI Team includes a combination of roadway improvements and innovative technologies and techniques that will combine to substantially improve operations along I-270. This Appendix describes additional details, including detailed scope elements, for the following improvements.

- Roadway improvements with display sheets for conceptual plans for each improvement;
- Adaptive ramp metering with display sheets for locations where ramps may be widened for two lanes;
- Active Traffic Management infrastructure; and
- Virtual weigh station installation.

SOUTHBOUND 1 (SB 1)

This roadway improvement consists of two distinct components: extending the length of the deceleration lane for the exit to MD 80 from southbound I-270, and extending the length of the acceleration lane for the entrance from MD 80 to southbound I-270.

See display sheets SB 1-1 and SB 1-2 in this Appendix for conceptual plans for this improvement.

Existing Conditions and Proposed Design for SB 1

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Acceleration lane - Entrance from MD 80 to SB I-270	 Length of existing lane is 570 feet Mainline design speed = 70 MPH Ramp design speed = 25 MPH 	 Acceleration lane extended 850 feet for total length of 1,420 feet 6-foot wide right shoulder (minimum) provided along extended lane and taper Existing pavement in shoulder will be used for extended lane 350 square feet of outside widening proposed for right shoulder
Deceleration lane - Exit from SB I-270 to MD 80	 Length of existing lane is 450 feet Mainline design speed = 70 MPH Ramp design speed = 25 MPH 	 Deceleration lane extended 150 feet for total length of 600 feet 300-foot long taper provided at start of deceleration lane No roadway widening proposed Existing pavement in shoulder will be used for extended lane
Traffic barrier	 Guardrail located along outside of the deceleration lane No barrier located along outside of the acceleration lane 	 695 linear feet of concrete traffic barrier will be constructed at edge of right shoulder along acceleration lane where widening Side slopes will be reconstructed at 1V:2H or flatter behind barrier
Structures	 The existing deceleration lane is located on the bridge over MD 80 	The bridge over MD 80 will not be impacted under this improvement
Traffic signals, signage & lighting		 Post-mounted signs will be replaced in the location of the extended acceleration and deceleration lanes Existing light pole along extended acceleration lane will be replaced in adjacent location

SOUTHBOUND 2 (SB 2)

This improvement involves extending the length of the acceleration lane for the entrance from MD 109 to southbound I-270.

See display sheets SB 2-1 to SB 2-2 in this Appendix for conceptual plans for this improvement.

Existing Conditions and Proposed Design for SB 2

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Acceleration lane - Entrance from MD 109 to SB I-270	 Length of existing lane is 270 feet Mainline design speed = 70 MPH Ramp design speed = 30 MPH 	 Acceleration lane extended 1,080 feet for total length of 1,350 feet 10-foot wide right shoulder (minimum) provided along extended lane and taper Existing pavement in shoulder will be used for extended lane 400 square feet of outside widening proposed for new right shoulder
Traffic barrier	No barrier located along outside of acceleration lane	 795 linear feet of concrete traffic barrier will be constructed at edge of right shoulder along acceleration lane where widening Side slopes will be reconstructed at 1V:2H or flatter behind barrier
Structures	No structures located near this improvement	No impact to structures under this improvement
Traffic signals, signage & lighting		 Post-mounted signs will be replaced in the location of the extended acceleration lane Existing light pole along extended acceleration lane will be replaced in adjacent location

SOUTHBOUND 5A (SB 5A)

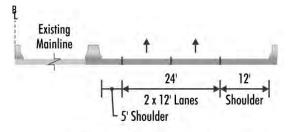
This concept involves restriping southbound I-270 approaching the exit to I-370 so the outside lane becomes the right lane on the two-lane exit ramp to I-370. The interior lane next to the right lane on I-270 will become a choice lane for vehicles to exit on the ramp to I-370 or continue south on I-270.

See display sheet SB 5A-1 in this Appendix for conceptual plans for this improvement.

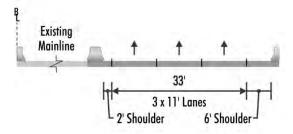
Existing Conditions and Proposed Design for SB 5A

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Deceleration lane - Exit from SB I-270 to I-370	 Lane configuration: 4 express lanes + 2 dedicated exit lanes to I-370 Mainline design speed = 70 MPH 	 Lane configuration: 4 express lanes + 1 dedicated exit lane to I-370 No roadway widening proposed
Traffic barrier	 Concrete barrier exists on right side along this section of SB I-270 	No modification to existing barrier proposed
Structures	 A retaining wall and noise walls exist on the right side along this section of SB I-270 	No impact to the retaining wall and noise walls under this improvement
Traffic signals, signage & lighting	 Three overhead sign structures are located along SB I-270 prior to the exit ramp to I-370 	 The existing three overhead sign structures will be replaced as a result of this improvement

SOUTHBOUND 6 (SB 6)


This improvement involves creating a third local lane by providing an auxiliary lane between the slip ramps south of Shady Grove Road. The entrance slip ramp from the express lanes to the local lanes will be connected to the first exit slip ramp from the local lanes to the express lanes.

See display sheets SB 6-1 and SB 6-2 in this Appendix for conceptual plans for this improvement. See Figure C-1 below for the existing and proposed typical sections along the local lanes under this improvement.


Existing Conditions and Proposed Design for SB 6

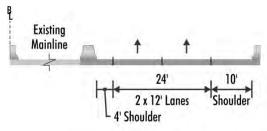
ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Local Lanes	 Lane configuration: two 12-foot travel lanes + 5-foot left shoulder + 12-foot right shoulder 	 Lane configuration: three 11-foot travel lanes + 2-foot left shoulder + 6-foot right shoulder No roadway widening proposed Existing pavement in shoulders will be used for travel lanes Entire roadway width in local lanes will be resurfaced to restripe lane markings
Traffic barrier	Concrete barrier is located in the median and on the outside of the local lane section	■ No modification to existing barrier proposed
Structures	Gude Drive crosses over I-270 on a bridge over this section	There will be no impact to the abutment of the Gude Drive bridge under this improvement
Traffic signals, signage & lighting		Signing along the local lanes will be replaced as a result of this improvement

Figure C-1. Southbound 6 Typical Sections – I-270 Local Lanes

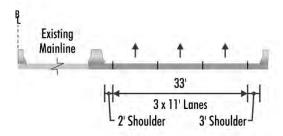
SB 6 EXISTING — 1-270 Local Lanes

SB 6 PROPOSED - I-270 Local Lanes

SOUTHBOUND 7 (SB 7)


This improvement involves creating an auxiliary (third) lane in the local lanes by connecting the entrance from eastbound MD 28 to the exit to MD 189.

See display sheets SB 7-1 through SB 7-3 in this Appendix for conceptual plans for this improvement. See Figure C-2 below for the existing and proposed typical sections along the local lanes under this improvement.


Existing Conditions and Proposed Design for SB 7

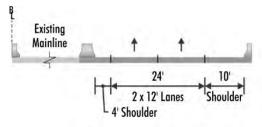
ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Local Lanes	 Lane configuration: two 12-foot travel lanes + 4-foot left shoulder + 10-foot right shoulder 	 Lane configuration: three 11-foot travel lanes + 2-foot left shoulder + 3-foot right shoulder No roadway widening proposed Existing pavement in shoulders will be used for travel lanes Entire roadway width in local lanes will be resurfaced to restripe lane markings
Traffic barrier	Concrete barrier is located in the median and on the outside of the local lane section	■ No modification to existing barrier proposed
Structures	Retaining walls and noise walls exist along right shoulder	No impact to structures under this improvement
Traffic signals, signage & lighting		 Signing along the local lanes will be replaced as a result of this improvement

Figure C-2. Southbound 7 Typical Sections – I-270 Local Lanes

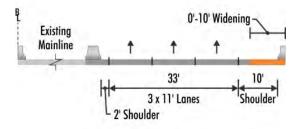
SB 7 EXISTING - 1-270 Local Lanes

SB 7 PROPOSED - I-270 Local Lanes

SOUTHBOUND 8 (SB 8)


This improvement involves developing a third lane in the local lanes by connecting the entrance ramp from MD 189 with the exit ramp to Montrose Road. The existing inside (left) local lane will become a dedicated exit at the slip ramp to the express lanes north of Montrose Road and two lanes will continue to the exit to Montrose Road.

See display sheets SB 8-1 through SB 8-3 in this Appendix for conceptual plans for this improvement. See Figure C-3 below for the existing and proposed typical sections along the local lanes under this improvement.


Existing Conditions and Proposed Design for SB 8

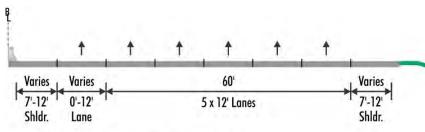
ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Local Lanes	 Lane configuration: two 12-foot travel lanes + 4-foot left shoulder + 10-foot right shoulder 	 Lane configuration: three 11-foot travel lanes + 2-foot left shoulder + 10-foot right shoulder 1,230 square feet of outside widening proposed for new right shoulder Existing pavement in shoulders will be used for travel lanes Entire roadway width in local lanes will be resurfaced to restripe lane markings
Traffic barrier	 Concrete barrier is located in the median Guardrail is located on the outside of the local lanes along the majority of this section 	 2,455 linear feet of concrete traffic barrier will be constructed at edge of right shoulder where widening Side slopes will be reconstructed at 1V:2H or flatter behind barrier
Structures	 Wootton Parkway crosses over I-270 on a bridge over this section 	There will be no impact to the abutment of the Wootton Parkway bridge under this improvement
Traffic signals, signage & lighting		Signing along the local lanes will be replaced as a result of this improvement

Figure C-3. Southbound 8 Typical Sections – I-270 Local Lanes

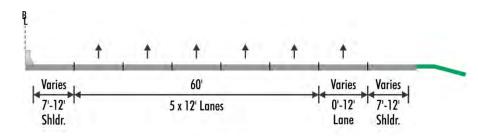
SB 8 EXISTING - 1-270 Local Lanes

SB 8 PROPOSED - 1-270 Local Lanes

SOUTHBOUND 10 (SB 10)


This improvement involves restriping the I-495 outer loop at the merge with the southbound I-270 west spur. Instead of dropping the inside (left) lane from the I-270 spur, the three lanes from I-270 will continue on I-495 and the right lane on I-495 will drop to maintain five lanes.

See display sheet SB 10-1 in this Appendix for conceptual plans for this improvement. See Figure C-4 below for the existing and proposed typical sections along the I-495 outer loop under this improvement.


Existing Conditions and Proposed Design for SB 10

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
I-270 West Spur / I-495 Merge Lane Configuration	■ 6 lanes drop to 5 lanes with left lane merge	6 lanes drop to 5 lanes with right lane mergeNo roadway widening proposed
Traffic barrier	 Concrete barrier is located in the median Guardrail is located on the outside of I-495 along this section 	No modification to the existing barrier or guardrail proposed proposed
Structures	 Noise walls are located along the outside of the I-495 Outer Loop in this section 	No impact to structures under this improvement
Traffic signals, signage & lighting		 Signing along the I-495 Outer Loop and I-270 West Spur at the merge location will be modified and replaced

Figure C-4. Southbound 10 Typical Sections – I-495 Outer Loop

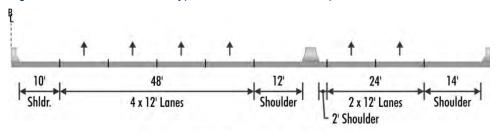
SB 10 EXISTING

SB 10 PROPOSED

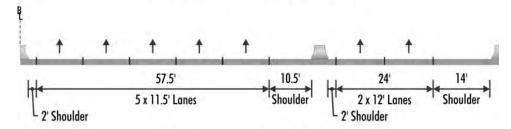
SOUTHBOUND 12 (SB 12)

This improvement consists of restriping southbound I-270 to provide an additional travel lane within the existing typical section from the slip ramp entrance to the express lanes north of Montrose Road to the interchange at Democracy Boulevard on the West Spur, a distance of approximately 3.1 miles.

See display sheets SB 12-1 through SB 12-12 in this Appendix for conceptual plans for this improvement, including the limits of roadway widening and resurfacing. See Figures C-5 through C-7 below for the existing and proposed typical sections along I-270 under this improvement.

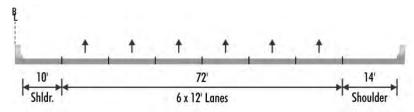

Existing Conditions and Proposed Design for SB 12

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Roadway (General)	 Existing number of travel lanes varies from six lanes north of the Y-split to three lanes on the West Spur Design Speed = 70 MPH 	 Proposed number of travel lanes varies from seven 11.5-foot lanes north of the Y-split to three 11-foot lanes on the West Spur Entire roadway width will be resurfaced to restripe lane markings Existing pavement in shoulders will be used for travel lanes
Express Lanes at Montrose Road	 Lane configuration: four 12-foot wide lanes + 10-foot wide left shoulder + 12-foot wide right shoulder 	 Lane configuration: five 11.5-foot wide lanes + 2-foot wide left shoulder + 10.5-foot wide right shoulder
Local lanes at Montrose Road	 Lane configuration: two 12-foot wide lanes + 2- foot wide left shoulder + 14-foot wide right shoulder 	No changes to local lanes proposed
Mainline from Montrose Road to the I-270 West Spur	 Lane configuration: six 12-foot wide lanes + 10-foot wide left shoulder + 14-foot wide right shoulder 	 Lane configuration: five 11.5-foot wide lanes + two 12- foot wide lanes + 2-foot wide left shoulder + 12.5-foot wide right shoulder
I-270 West Spur	 Lane configuration: three 12-foot wide lane + 10-16-foot wide left shoulder + 6-10-foot wide right shoulder 	 Lane configuration: four 11-foot wide lanes + 2-6-foot wide left shoulder + 10-foot wide minimum right shoulder 4,050 square feet of outside widening proposed for new right shoulder
Traffic barrier	 Concrete barrier is located in the median Guardrail is located on the outside north of the Y-split 	 2,115 linear feet of concrete traffic barrier will be constructed at edge of right shoulder where widening Side slopes will be constructed at 1V:2H or flatter behind the barrier
Structures	 Retaining walls exist on the right side of the roadway north of the Y-split SB I-270 crosses over Tuckerman Lane on a bridge 	 A 10-foot high and 1,130-foot long retaining wall will be constructed at the edge of the right shoulder along SB I-270 just south of Tuckerman Lane An 8-foot high and 700-foot long retaining wall will be constructed at the edge of the right shoulder along the SB I-270 West Spur north of Westlake Terrace Modifications to the bridge over Tuckerman Lane include: adjusting the deck to align the cross slope breaks at the shoulder with the reconfigured lane edges and reconstructing the median bridge parapet to accommodate the adjusted deck elevation resulting from the deck cross slope adjustment

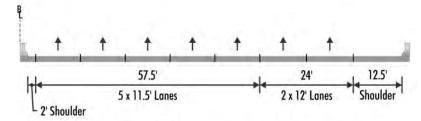


ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Traffic signals, signage & lighting		 Overhead signs will be replaced at the interchange at Democracy Blvd Post-mounted signing along this section of SB I-270 will be replaced 13 light poles will be replaced as a result of this improvement

Figure C-5. Southbound 12 Typical Sections – I-270 Express Lanes

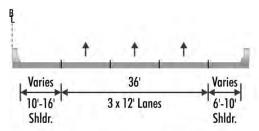


SB 12 EXISTING - I-270 Express Lanes



SB 12 PROPOSED - I-270 Express Lanes

Figure C-6. Southbound 12 Typical Sections – I-270 from Montrose Road to West Spur


SB 12 EXISTING - I-270 from Montrose Road to Spur

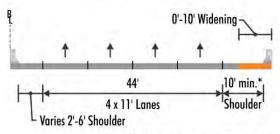

SB 12 PROPOSED - I-270 from Montrose Road to Spur

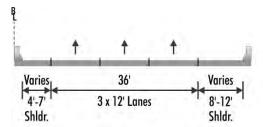
Figure C-7. Southbound 12 Typical Sections – I-270 West Spur

SB 12 EXISTING - I-270 Spur

* shoulder reduced on or under structures

SB 12 PROPOSED - I-270 Spur

NORTHBOUND 1 (NB 1)


This improvement involves restriping northbound I-270 to provide an additional travel lane within the existing typical section between the entrance from westbound Democracy Boulevard on the I-270 West Spur to the slip ramp exit to the local lanes just north of Montrose Road, a distance of approximately 2.7 miles.

See display sheets NB 1-1 through NB 1-11 in this Appendix for conceptual plans for this improvement, including the limits of roadway widening and resurfacing. See Figures C-8 through C-10 below for the existing and proposed typical sections along I-270 under this improvement.

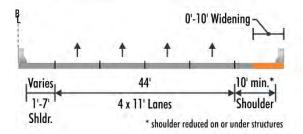
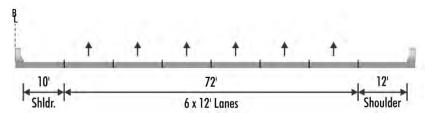
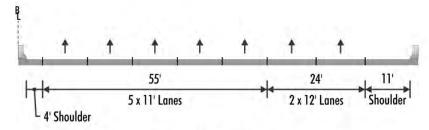

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Roadway (General)	 Existing number of travel lanes varies from three lanes on the West Spur to six lanes north of the Y-split Design Speed = 60 MPH 	 Proposed number of travel lanes varies from four 11-foot wide lanes on the West Spur to four 11-foot wide lanes and two 12-foot wide lanes north of the Y-split Entire roadway width will be resurfaced to restripe the lane markings Existing pavement in shoulders will be used for travel lanes
I-270 West Spur	 Lane configuration: three 12-foot wide lanes + 4-7-foot wide left shoulder + 8-12-foot wide right shoulder 	 Lane configuration: four 11-foot wide lanes + 1-7-foot wide left shoulder + 10-foot wide minimum right shoulder 1,960 square feet of outside widening proposed for new right shoulder
Mainline from Montrose Road to the I-270 West Spur	 Lane configuration: six 12-foot wide lanes + 10-foot wide left shoulder + 12-foot wide right shoulder 	 Lane configuration: five 11-foot wide lanes + two 12- foot wide lanes + 4-foot wide left shoulder + 11-foot wide right shoulder
Express Lanes at Montrose Road	 Lane configuration: four 12-foot wide lanes + 10-foot wide left shoulder + 12-foot wide right shoulder 	 Lane configuration: five 11-foot wide lanes + 4-foot wide left shoulder + 11-foot wide right shoulder
Local lanes at Montrose Road	 Lane configuration: two 12-foot wide lanes + 2- foot wide left shoulder + 14-foot wide right shoulder 	No changes to local lanes proposed
Traffic barrier	 Concrete barrier is located in the median Concrete barrier and guardrail are located on the outside of NB I-270 in this section 	 2,995 linear feet of concrete traffic barrier will be constructed at edge of right shoulder where widening Side slopes will be reconstructed at 1V:2H or flatter behind the barrier
Structures	 Noise walls exist on the right side of the roadway north of the Y-split NB I-270 crosses over Tuckerman Lane on a bridge 	 No proposed impacts to the existing noise walls Modifications to the bridge over Tuckerman Lane include: adjusting the deck to align the cross slope breaks at the shoulder with the reconfigured lane edges and reconstructing the median bridge parapet to accommodate the adjusted deck elevation resulting from the deck cross slope adjustment
Traffic signals, signage & lighting		 Post-mounted and overhead signing along this section of NB I-270 will be replaced

Figure C-8. Northbound 1 Typical Sections – I-270 Spur

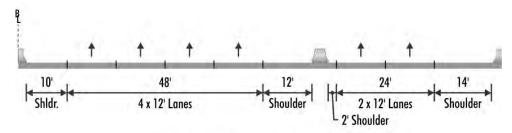


NB 1 EXISTING - I-270 Spur



NB 1 PROPOSED - I-270 Spur

Figure C-9. Northbound 1 Typical Sections – I-270 from Spur to Montrose Road


NB 1 EXISTING — I-270 from Spur to Montrose Road

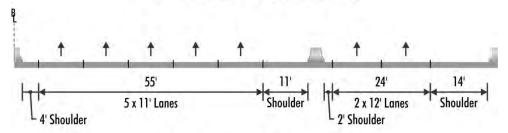
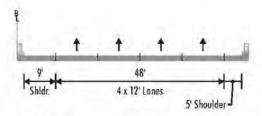

NB 1 PROPOSED - I-270 from Spur to Montrose Road

Figure C-10. Northbound 1 Typical Sections – I-270 Express Lanes

NB 1 EXISTING - I-270 Express Lanes

NB 1 PROPOSED — I-270 Express Lanes

NORTHBOUND 2 (NB 2)


This improvement involves creating an auxiliary (third) lane in the local lanes by connecting the entrance from MD 189 to the exit to MD 28. This concept also involves restriping the northbound express lanes within the existing typical section to create an auxiliary lane by connecting the entrance slip ramp from the local lanes south of MD 28 with the exit slip ramp to the local lanes north of MD 28.

See display sheets NB 2-1 through NB 2-4 in this Appendix for conceptual plans for this improvement. See Figure C-11 below for the existing and proposed typical sections along the I-270 express lanes under this improvement.

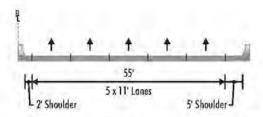

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Local Lanes	 Lane configuration: two 12-foot travel lanes + varying shoulder widths 	 Lane configuration: three 12-foot travel lanes + 10-foot minimum right shoulder 990 square feet of outside widening is proposed for new right shoulder Existing pavement in shoulders will be used for travel lanes Entire roadway width will be resurfaced to restripe lane markings
Express Lanes	 Lane configuration: four 12-foot wide travel lanes+ 9-foot wide left shoulder + 5-foot wide right shoulder 	 Lane configuration: five 11-foot wide travel lanes + 2-foot wide left shoulder + 5-foot wide right shoulder No roadway widening proposed Existing pavement in shoulders will be used for travel lanes Entire roadway width will be resurfaced to restripe lane markings
Traffic barrier	Concrete barrier is located on both sides and in the median of the express lanes and local lanes	 1,235 feet of concrete traffic barrier will be constructed at edge of right shoulder where widening Side slopes will be reconstructed at 1V:2H or flatter behind the barrier
Structures	 Retaining walls exist on the right side of the NB I-270 local lanes 	An 18-foot high and 1,585-foot long noise wall is proposed to be constructed by SHA on the right side of the NB I-270 local lanes
Traffic signals, signage & lighting		Signing along this section of NB I-270 will be replaced as a result of this improvement

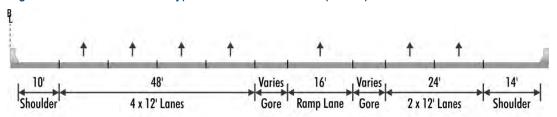
Figure C-11. Northbound 2 Typical Sections – I-270 Express Lanes at MD 28

NB 2 EXISTING - I-270 Express Lanes under MD 28

NB 2 PROPOSED — I-270 Express Lanes under MD 28

NORTHBOUND 3 (NB 3)

This improvement involves closing the existing loop ramp from northbound Shady Grove Road to northbound I-270. Northbound Shady Grove Road will be reconfigured to provide dual left turn lanes in the median north of the existing bridge over I-270, and a new left turn spur will be constructed at the existing intersection to connect with the existing entrance ramp from southbound Shady Grove Road


This improvement also involves closing the slip ramp exit from the local lanes on northbound I-270 to the express lanes south of the I-370 interchange. The left (third) local lane that drops at the slip ramp in the existing configuration will be extended to connect with the exit to I-370.

See display sheets NB 3-1 through NB 3-3 in this Appendix for conceptual plans for this improvement. See Figure C-12 below for the existing and proposed typical sections along I-270 under this improvement.

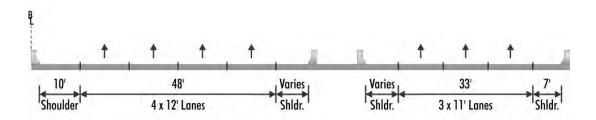
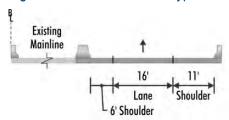

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Shady Grove Road	Loop ramp connects northbound Shady Grove Road to northbound I-270 local lanes	 Approximately 1,280 square feet of new pavement is required to provide the new left turn lanes on northbound Shady Grove Road and two-lane spur to connect to existing entrance ramp from southbound Shady Grove Road
Local lanes south of I- 370	 Lane configuration: two 12-foot wide travel lanes + 4-foot wide left shoulder + 12-foot wide right shoulder 	 Lane configuration: three 11-foot wide travel lanes + 2-foot wide left shoulder + 7-foot wide right shoulder No roadway widening proposed Existing pavement in shoulders will be used for travel lanes Entire roadway width will be resurfaced to restripe lane markings
Traffic barrier	Concrete barrier is located on both sides of the I-270 local lanes	 135 linear feet of concrete barrier will be constructed along northbound Shady Grove Road to close the existing entrance to the loop ramp 915 linear feet of concrete barrier will be constructed along the local lanes and express lanes to close the existing slip ramp
Structures	 NB Shady Grove Road crosses over I-270 on a bridge 	 Minimal impacts to the Shady Grove Road bridge over I-270 to reconfigure lanes An 18-foot high and 1,340-foot long noise wall is proposed to be constructed by SHA on the right side of the SB I-270 local lanes due to existing noise levels in the area of this improvement
Traffic signals, signage & lighting	 There is an existing traffic signal on Shady Grove Road at the ramp terminus for the exit from NB I-270 	 Modifications to the existing traffic signal are proposed at the intersection on Shady Grove Road to accommodate the new left turn movement Overhead signs will be replaced at the Shady Grove Road interchange Signing along NB Shady Grove Road will be replaced as a result of this improvement Signing along this section of NB I-270 will be replaced as a result of this improvement

Figure C-12. Northbound 3 Typical Sections - I-270 Slip Ramp

NB 3 EXISTING — I-270 Slip Ramp

NB 3 PROPOSED - I-270 Slip Ramp

NORTHBOUND 4 (NB 4)


This improvement consists of two components: an auxiliary lane will be provided in the northbound local lanes by connecting the entrance from MD 124 to the exit at the new Watkins Mill Road interchange and an auxiliary lane will be provided along northbound I-270 by connecting the entrance from Watkins Mill Road with the exit to westbound Middlebrook Road (loop ramp).

See display sheets NB 4-1 through NB 4-7 in this Appendix for conceptual plans for this improvement. See Figures C-13 and C-14 below for the existing and proposed typical sections along I-270 under this improvement.

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Local lanes from MD 124 to Watkins Mill Road	 Lane configuration: 16-foot wide travel lane + 6-foot wide left shoulder + 11-foot wide right shoulder 	 Lane configuration: two 12-foot wide travel lanes + 5-foot wide left shoulder + 4-foot wide right shoulder No roadway widening necessary
I-270 Mainline from Watkins Mill Road to Middlebrook Road	 Lane configuration: four 12-foot wide travel lanes + 12-foot wide left shoulder + 8-20-foot wide right shoulder 	 Lane configuration: three 11.5-foot wide travel lanes + 6-foot wide left shoulder + 10-foot wide minimum right shoulder Approximately 1,410 SF of outside widening proposed for new right shoulder Existing pavement in shoulders will be used for travel lanes
Traffic barrier	Concrete barrier is located on both sides of the I-270 local lanes and along both sides of the mainline from MD 124 to Middlebrook Road	 Concrete traffic barrier will be reconstructed along the edge of the right shoulder where widening Side slopes will be reconstructed at 1V:2H or flatter behind the barrier
Structures	 Retaining walls and noise walls exist along the right side of the roadway on this section of NB I-270 NB I-270 crosses over Game Preserve Road on a bridge 	 No impacts to existing retaining walls and noise walls Modifications to the bridge over Game Preserve Road include: adjusting the deck to align the cross slope breaks at the shoulder with the reconfigured lane edges and reconstructing the median bridge parapet to accommodate the adjusted deck elevation resulting from the deck cross slope adjustment
Traffic signals, signage & lighting		Signing along NB I-270 in this section will be replaced as a result of this improvement

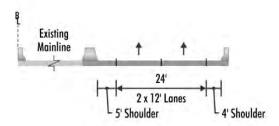
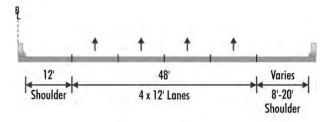


Figure C-13. Northbound 4 Typical Section – I-270 Local Lanes from MD 124 to Watkins Mill Road

NB 4 EXISTING -


I-270 Local Lanes from MD 124 to Watkins Mill Road

NB 4 PROPOSED -

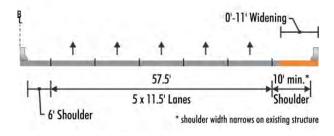

I-270 Local Lanes from MD 124 to Watkins Mill Road

Figure C-14. Northbound 4 Typical Section – I-270 from Watkins Mill Road to Middlebrook Road

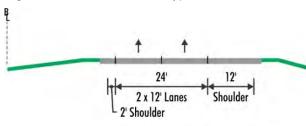
NB 4 EXISTING -

I-270 from Watkins Mill Road to Middlebrook Road

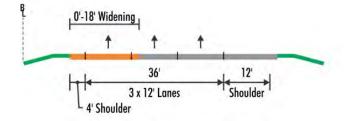
NB 4 PROPOSED -

I-270 from Watkins Mill Road to Middlebrook Road

NORTHBOUND 5 (NB 5)


This improvement will extend the right (third) lane drop from its current location north of MD 121 to Comus Road, a distance of approximately 0.8 miles. The additional lane will be provided by widening into the median.

See display sheets NB 5-1 through NB 5-3 in this Appendix for conceptual plans for this improvement. See Figure C-15 below for the existing and proposed typical sections along I-270 under this improvement.


Existing Conditions and Proposed Design for NB 5

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
I-270 Mainline	 Lane configuration: two 12-foot travel lanes + 2-foot left shoulder + 12-foot right shoulder Design speed = 70 MPH 	 Lane configuration: three 12-foot travel lanes + 4-foot left shoulder + 12-foot right shoulder 4,100 square feet of inside widening is proposed for new travel lane and left shoulder Existing pavement in shoulders will be used for travel lanes Entire roadway width will be resurfaced to restripe lane markings
Traffic barrier	Guardrail is located on both sides of the roadway	Guardrail in the median will be reconstructed
Structures	No structures located near this improvement	No impact to structures under this improvement
Traffic signals, signage & lighting		 Signing along NB I-270 in this section will be replaced as a result of this improvement

Figure C-15. Northbound 5 Typical Sections – I-270 Mainline

NB 5 EXISTING - 1-270 Mainline

NB 5 PROPOSED - I-270 Mainline

NORTHBOUND 7 (NB 7)

This improvement involves extending the length of the deceleration lane for the exit to eastbound MD 118. See display sheet NB 7-1 in this Appendix for conceptual plans for this improvement.

ELEMENT	EXISTING CONDITION	PROPOSED DESIGN
Deceleration lane for Exit Ramp to MD 118	 Mainline design speed = 70 MPH Ramp design speed = 50 MPH Length of existing acceleration lane is 450 feet 	 Deceleration lane extended 340 feet for total length of 600 feet 10-foot wide right shoulder (minimum) provided Pavement in existing shoulders will be used for extended lane No roadway widening proposed
Traffic barrier	Concrete barrier exists along the edge of the right shoulder along the deceleration lane	 No modification to the existing barrier is proposed
Structures	No structures located near this improvement	No impact to structures under this improvement
Traffic signals, signage & lighting		 Signing along this section of NB I-270 will be replaced as a result of the extended deceleration lane

SOUTHBOUND ADAPTIVE RAMP METERING

Adaptive ramp meters will be installed at every entrance ramp from the arterial to southbound I-270 between and including MD 80 to Montrose Road. Adaptive ramp meters will also be installed on the connector ramp from I-370 to I-270 in the southbound direction.

Concept Elements

The scope of work reflected in the cost estimate for each ramp meter location includes the following elements:

- Removal and disposal of existing signal equipment (as necessary)
- Installing Econolite 2070 controller cabinet with Intelight MaxTime ramp metering software
- Connecting the control cabinet to a nearby power source
- Connecting the control cabinet to an Ethernet network with a cellular modem
- Installing a mast arm pole with traffic signal head(s) and video detection camera
- Installing a video detection camera mounted on a pole upstream of the mast arm pole
- Installing a Wavetronix radar detector mounted on a pole downstream of the mast arm pole
- Installing an advanced warning sign with flashing beacon
- Installing traffic barrier to protect the roadside equipment (if necessary)
- Resurfacing the roadway to restripe pavement markings (as necessary)
- Furnishing pavement markings
- Meeting all necessary erosion and sediment control requirements related to the construction activities
- Maintaining travel lanes to the maximum extent during construction
- Deploying Intelight MaxView central management software for remote access to the ramp metering firmware

Design Assumptions

The proposed roadway design for each ramp meter location is based upon guidance and design criteria provided in the *Caltrans Ramp Metering Design Manual*, April 2016. The following design assumptions were made:

- Limit line (stop line) is located a minimum of 75 feet behind the physical gore nose
- Initial design speed for entrance ramp is 0 MPH (stop condition)
- Design speed along SB I-270 mainline is 60 MPH
- Design speed along SB I-270 local lanes is 50 MPH
- Acceleration lengths meet minimum AASHTO 2011 guidance for entrance ramp design
- Existing pavement in shoulder on SB I-270 will be used for extended acceleration lane

Ramp Meter Locations

Ramp meters will be installed at the following entrance ramps to SB I-270:

- MD 80 on ramp
- MD 109 on ramp
- MD 121 on ramp
- MD 27 westbound on ramp
- MD 27 eastbound on ramp
- MD 118 westbound on ramp
- MD 118 eastbound on ramp
- Middlebrook Road on ramp*
- MD 124 on ramp*

- MD 117 on ramp*
- Shady Grove Road westbound on ramp
- Shady Grove Road eastbound on ramp
- MD 28 westbound on ramp
- MD 28 eastbound on ramp*
- MD 189 on ramp
- Montrose Rd westbound on ramp*
- Montrose Rd eastbound on ramp

A ramp meter will be installed at the following freeway-to-freeway connector ramp to SB I-270:

I-370 on ramp*

See display sheets TBM 1-1 through TBM 1-5 and TBM 2-1 in this Appendix for conceptual plans for how ramps may be widened at each location.

Localized widening could be provided where it may be necessary to provide an extended acceleration lane and a 6-foot wide right shoulder (minimum). This widening could occur at the following ramp locations along SB I-270:

- MD 27 westbound on ramp
- MD 118 westbound ramp
- MD 118 eastbound on ramp
- MD 124 on ramp

^{*} Ramp may be reconfigured to two lanes at this location to provide adequate storage space for queued vehicles.

ACTIVE TRAFFIC MANAGEMENT

Active Traffic Management (ATM) strategies involve the use of technologies to dynamically manage recurring and non-recurring congestion based on prevailing and predicted traffic conditions. The specific ATM strategies proposed by the CGI Team for I-270 include:

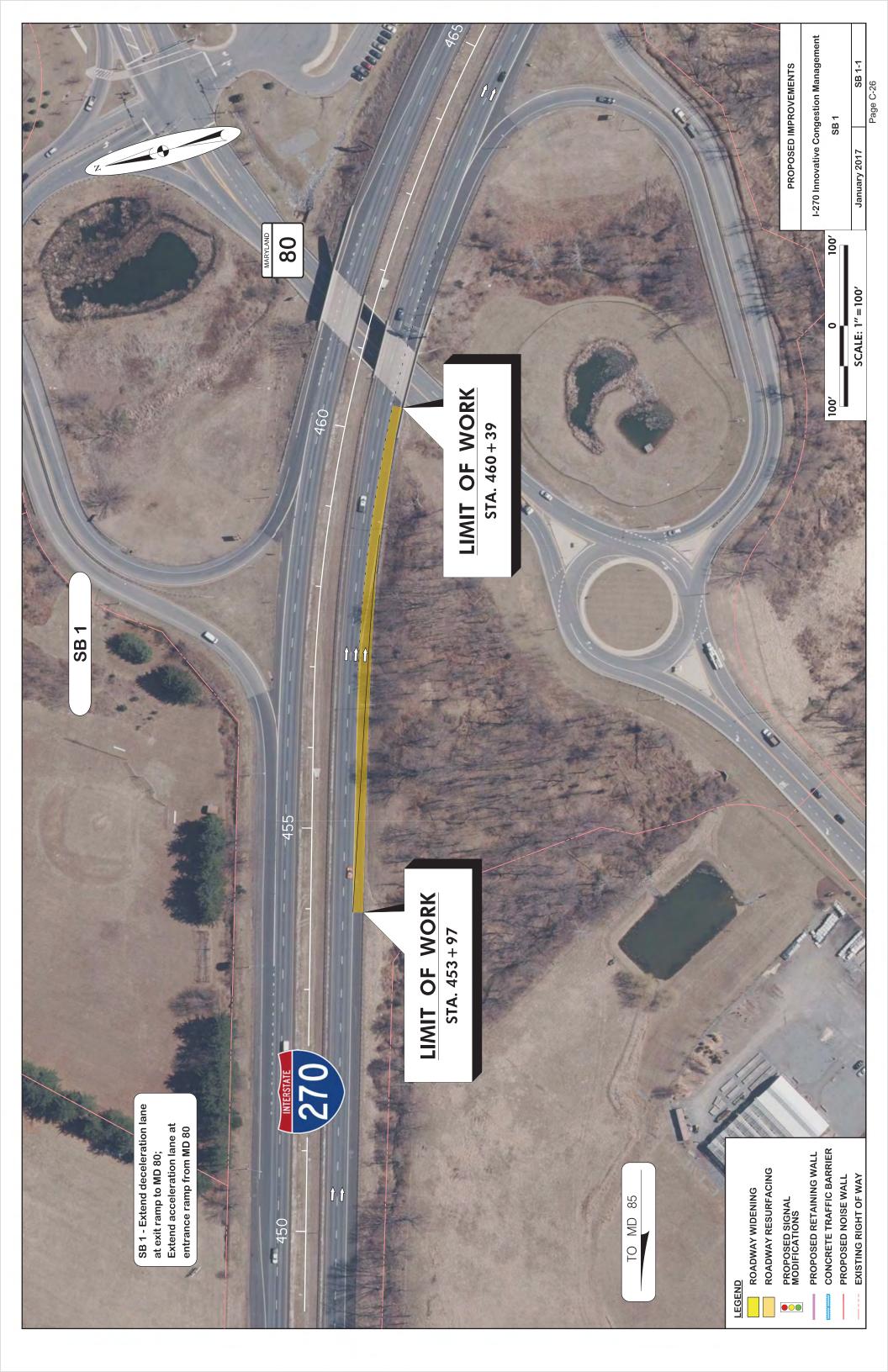
- Dynamic speed limits (DSL), also known as variable speed limits, to adjust speed limit displays based on real-time traffic, roadway, and/or weather conditions. DSL will be recommended speed advisories, and they can be applied to an entire roadway segment or to individual lanes. This "smoothing" process helps minimize the differences between the lowest and highest vehicle speeds. During the Concept of Operations process, the CGI Team will work with SHA to determine if dynamic advisory speed signs are more appropriate than dynamic speed limit signs for the project based on policy issues such as enforcement and record keeping of dynamic speed limits.
- Queue warning (QW) to provide real-time displays of warning messages (on DMS) along I-270 to alert
 motorists that queues or significant slowdowns are ahead. QW is also used to provide additional information to
 motorists as to why the speed limit is being reduced.

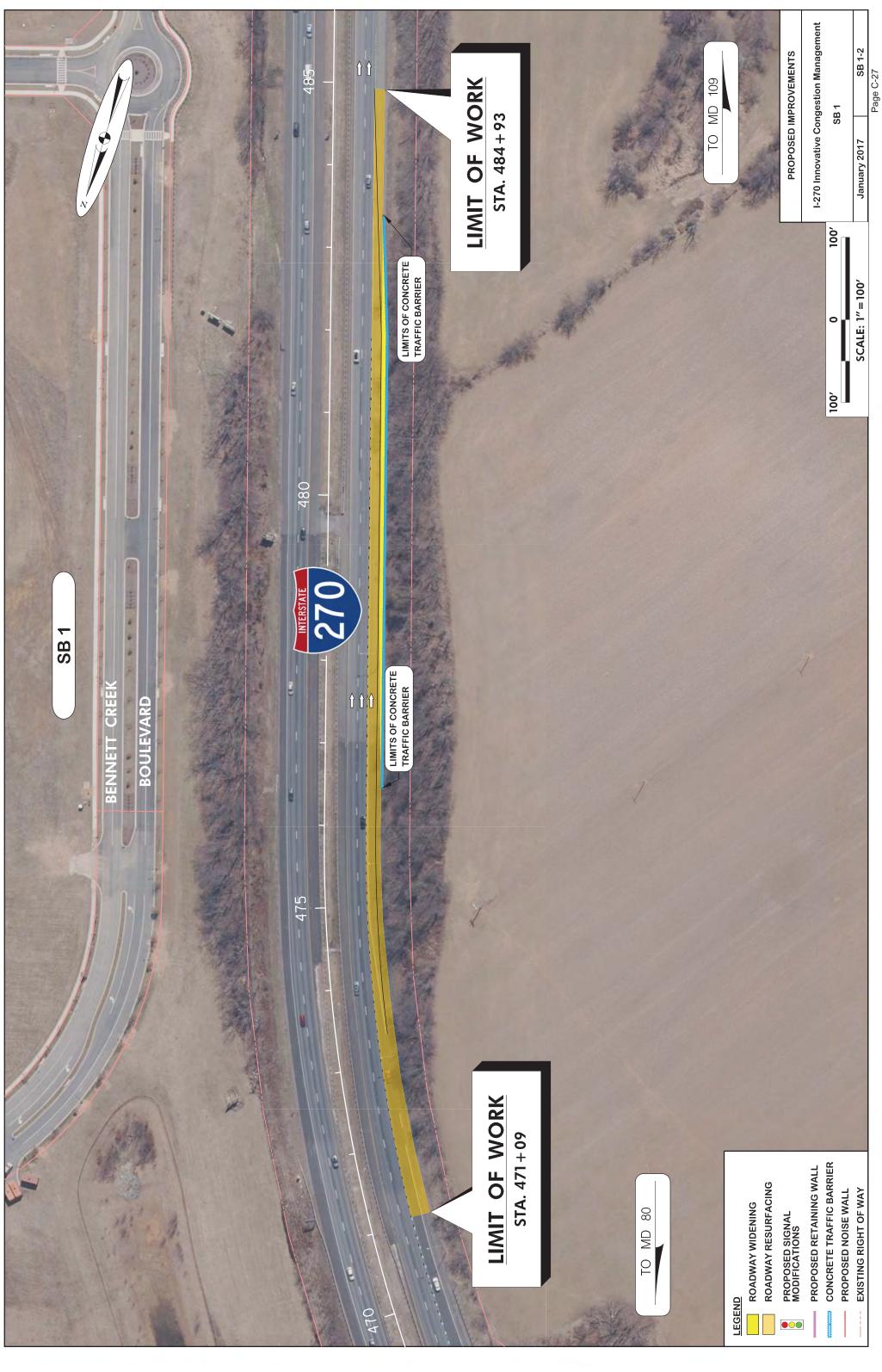
Concept Elements

The scope of work reflected in the cost estimate for ATM includes the following elements:

- Implement full coverage of CCTV Cameras (with pan, tilt, and zoom capabilities)
- Install DMS on mast arms over the roadway approximately every ½ mile (to display the dynamic speed limits)
- Install DMS on mast arms over the roadway approximately every mile (to display the queue warning messages)
- Mount detectors on the ATM infrastructure
- Install ATM software on the connected central server.

VIRTUAL WEIGH STATION

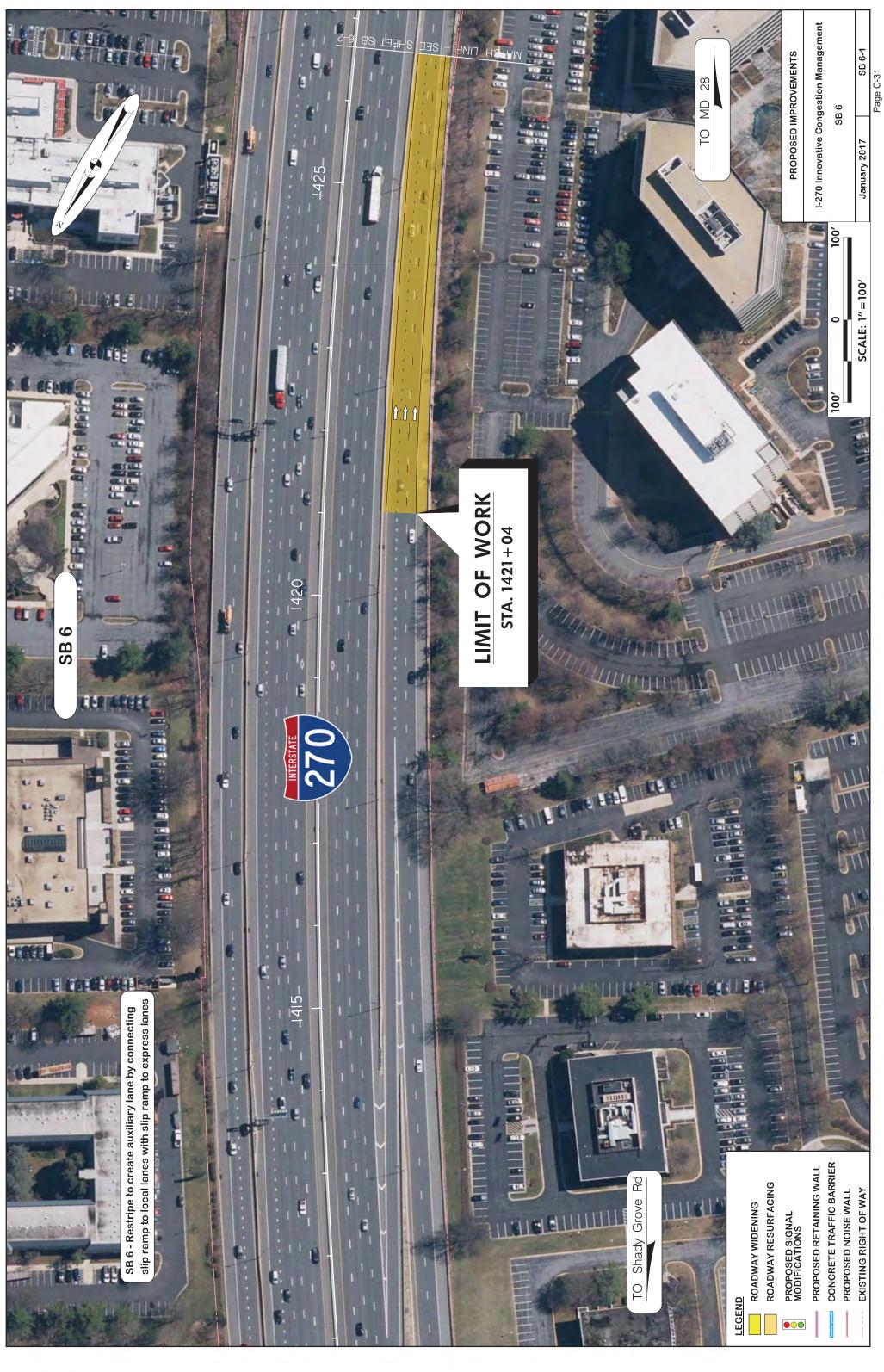

A Virtual Weigh Station (VWS) is a method of pre-screening trucks at highway speeds for weight and height violations. Scaling equipment embedded in the pavement of the travel lanes and adjacent height sensors measure the weight and height of a vehicle while an infrared camera photographs the vehicle and the license plate. Within seconds, a report is transmitted wirelessly to the computer of an enforcement officer located downstream of the VWS so the officer can determine if the vehicle is violating any regulations. If the vehicle is in violation, the officer can choose to pull over the vehicle for inspection and/or static weighing.

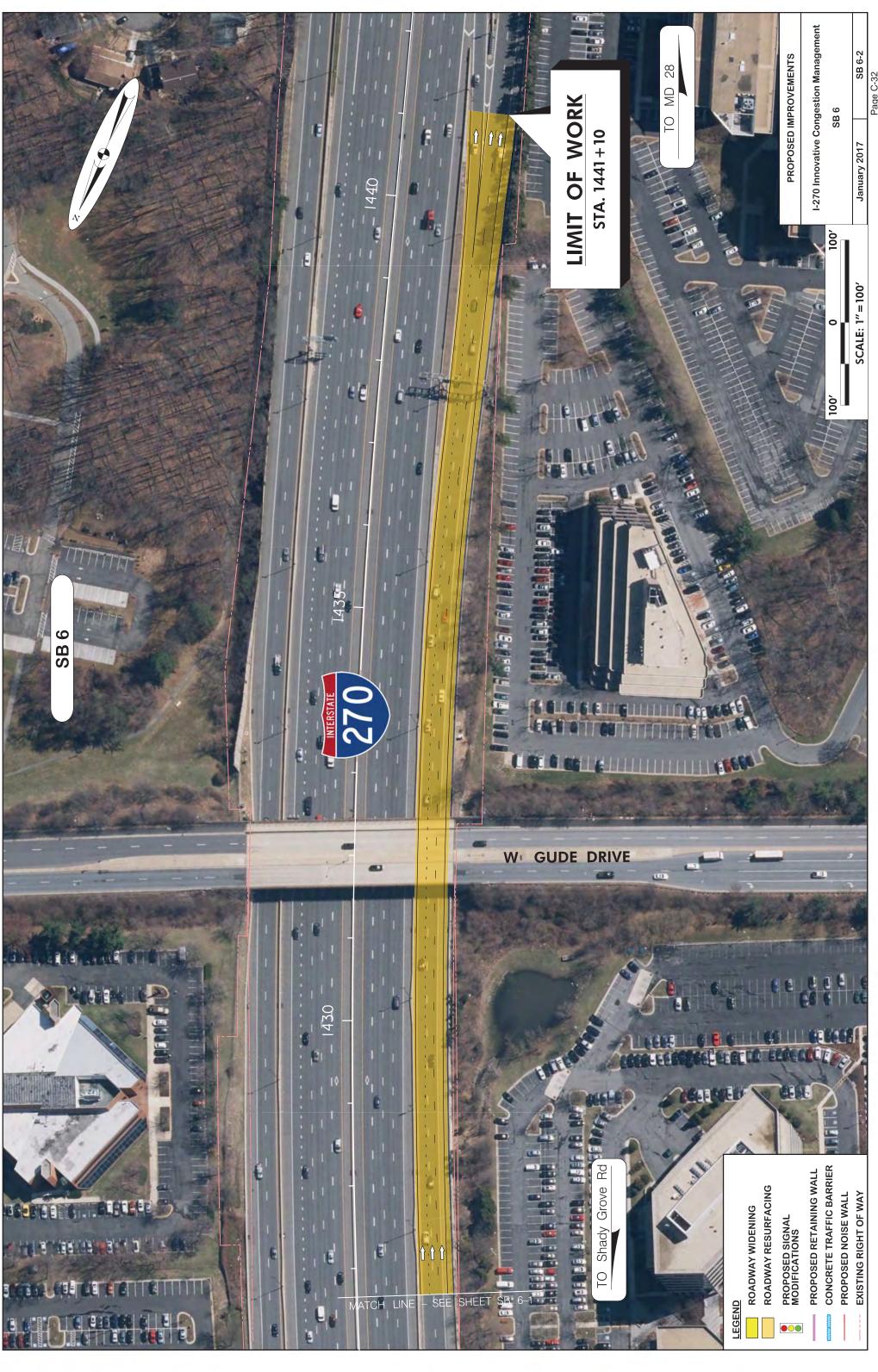

As a part of the proposed improvements, the VWS will be constructed in the northbound and southbound directions in advance of the existing weigh stations south of MD 109 along relative flat and tangent sections of I-270 as required for proper VWS operations. The existing weigh station facilities will serve as a pull-off area for an enforcement officer to pull over, inspect, and weigh a vehicle in violation and portable scales will not be necessary.

Concept Elements

The scope of work reflected in the cost estimate for each VWS includes the following work elements:

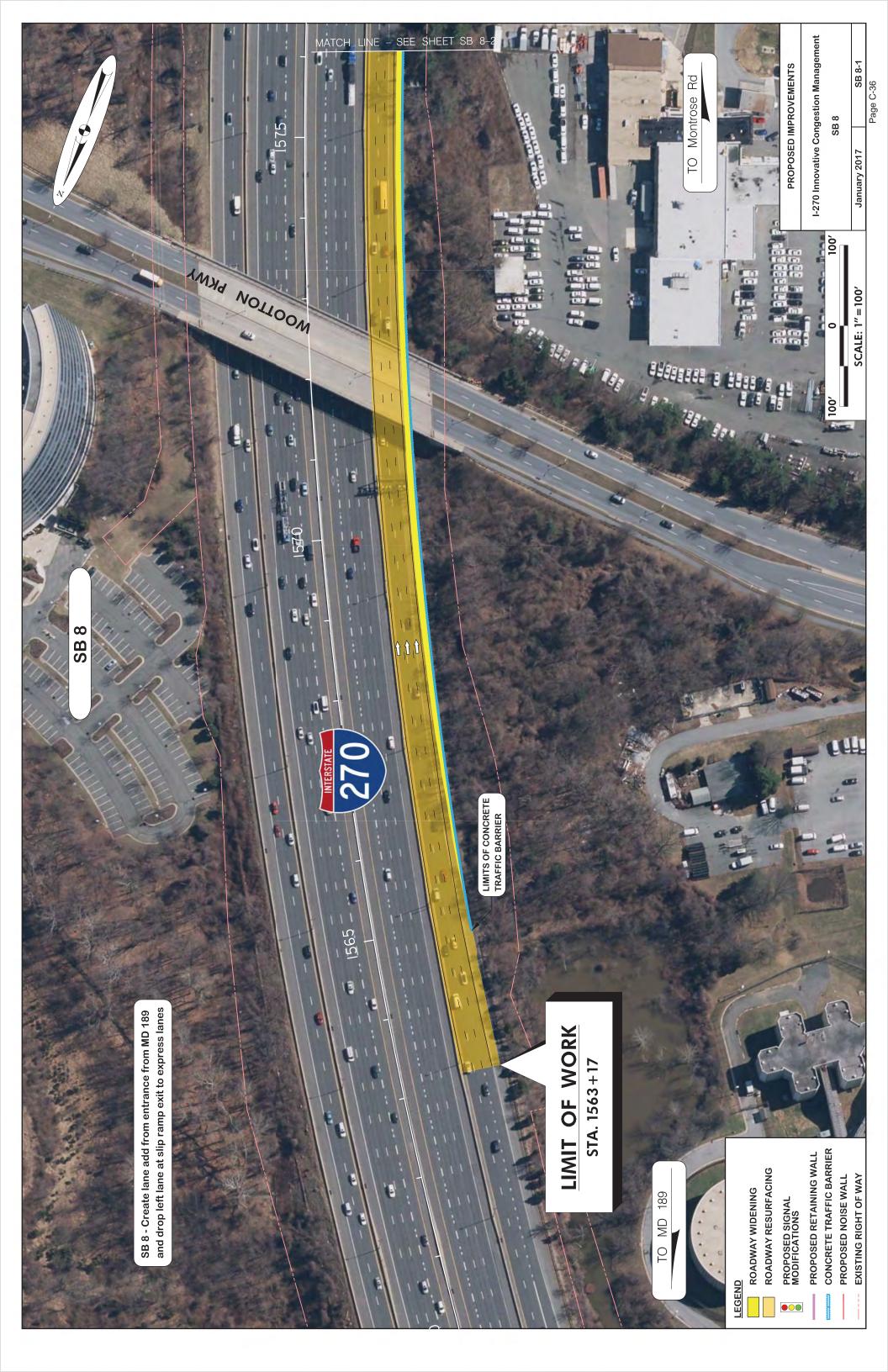

- Embedding weigh-in-motion (WIM) sensors in the pavement of the travel lanes and ancillary cabling
- Embedding loops in the pavement of the travel lanes and ancillary cabling
- Installing a control cabinet to house all necessary electrical connections
- Connecting the control cabinet to a nearby power source
- Connecting the control cabinet to a wireless network so the VWS readings can be transmitted to the computer
 of an enforcement officer
- Installing an overheight detector pole
- Installing an infrared camera mounted on a pole downstream of the overheight detector pole
- Installing an overheight reflector pole on the opposite side of the roadway from the overheight detector pole
- Installing traffic barrier to protect the roadside equipment (if necessary)
- Resurfacing the roadway 200 feet in advance of and 100 feet beyond the VWS
- Meeting all necessary erosion and sediment control requirements related to the construction activities
- Maintaining travel lanes to the maximum extent during construction

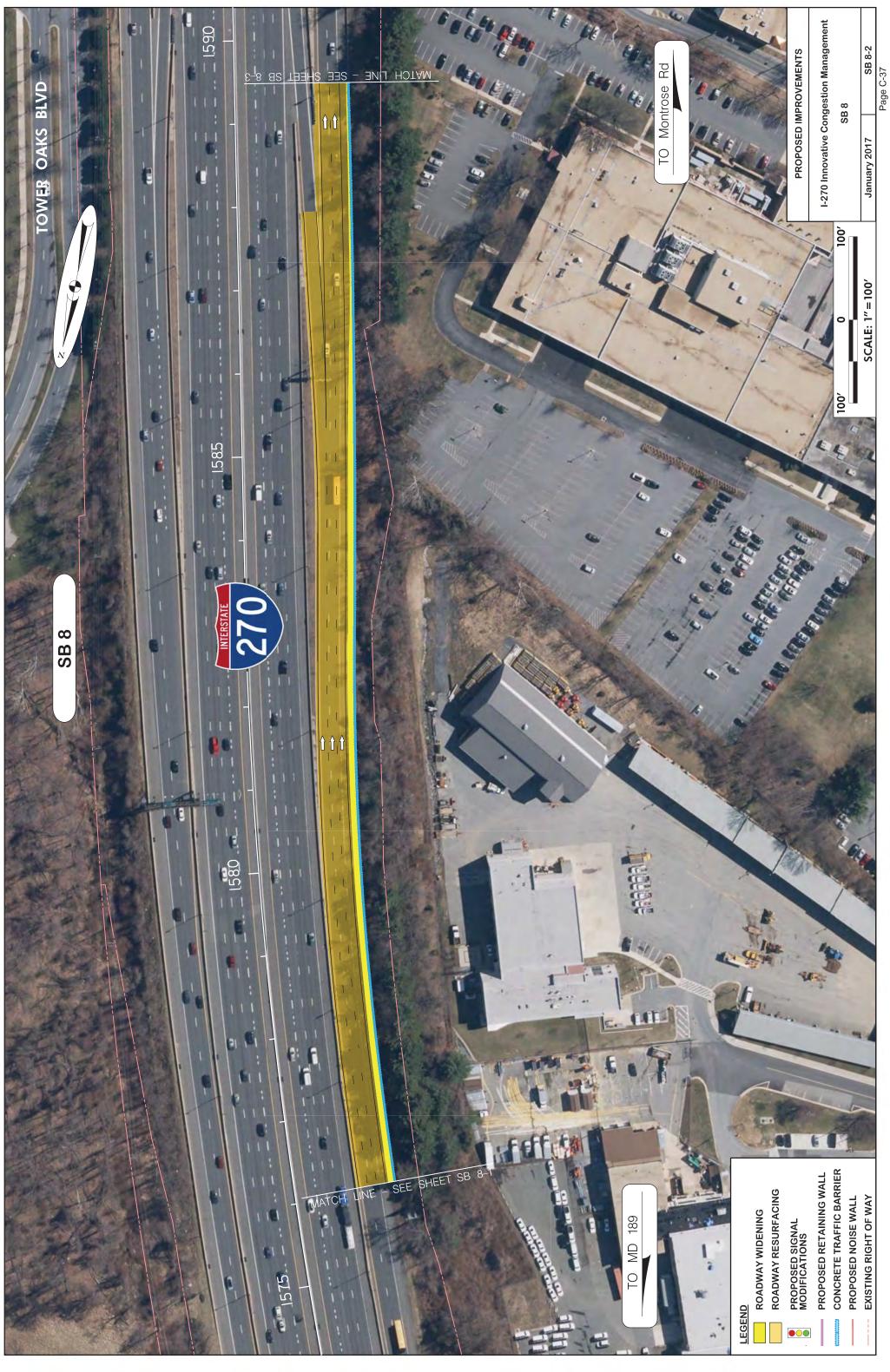


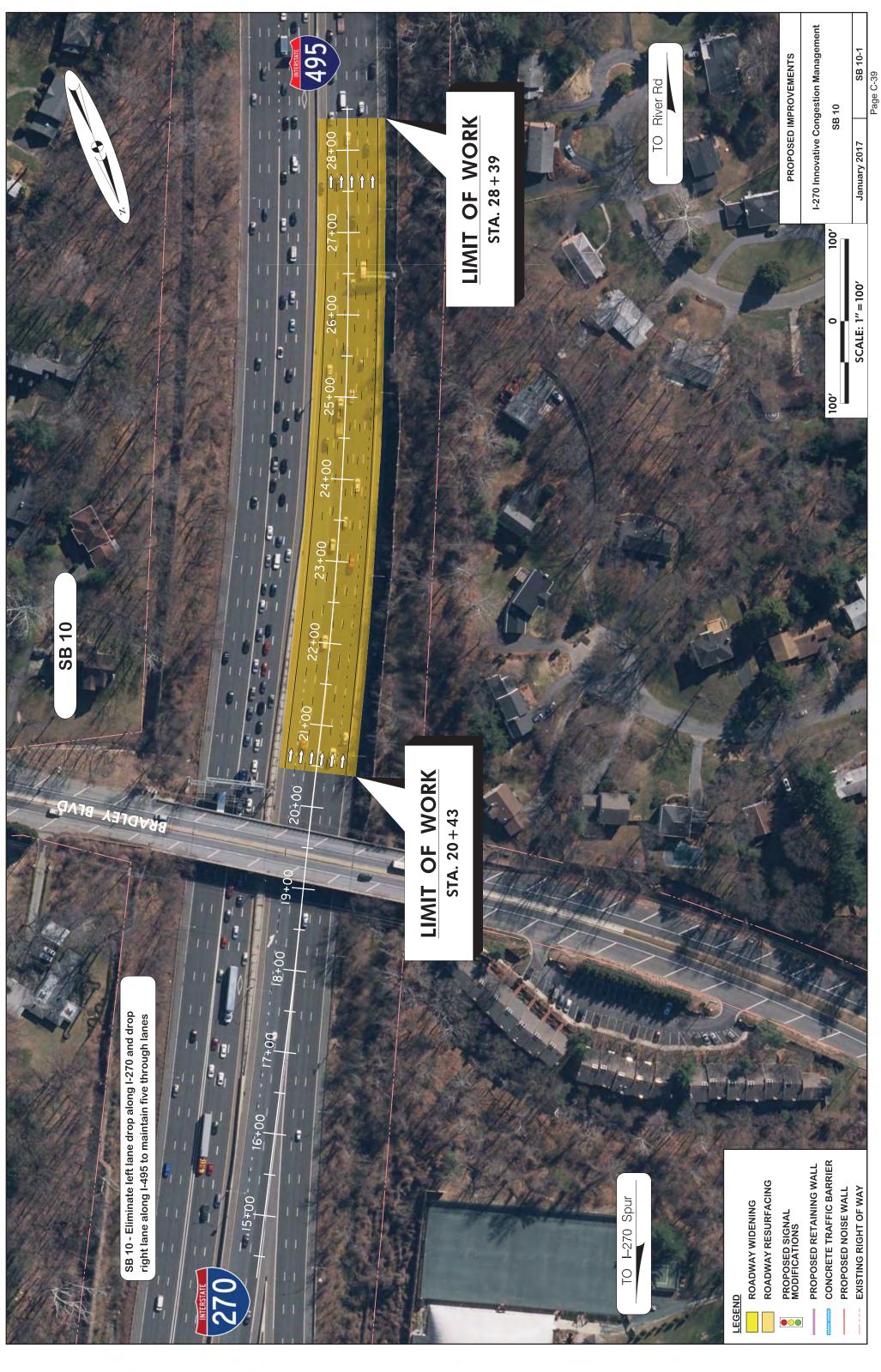


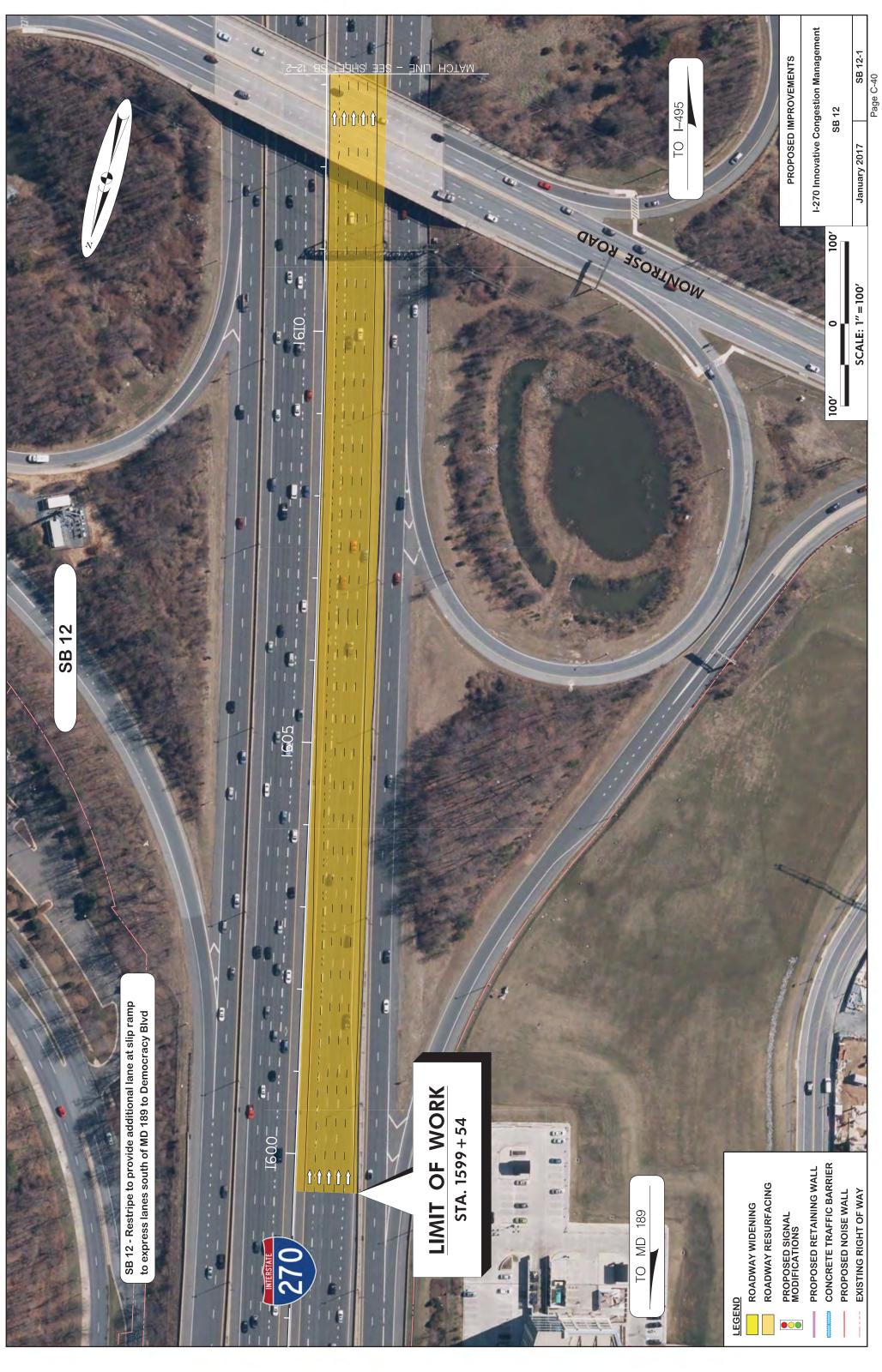


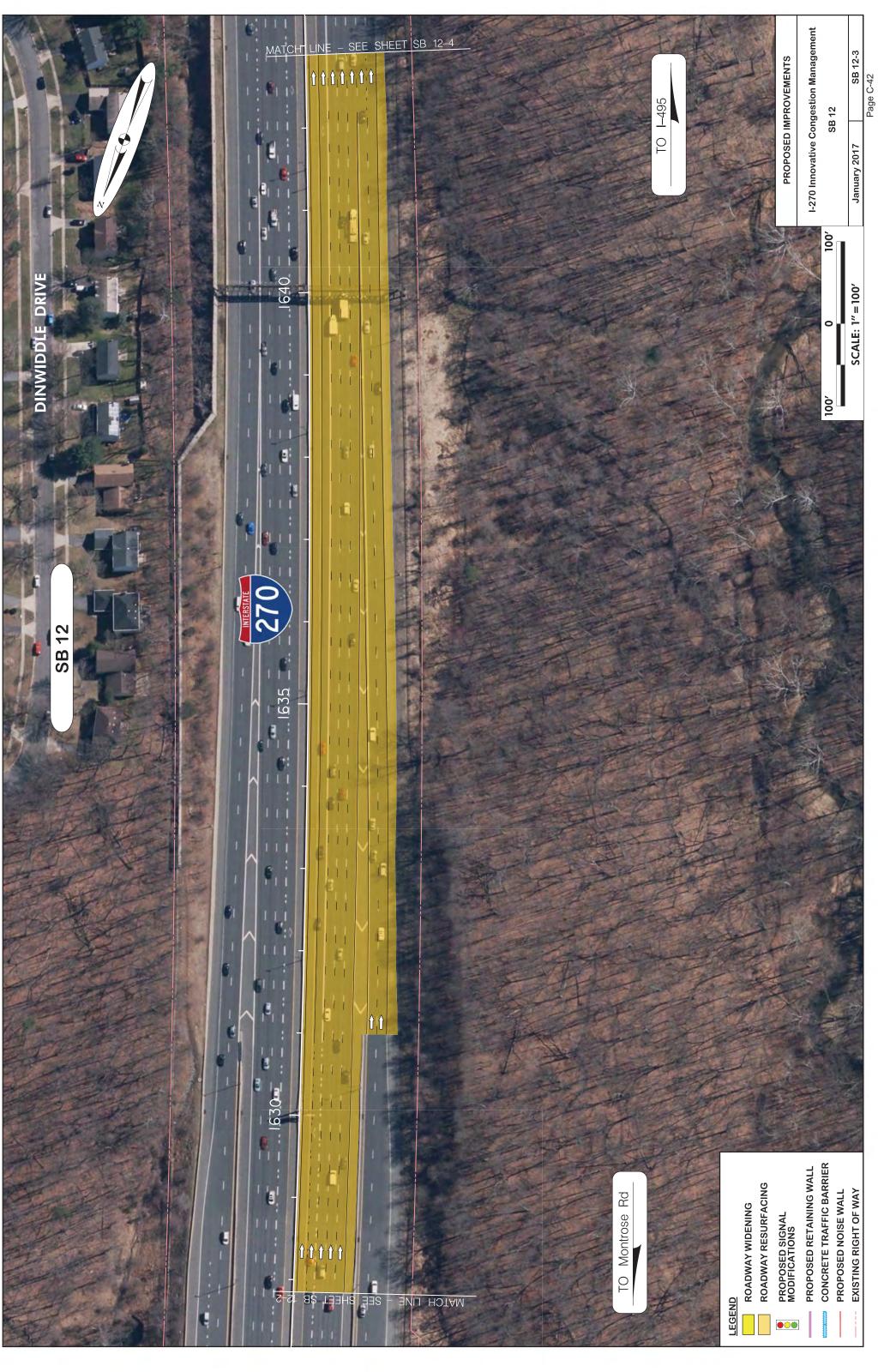


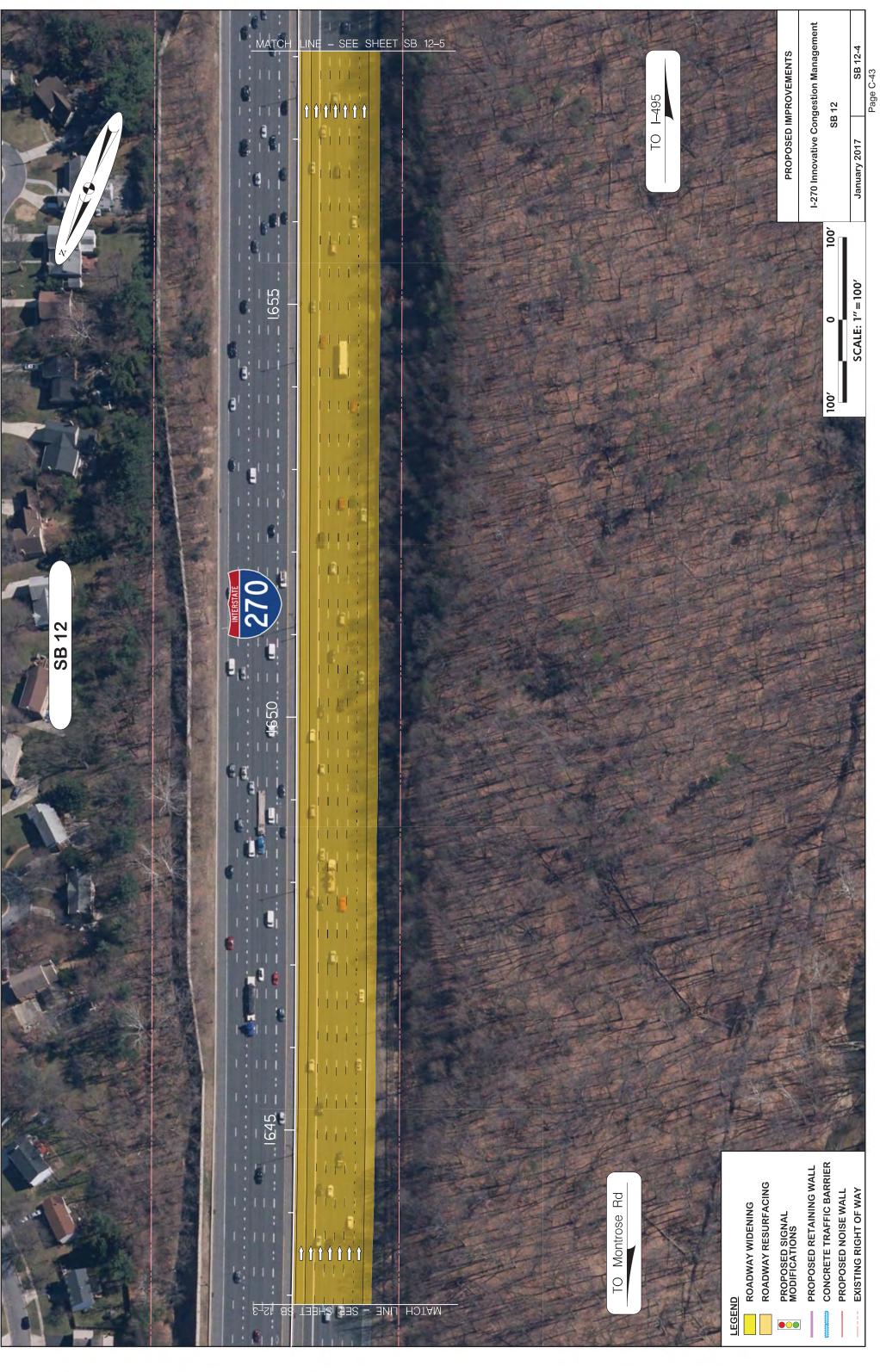


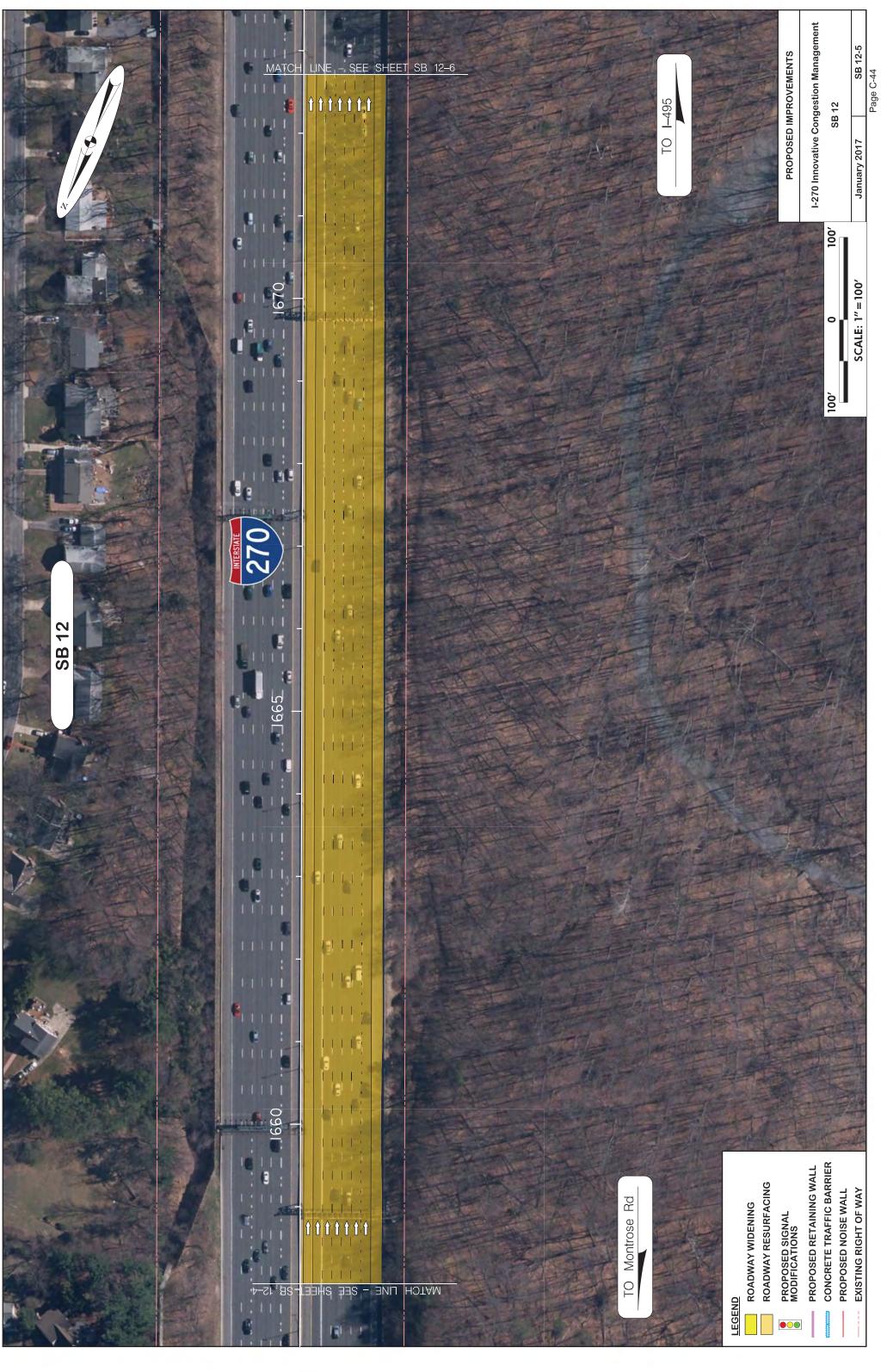


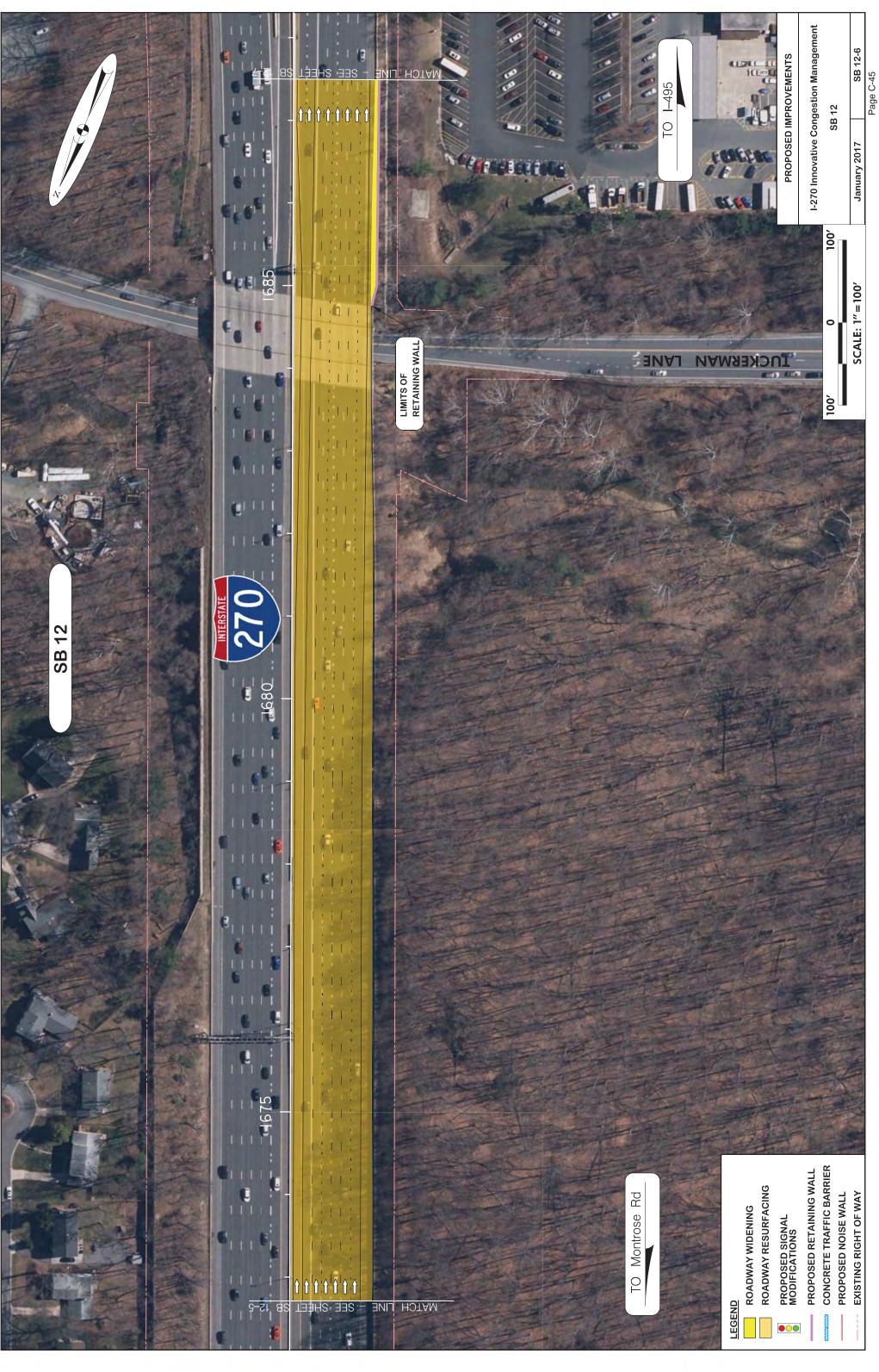




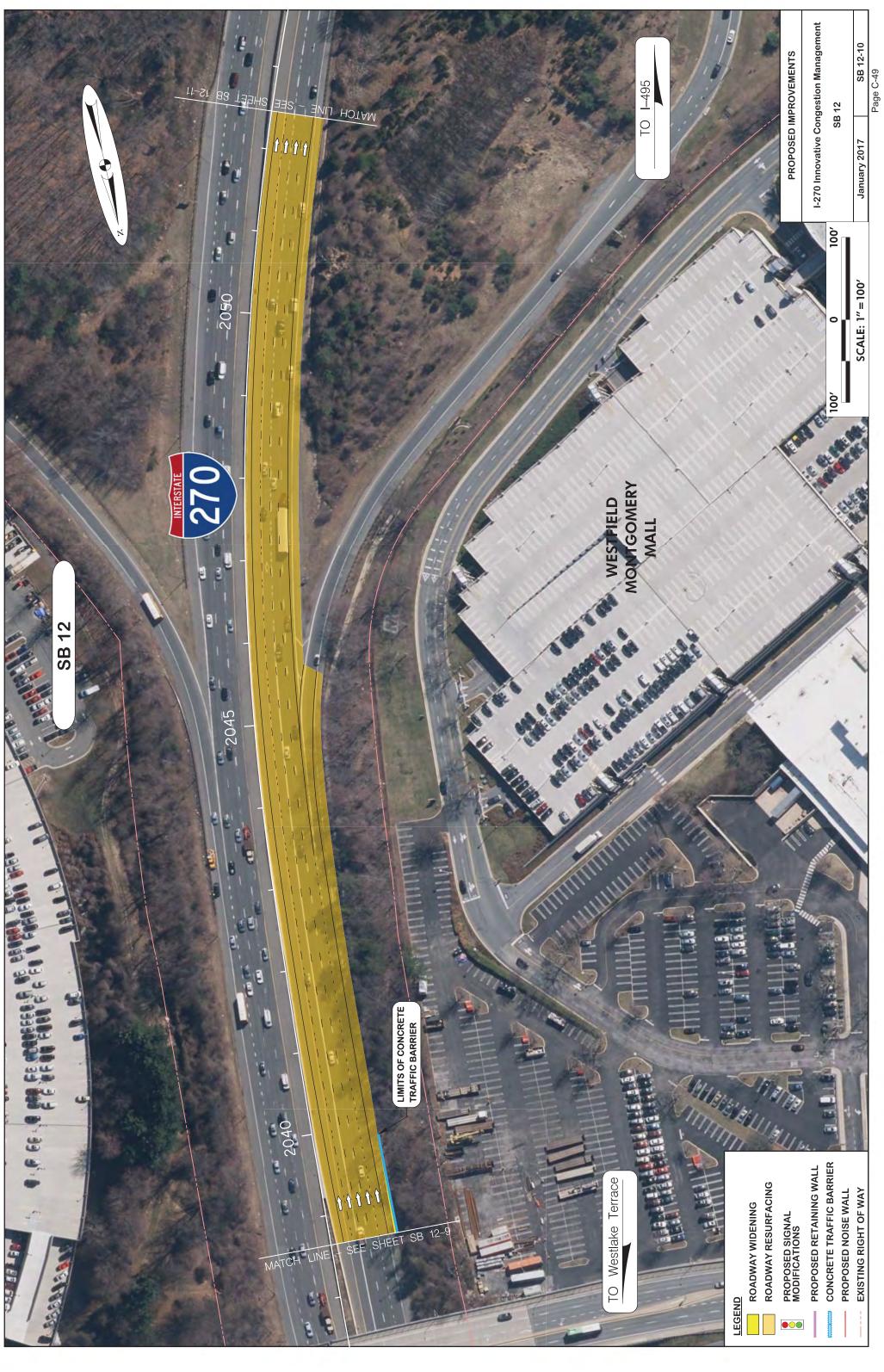


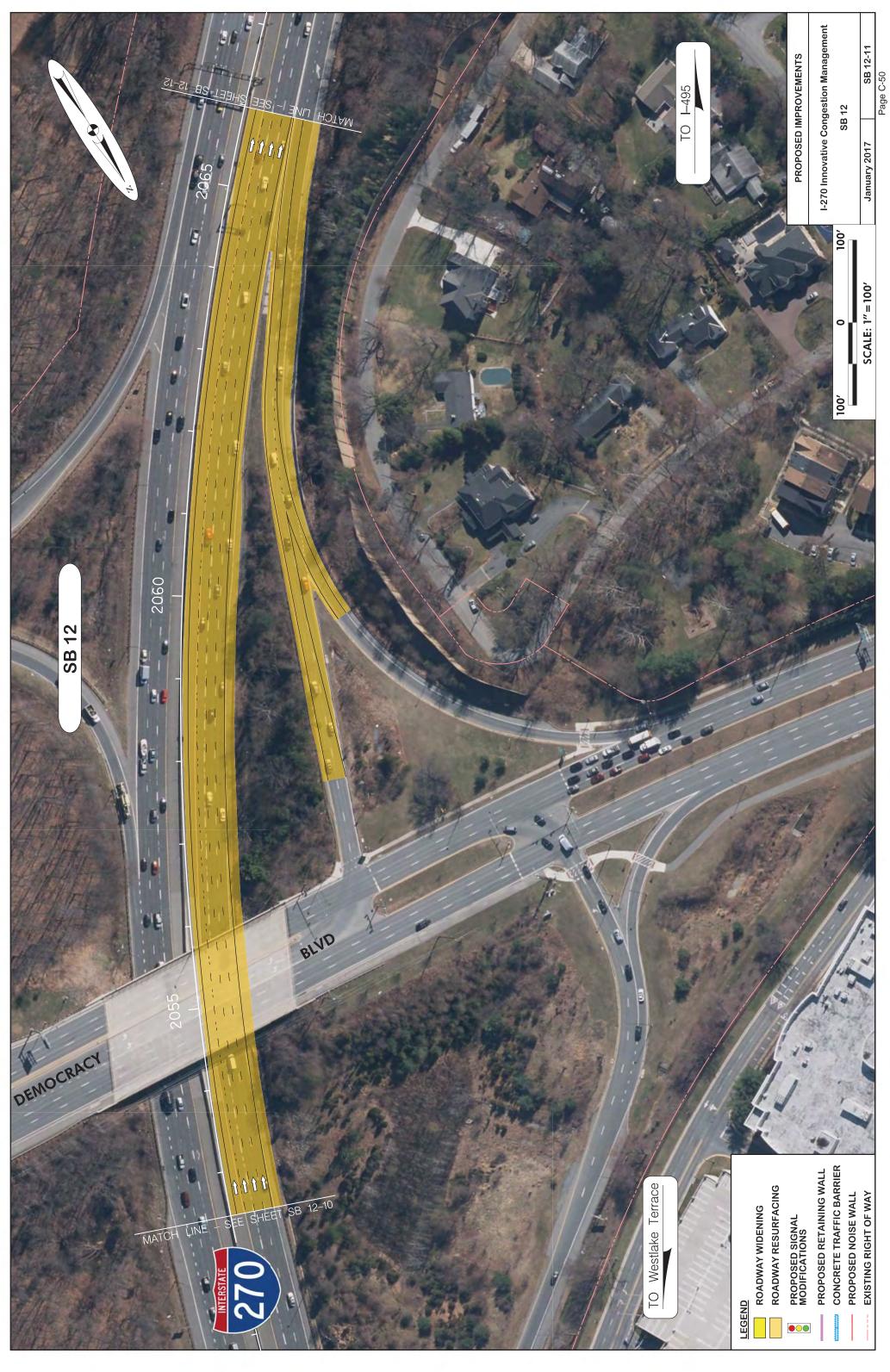


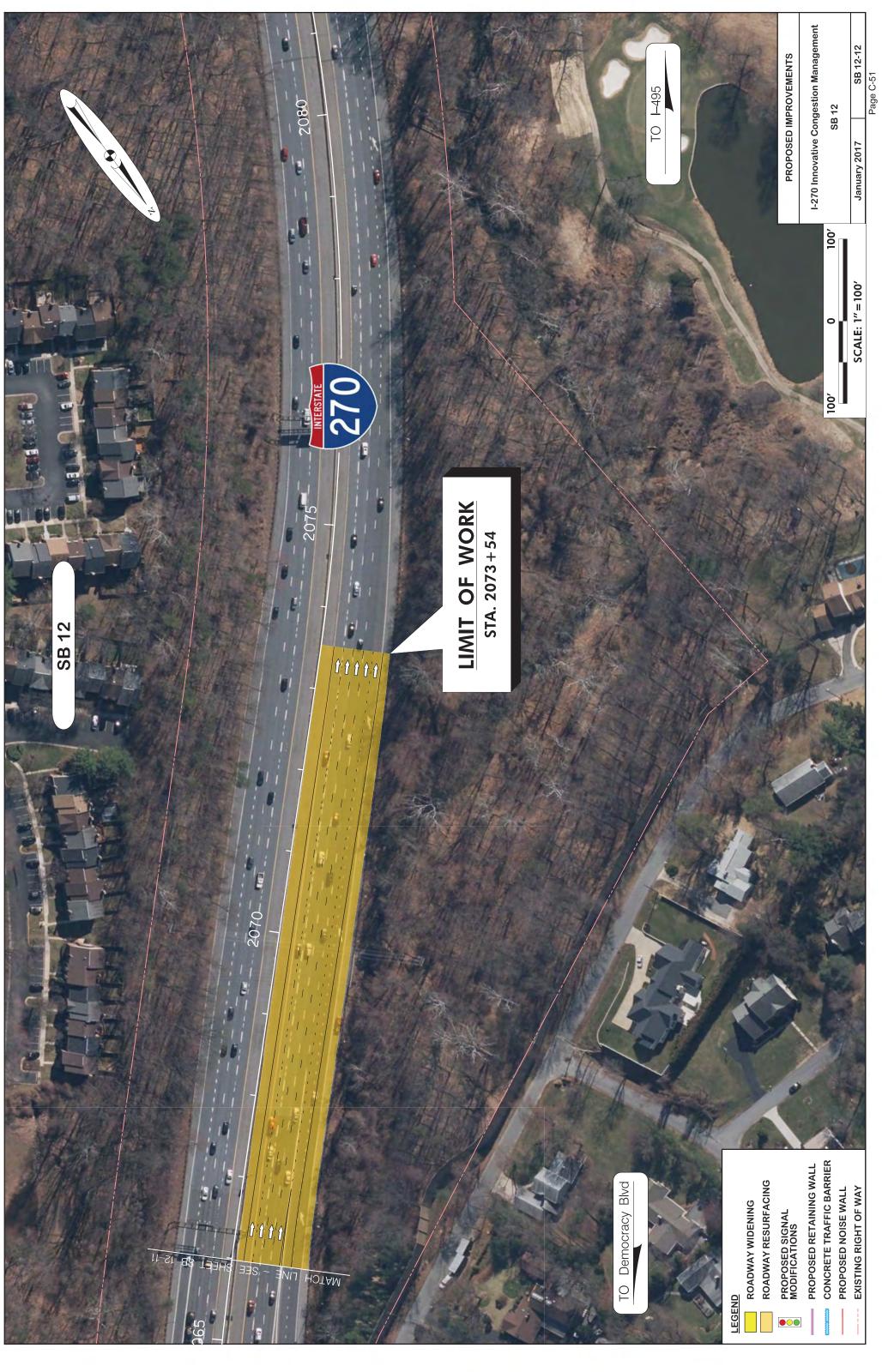


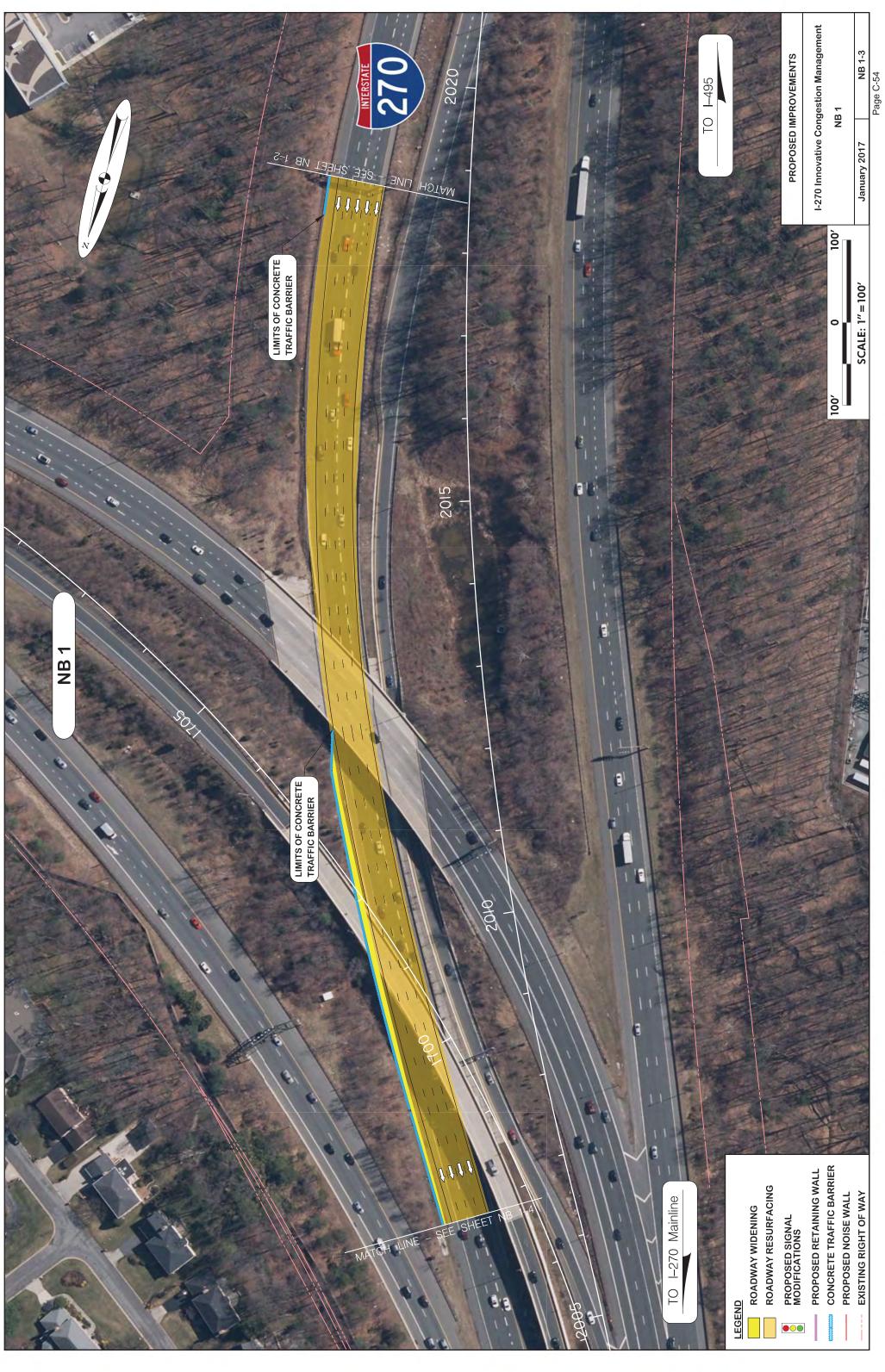


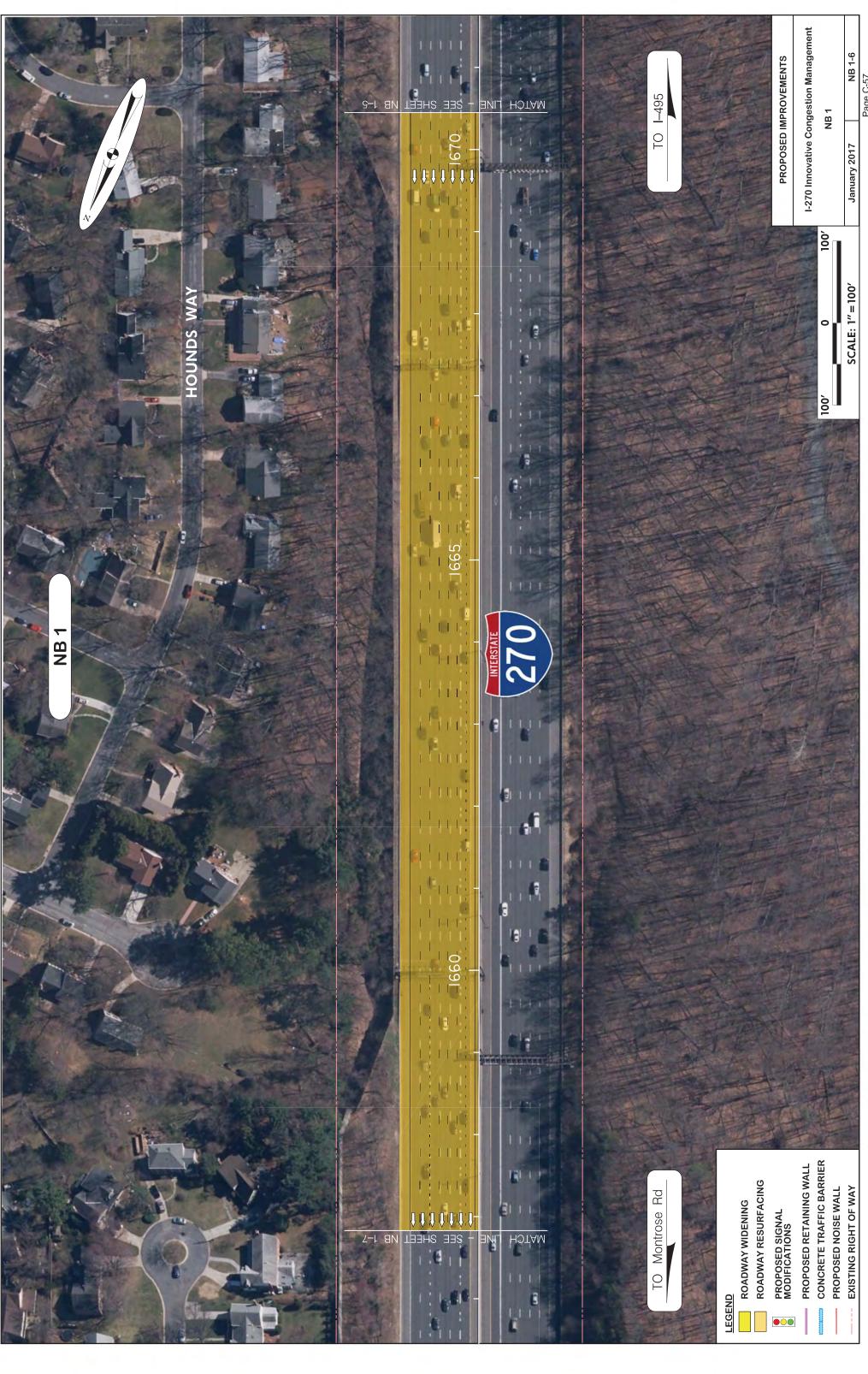




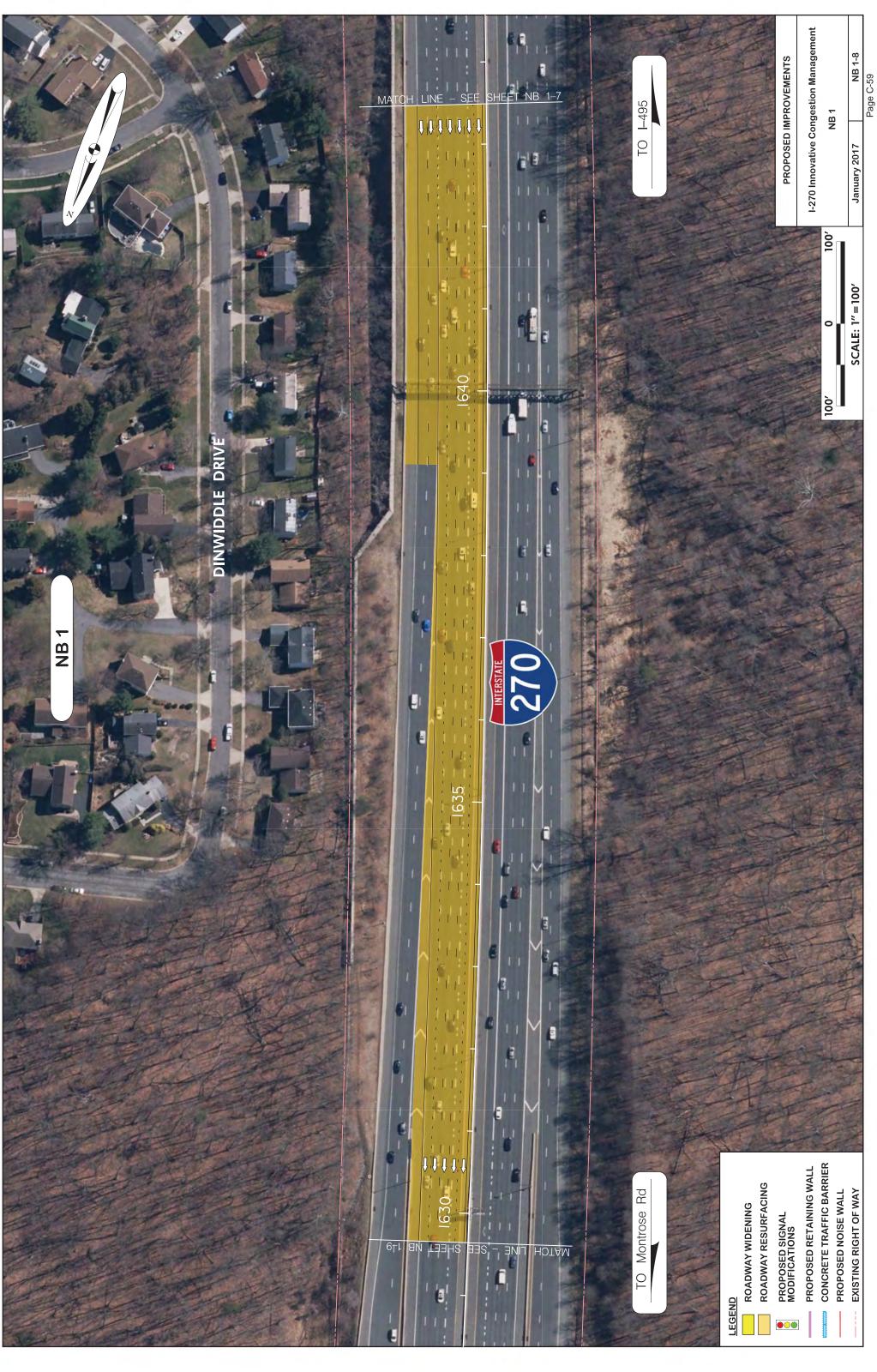


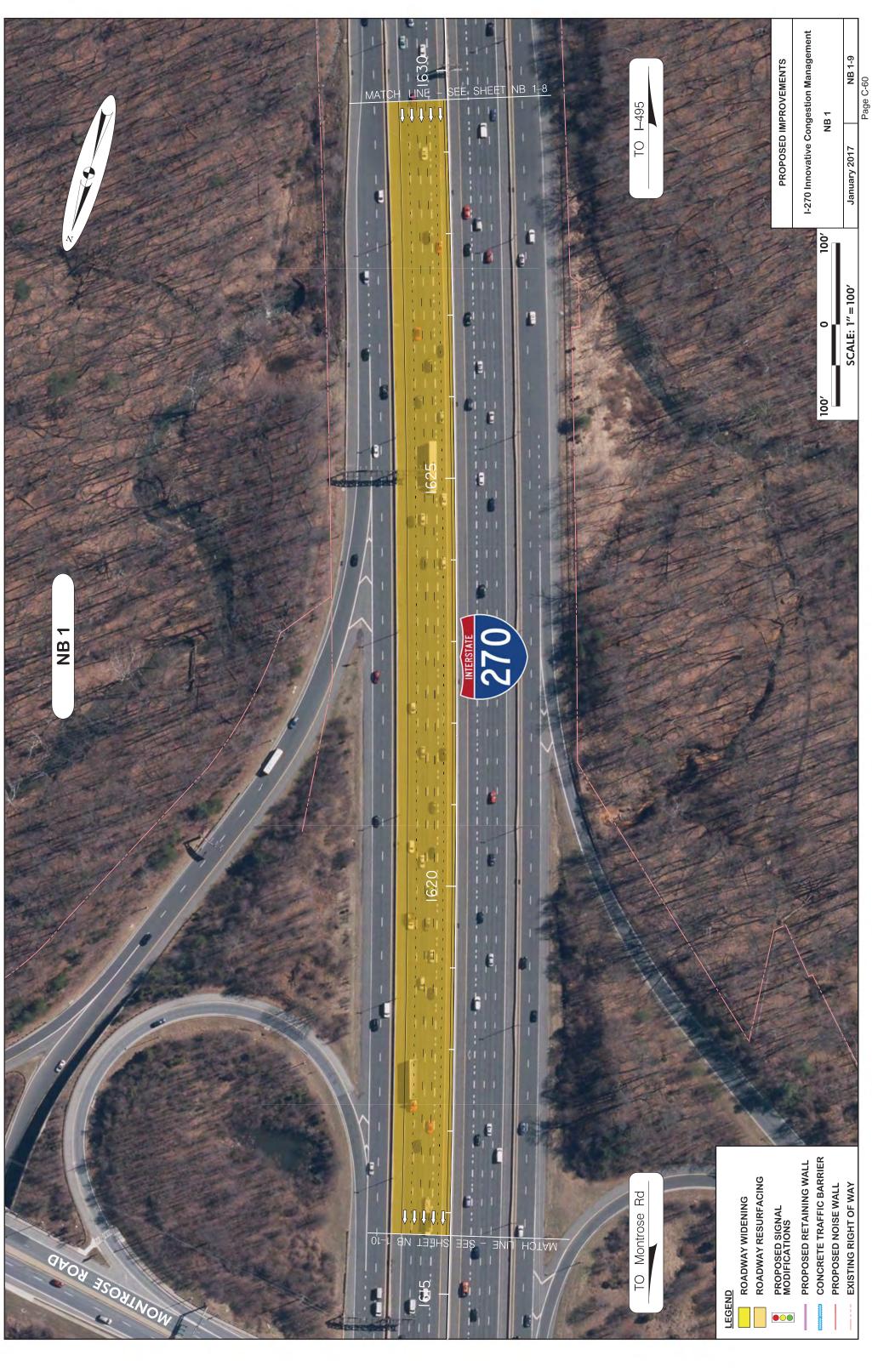


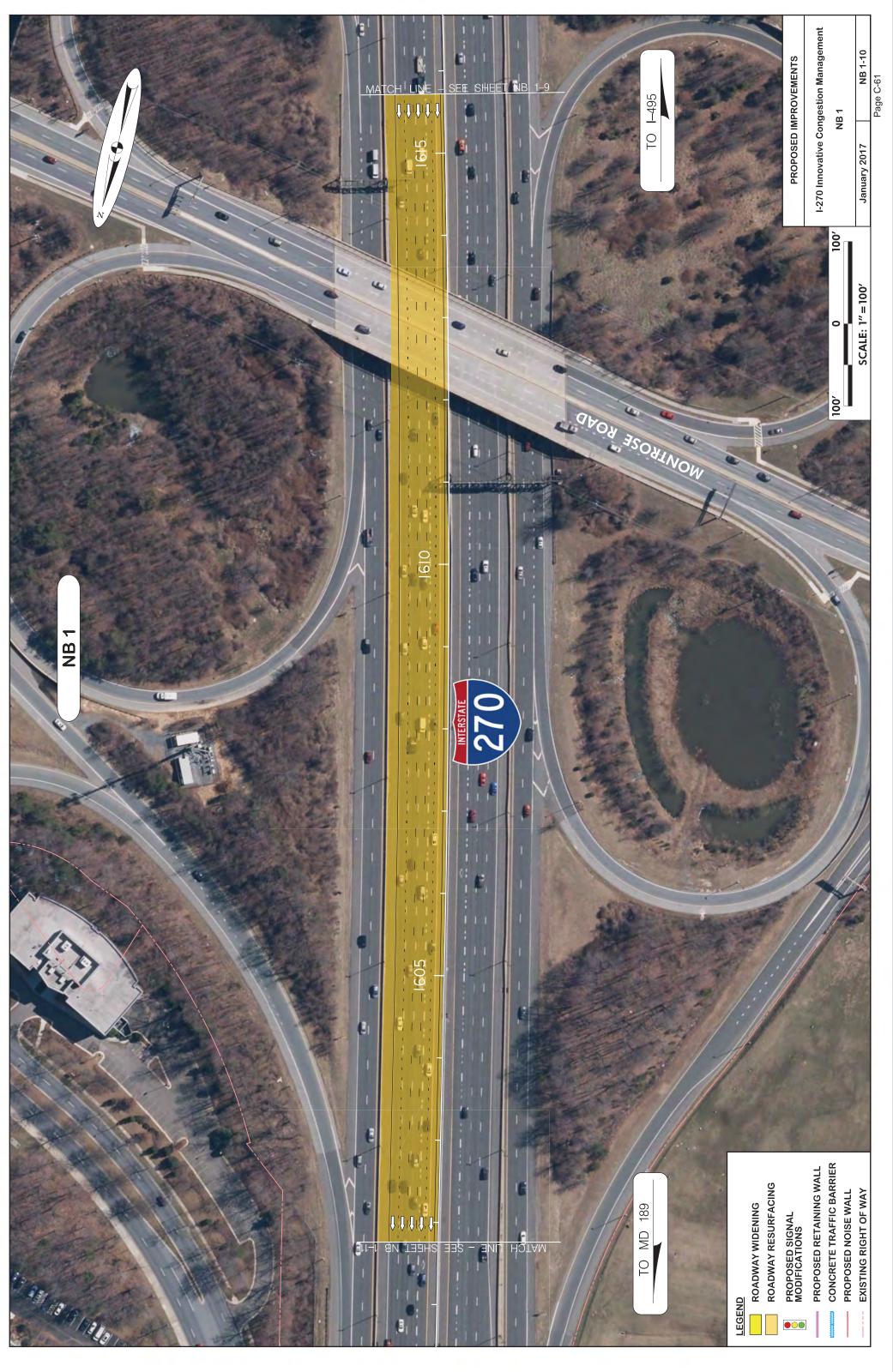


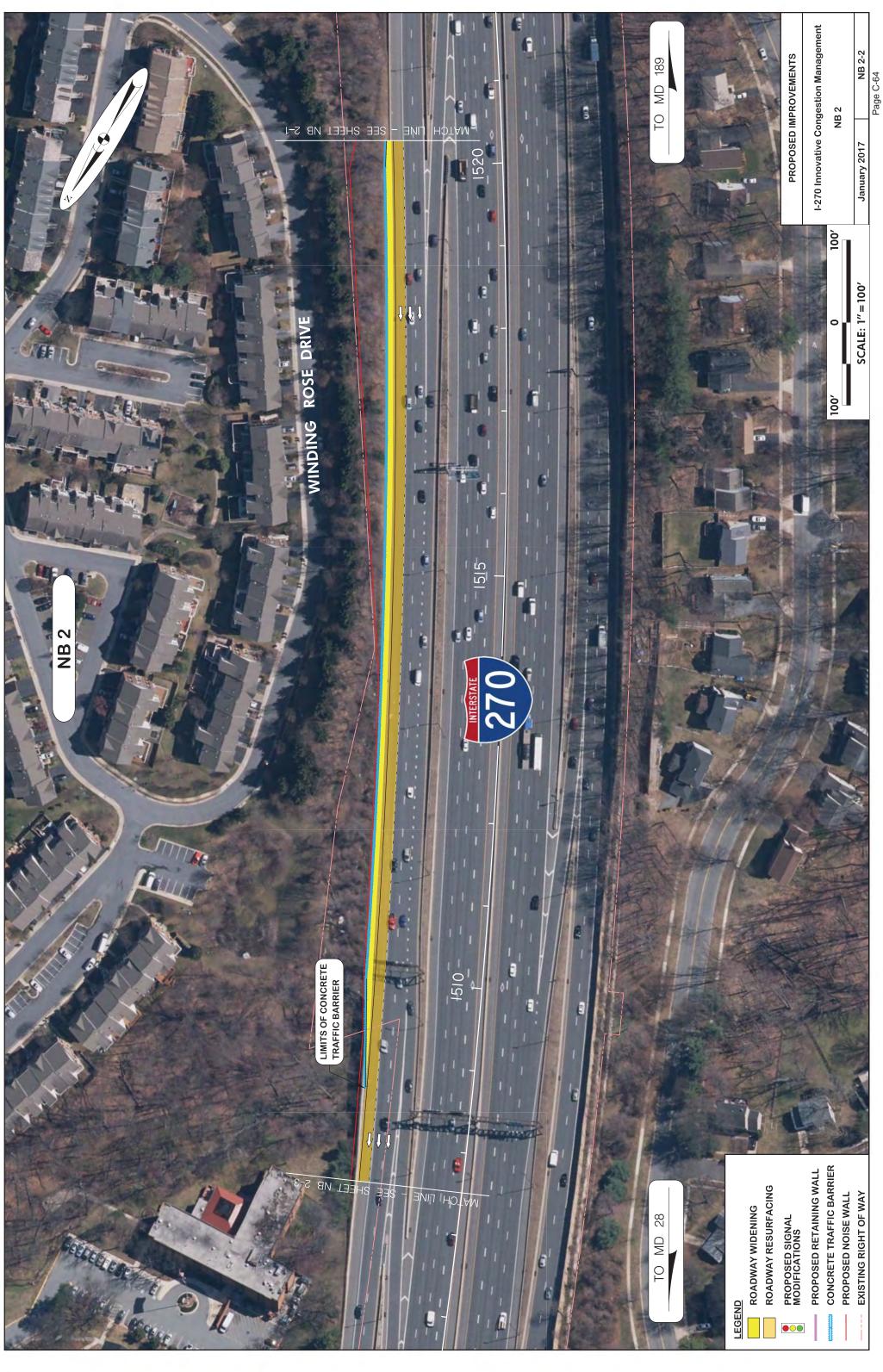


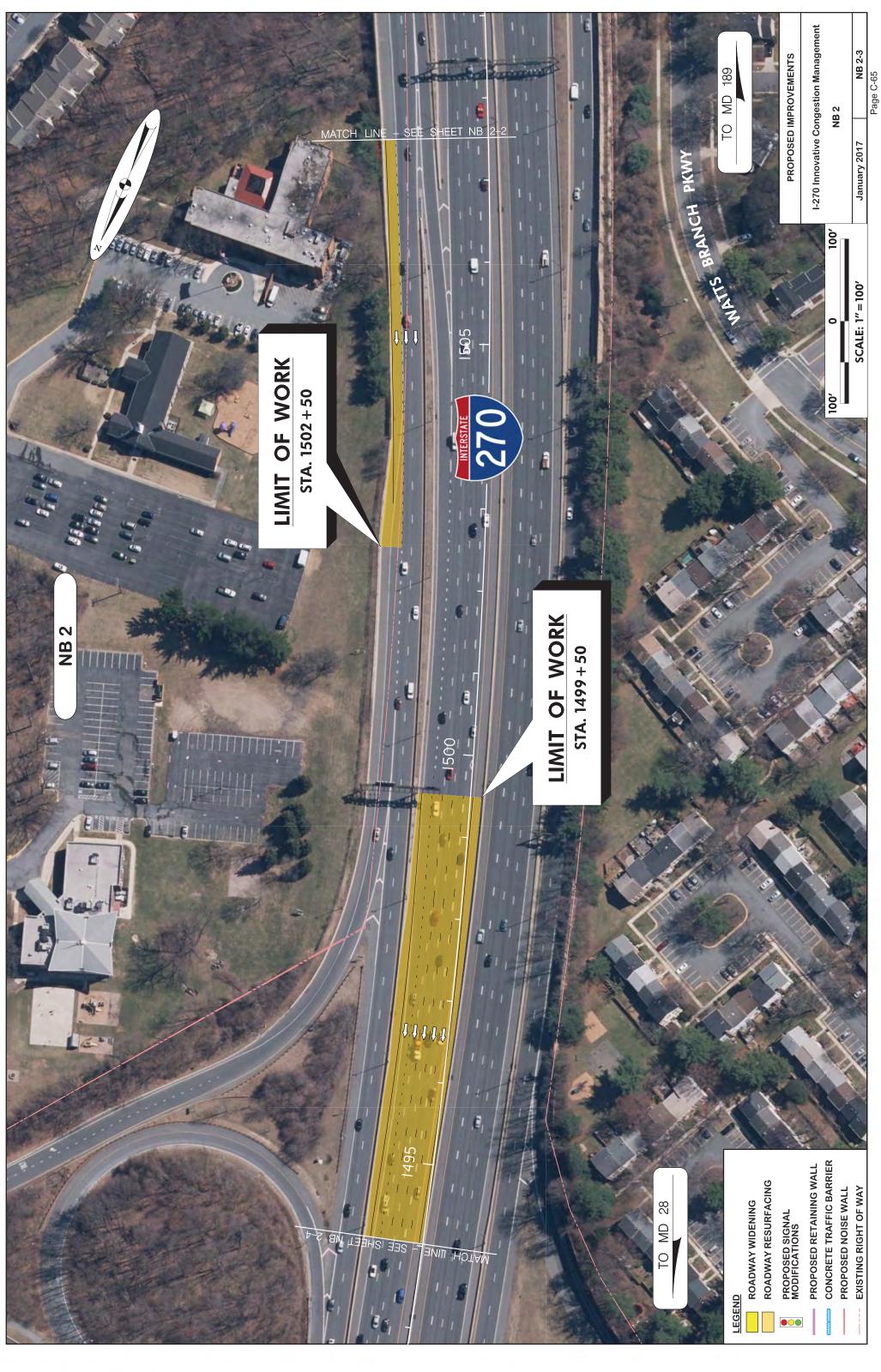


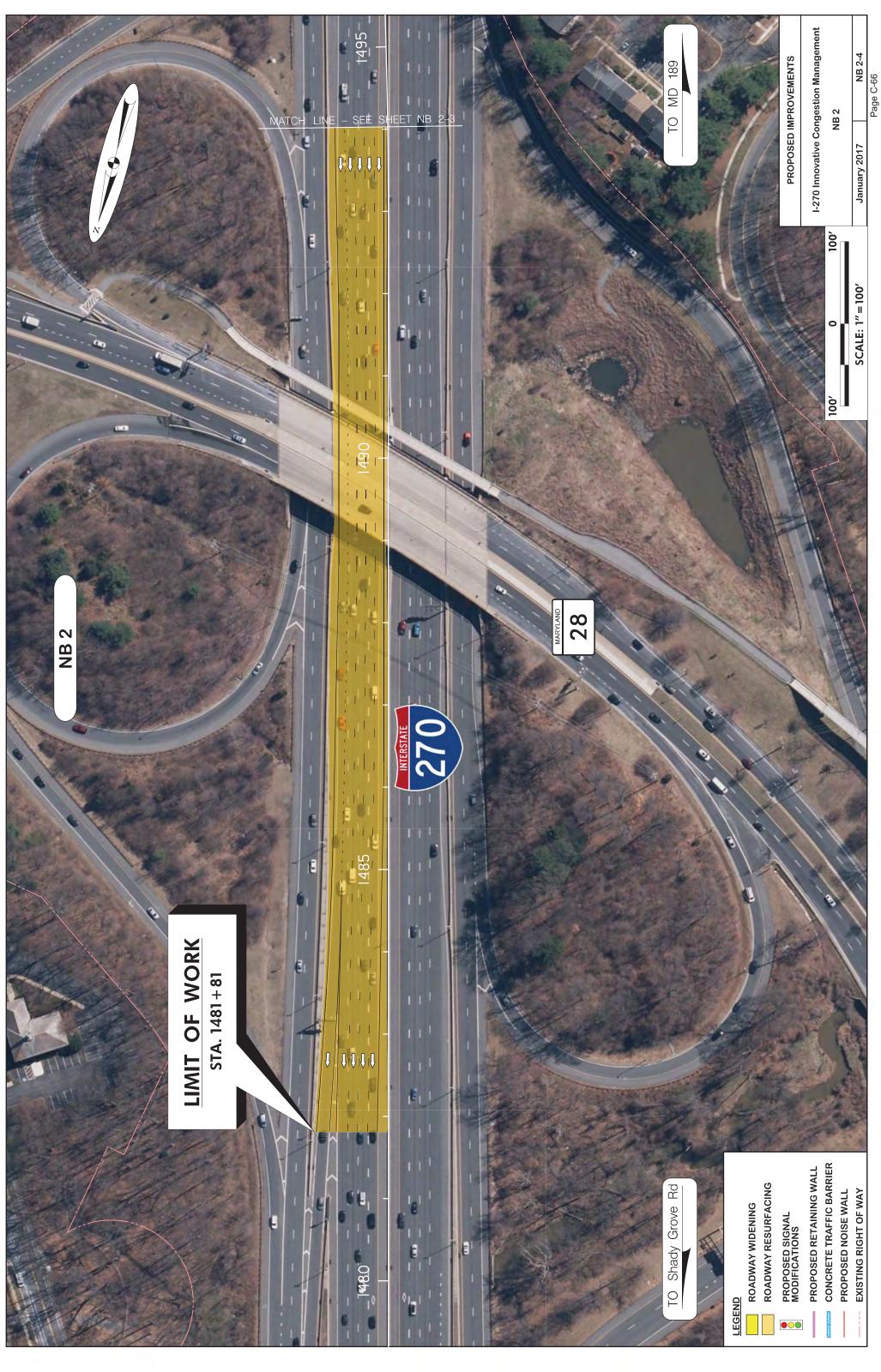


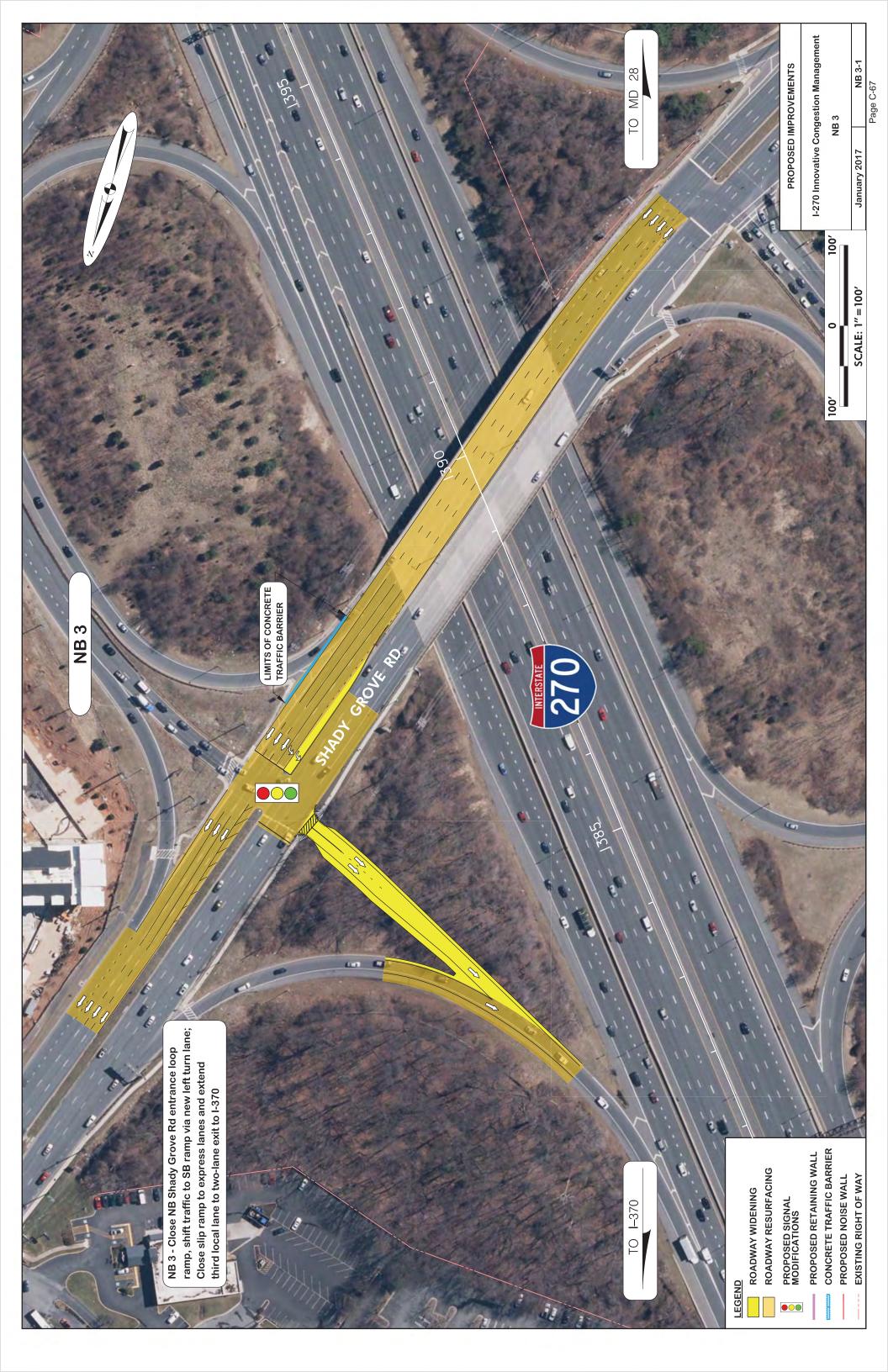


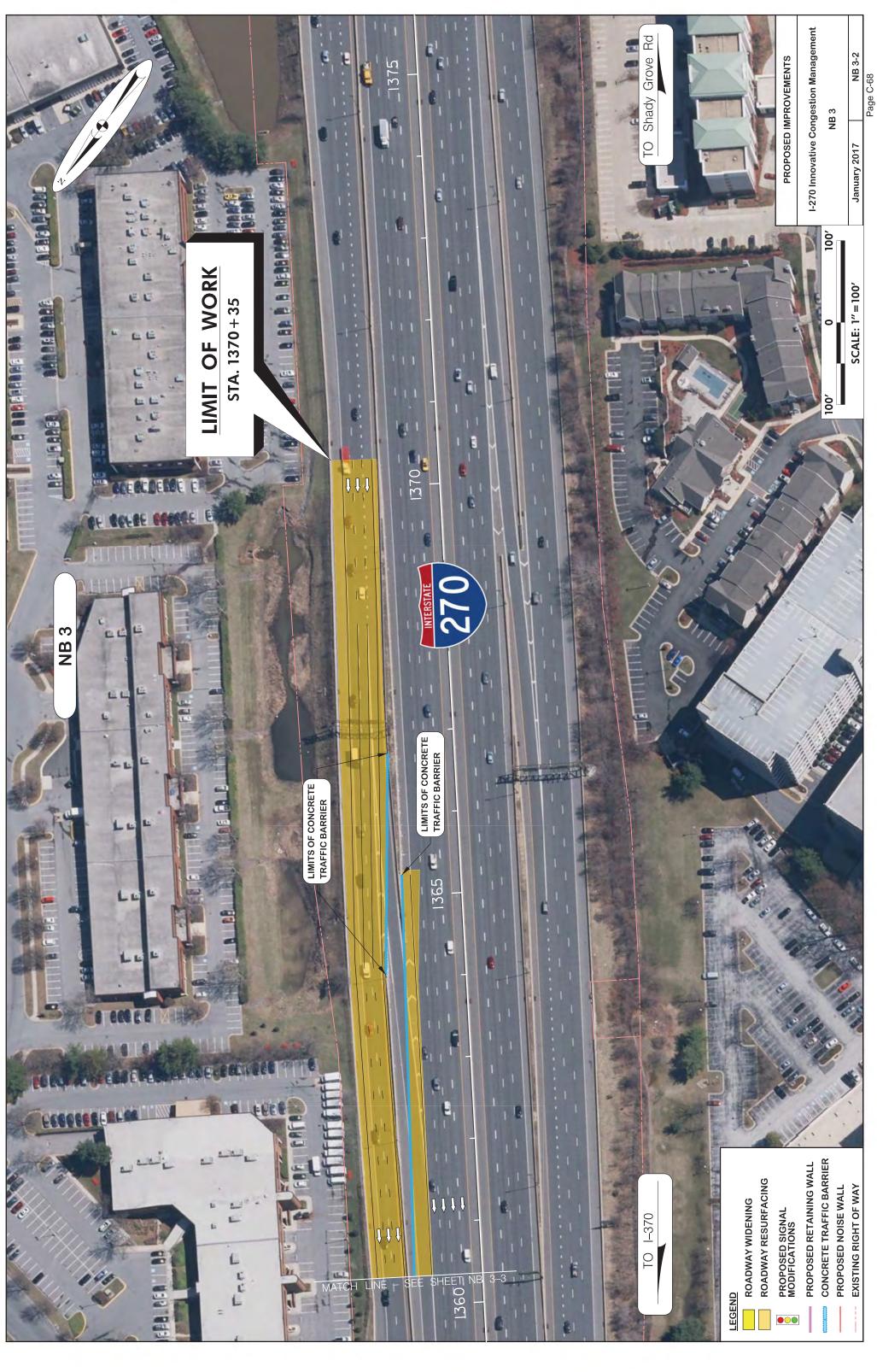


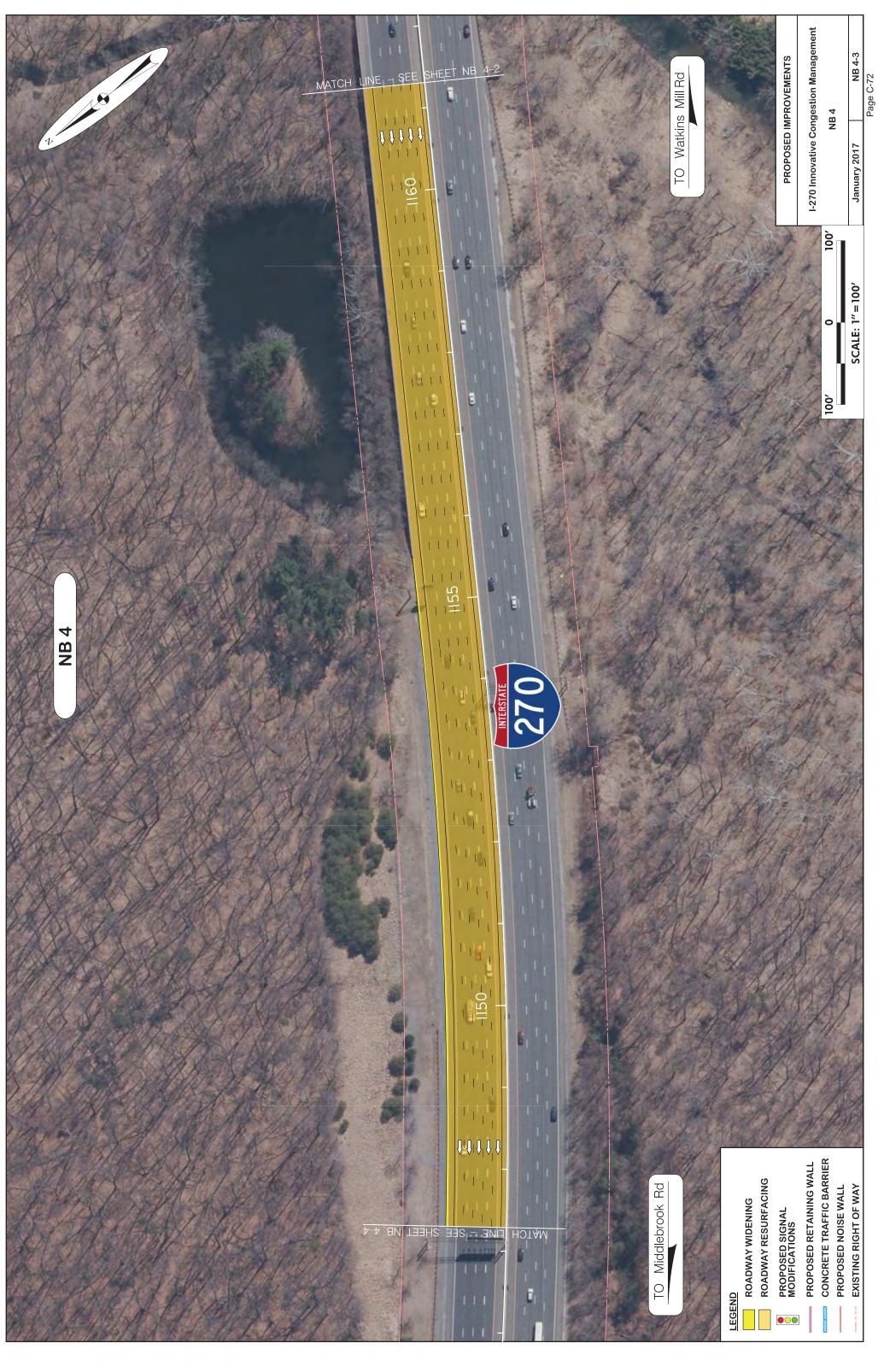


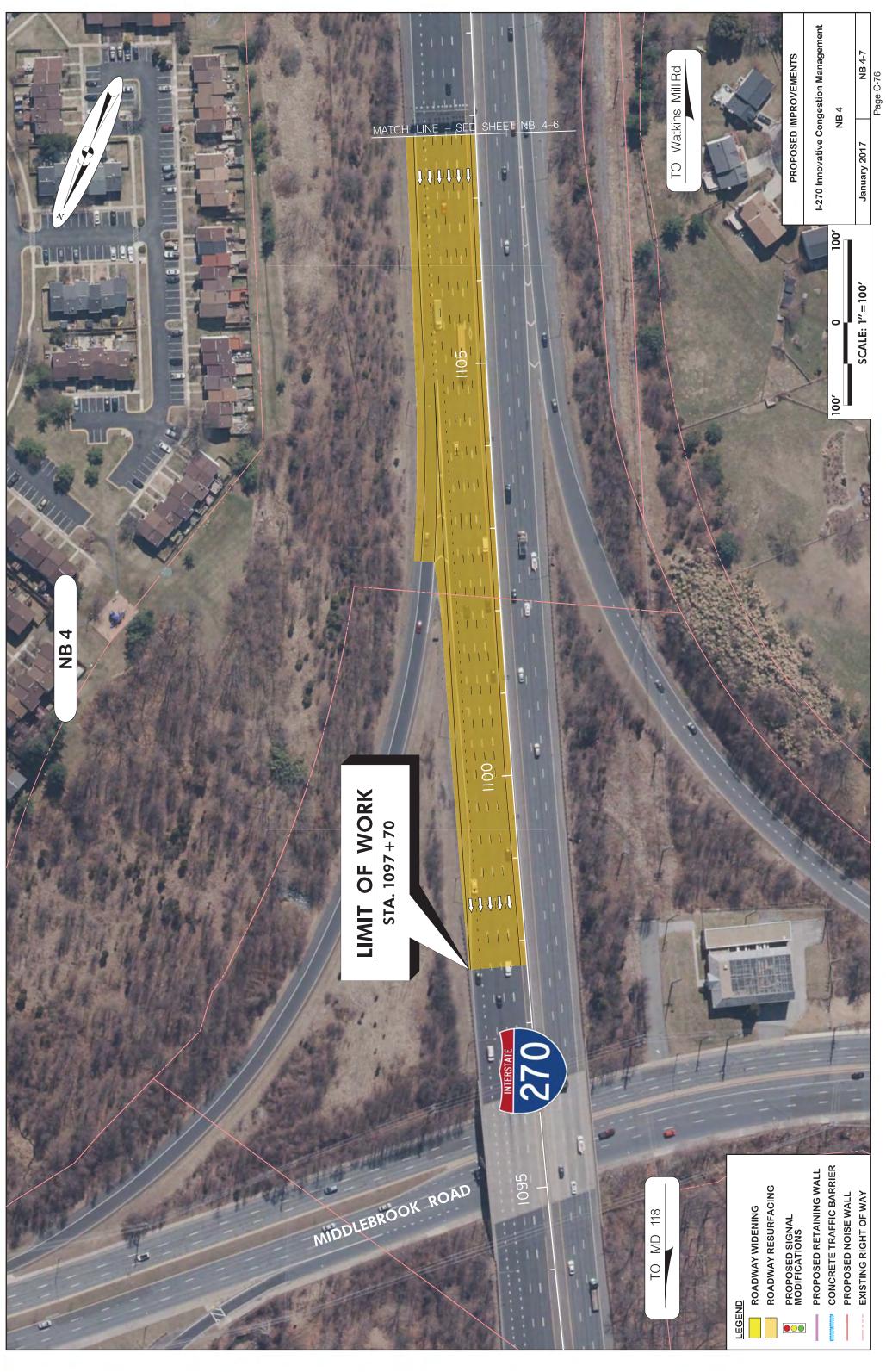


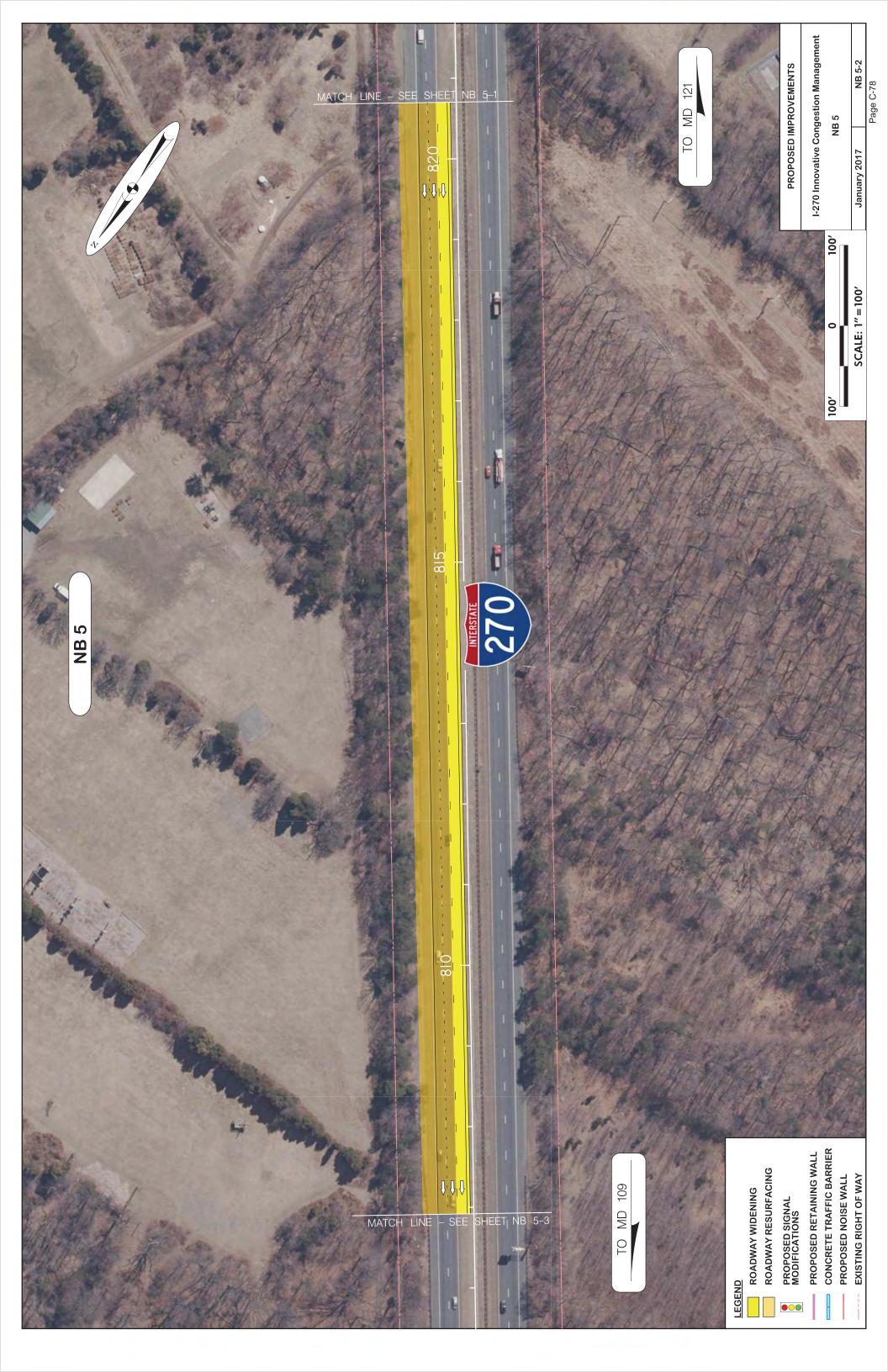


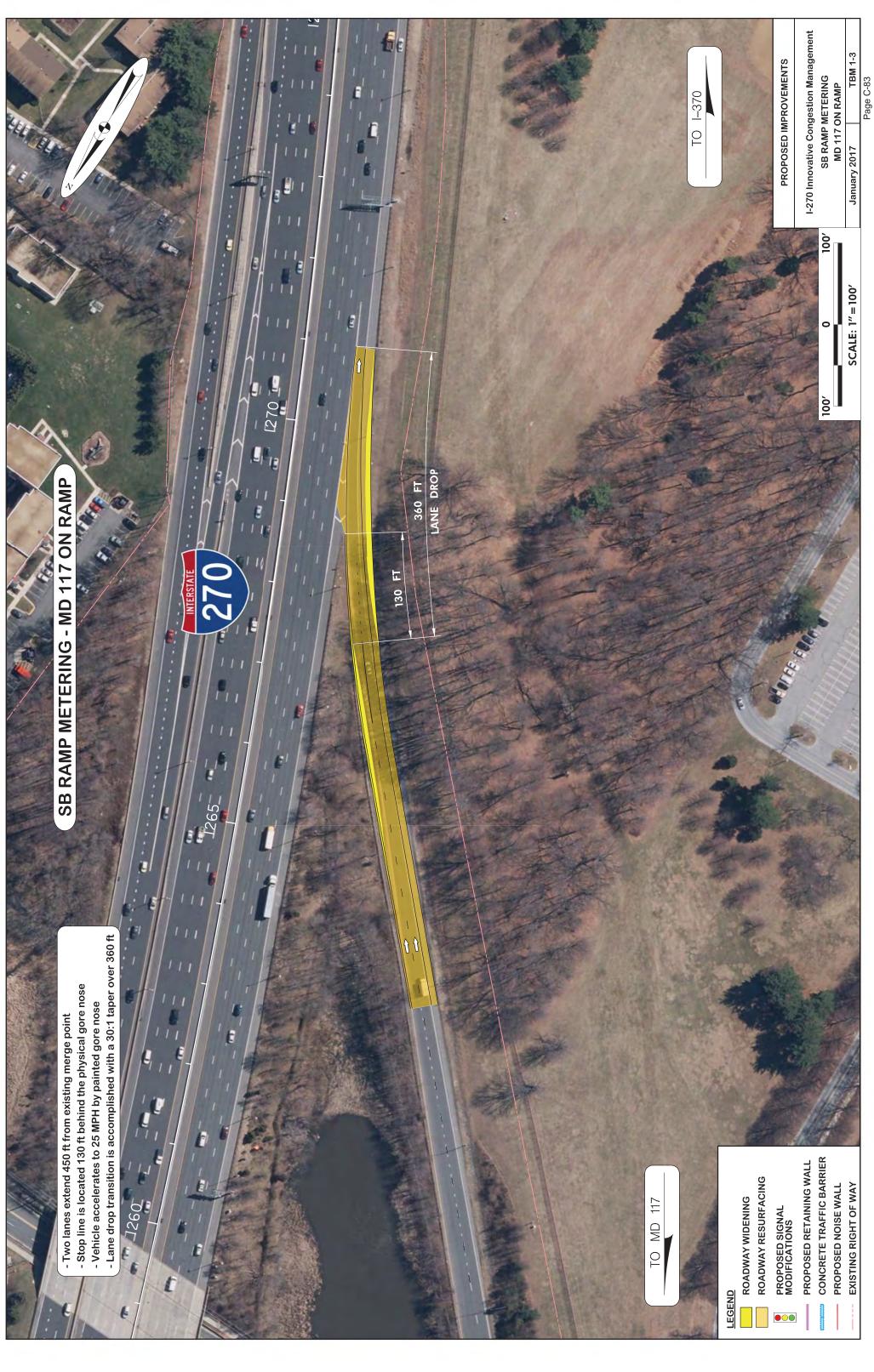


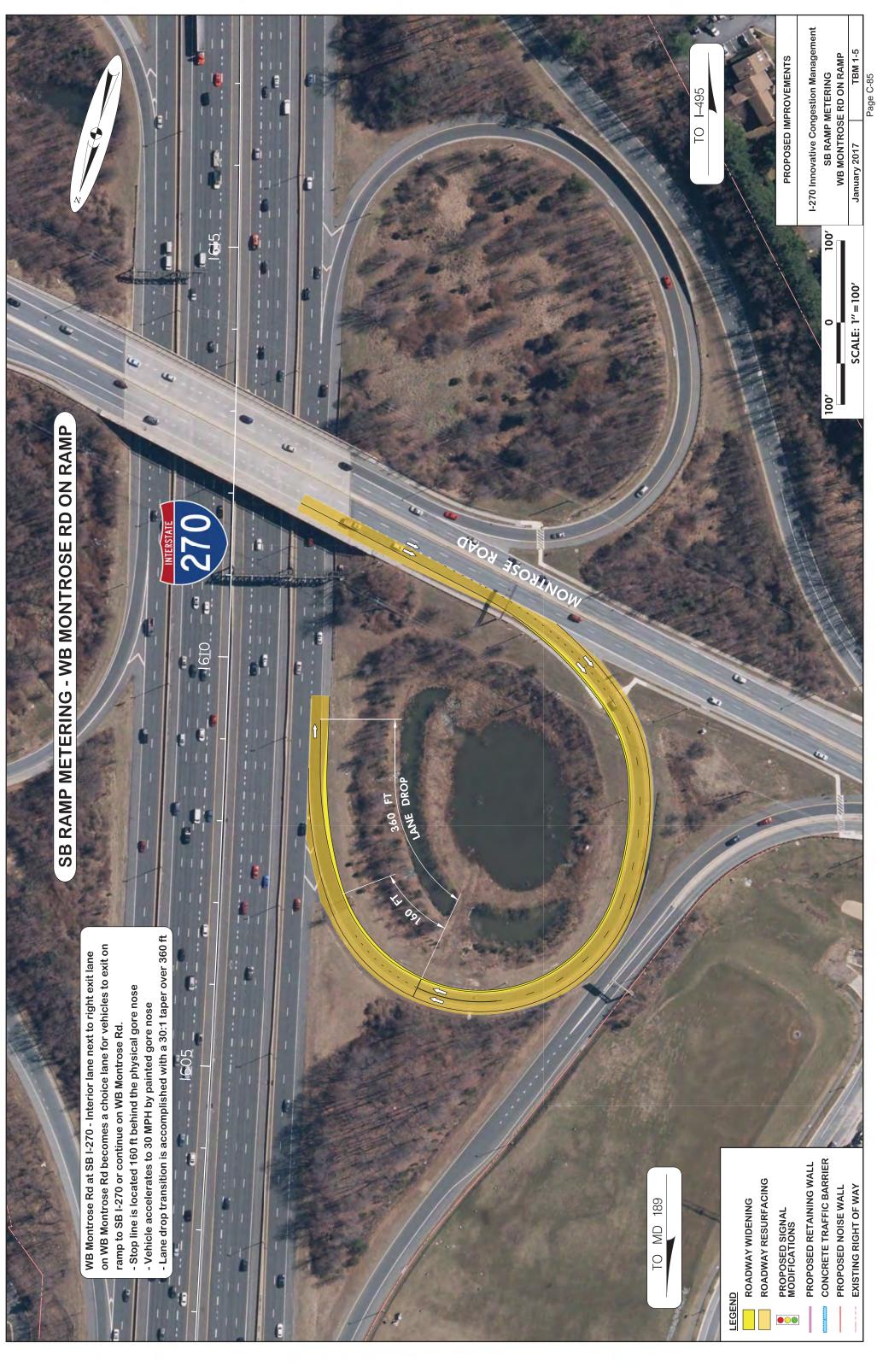


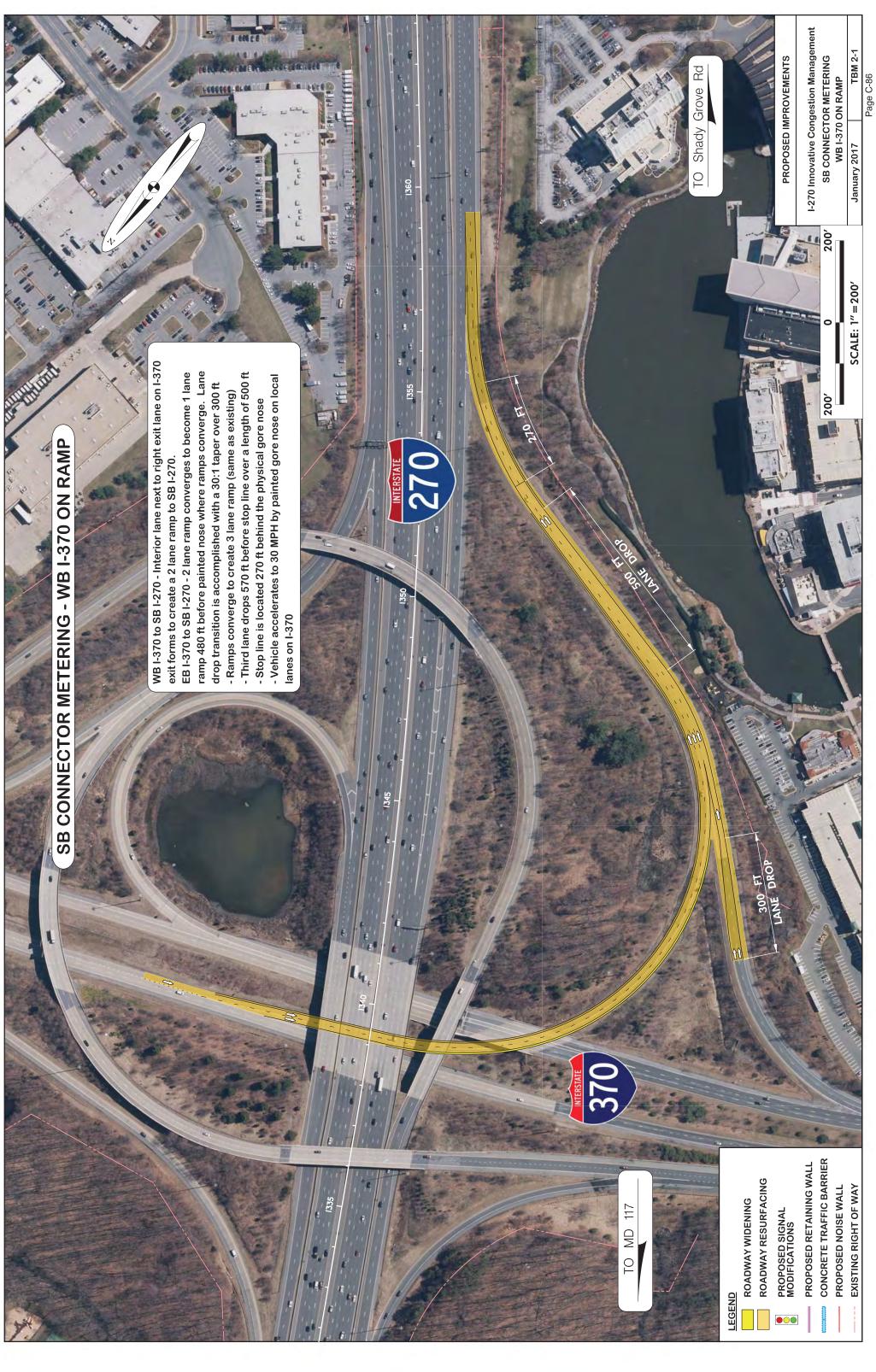












Appendix D

Pavement Analysis Summary

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

Appendix D: Pavement Analysis Summary

PAVEMENT ANALYSIS

The CGI Team referenced the as-built plans, pavement cores, and borings provided by SHA to determine the existing pavement design throughout the length of I-270. An analysis of the existing shoulders, given existing and future traffic volumes and proposed lane configurations, was performed to determine:

- (1) If the existing shoulder pavement sections could support full-time traffic loading;
- (2) The design life of the existing pavement in the shoulders with full-time traffic loading; and
- (3) The recommended design for all new or reconstructed pavement along I-270.

As noted in Section 4, this analysis revealed that in all locations where we are proposing to reconfigure the roadway, the existing shoulders are sufficient to support full-time traffic loading. Our analysis also revealed:

- In the locations of these improvements, the existing shoulder pavement sections is not considered to be "full-depth" and as such would not be expected to perform as well as the existing mainline pavement.
- Once under full-time traffic loading, these existing shoulders are anticipated to have a design life of approximately 15 years before major rehabilitation would be needed. This is approximately 10 years less than the anticipated life of the adjacent mainline pavement.
- The recommended design for new or reconstructed pavement sections, based on a 25-year design life, consists of 2 inches surface course HMA, 15 inches base course HMA, and 18 inches GAB.

The supporting documentation for our pavement analysis is provided in the following pages.

GEOTECHNICAL QUALITY CONTROL SIGN OFF SHEET

Project Name:	I-270			
Commission Numb	er: P1605-001			
Client Name:	SHA			
Document Title:	Pavement	Answers		
Document Type:	☐ Proposal	☐ Report/Memo		ns
(Check One)	☐ Boring Logs	☐ Specification	Other:	*
Project Milestone:		Due Date		
hecked my work pi	t I was the originator or fior to passing it on fo			carefully
The same of the sa	radley Wright		4	
Signature:	the the	Date:	11/4/16	
/	Print Name	Sign	ature	Date
Checked:	Si-TI BERGHEIN	ner M		11/7/16
Corrected:	Bralley Wrigh	* Brilly	the	11/7/16
Checked:	Sur Boeklam	RE /		1/8/16
☐ Corrected:				
Checked:				
Project Engr:	2.0 BrekHower			11/8/6
☐ PM/Manager:				1

GEOTECHNICAL CALCULATION QUALITY CONTROL CHECKLIST

Project: 1-270	Comm. No: P1605-001
Title of Calculation Set: Pavement Answer	
RK&K Project Manager: Cod	ordinating Discipline POC:
Calculations Prepared By: _BW	Design Method/Code:
	bmissions\00-2016_SUBMISSIONS\1-Current
File Path on Network: Proposals\P1605-001 - M	DOT I-270 DB\Geotech
Subsurface Characterization Approved By:	A
Initial Calculations: Signature of Originator:	Multiple Date: 11/4/16
⊠ Geotech Quality Control Sign Off Sheet is pro	ovided.
□ Calculations are neat, legible and understand	dable.
Variable inputs are highlighted and check co- spreadsheets.	nfirmations are clearly marked in calculation
☐ Table of Contents is provided.	
	mputer input and output.
	ation.
References for design criteria, data, methods	s, formulas and computer program names
and version numbers are given, and include	ded in appendices as necessary.
All assumptions are listed, explained, and the	ose needed to be verified later are flagged.
All input by others is attached and includes of	originator, date provided. (i.e. Structures
loads, concrete/steel properties, etc.)	
☐ Can the analytical steps involved be followed	
□ Do the calculations agree with the other interpretation □ Do the calculations agree with the other interpretation.	
Footer with file path/tab name and print dat	
 Detailed CAD ready sketches are provided th 	
□ Calculation Summary with recommendations □	
All calculations are checked and each calcula	tion sheet is initialed by the originator
before giving to the checker.	MI
Finalized Calculations: Signature of Originator	: Pulls Date: 1/8/16
All pages are numbered sequentially and cross	-references are complete and accurate.
All calculations are checked and each calculation	on sheet initialed by the checker.
Calculation set reviewed by Project Manager.	
☐ Has this calculation been superseded? Referen	nce new calculation, if applicable.
	,

Subject I-Z70	Page 1 of /3
PKEN Pavement Answers	cm. No. P1605-020
Prepared By BW Date 1/4/16 Checked By SAG	Date ///8//6
Net la	
Obsert Answer the Rollow questions:	
#1) What shoulder segments have full depth paver #2) What is a normal pavement section in the	ment sections?
that is a normal gartenent section in the	is area ?
#3) How long will the shoulders last if used as	a stayer lane.
TABLE OF CONTENTS	PAGE
Question #1	1
1-270 Existing Road Cand from Spreadsteat	2
assestion #2	3
References	
SHA DESTEN TOPUTS	
Truck Factors for vonos Vegisles	37
ANSHTO SOCIASHEET	8
AASHTO ACAL ON PUT	10
Overtion #3	11
SHA Pavement + Geotech Design guide 4.07	12-13
AASHTO ACAL OUTOUT	14
AASHTO Parment Dessen Spice Sheet	15
50mmARY TILL	
91) MEDTAN SHOUDER QUISEDE SH	201726
5TA 970+00 TO STA 1037-00 STA 970+00 to	
STA 1698 +00 WB +0 STA 1720+00 STA 1050+00 +0	
1-1713+0054	
5-A 1742+00 40 STA (205+00ES	
02) SN = 9.04 Registed SN = 8.95 23 Socface Course HMA 18 Base Course AMA 18 GAB SUBBASE	
23 Sectace Course How A	
18 Base Course Amin	
16 GA 13 3 3 5 5 6 5 5 6 5 6 6 6 6 6 6 6 6 6 6	
43) 15 years	

	Subject <u>T-270</u>			of 15
RKK	Prepared By BAW Date 11/4/16 Checked By			1/8/16
that outside	shoulder segments have full depth par			,
	700 40 1050+00 00 +0 1106+00 NB shoulder			1
STA 1050+1	20 to 1106+00 NB shoulder	De		Ž.
		(2/17	M
nat median	Show Our segments have Pull apth		N. C.	J. J.
	0 40 1037+00			7 700
STA 1698+0	0 WB +0 1720+00		105	
STA 1742+	00 to 1805+00 EB			
	18/2+00 WB			

1 100-100			oulder Pavement Section	Reference	Full Depth Section	Shoulder Surface Course Thickness	Struct. Coef.	Shoulder Base Course Thickness	Struct. Coef.	Shoulder Subbase Thickness	Struct. Coef.	Structural Number
2 Surface, 125-Wind Rate 75-Wind R	172	As Built N	urface, " HMA Base, AB	As Built M401-511-372	11.5" Base,							
1078+00 1079	172	As Built f	rface, " HMA Base AB	As Built M401-511-372	11.5" Base,	2	0.38	11.5	0.36	9	0.11	5.89
1078+00 1067	172	As Built f	urface, " HMA Base, AB	As Built M401-511-372	11.5" Base,							
1156+00 1241+00 MD 124 to Game Preserve Rd and CD shoulders but not median 1241+00 1375+00 Rorth of Shady Grove Rd to MD 124 to Game Rd to MD 125 to Game Game Game Game Game Game Game Game	172	As Built f	Surface, MA Base, SAB	As Built M401-506-372	10" Base,	1.5	0.38	10	0.36	9	0.11	5.16
3	172	As Built f	Surface, MA Base,	As Built M401-506-372	10" Base,	1.5	0.38	10	0.36	9	0.11	5.16
COR: 3" Surface, 2" Surface, 3" \$ 0.38 2 0.36 15	1.272	As Bu	ırface, MA Base,	Ac Built M401 501 372	13" Base,	3	0.38	6	0.36	16	0.11	5.06
1241-00 1375	1-3/2	AS BUI	urface, ase,	AS Built W401-301-372	3" Surface, 8" Base,	3	0.38	2	0.36	15	0.11	3.51
Median and Outside: 6 Surface, 3' Fund Abase, 0' GAB CDR: 3' Surface, 5' GAB CDR: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 6' FiMA Base, 16' GAB Median and Outside: 3' Surface, 7' FiMA Base, 18' GAB Median and Outside: 18' Surface, 18' Surfa	20	As Built f		As Built M485-005-320		**					•	
CD: shoulders CD: 3" surface, 2" HMA base, 15" GAB Sase, 3 0.38 2 0.36 15	1.272	As Bu	ian and Outside: Irface, MA base,	Ar Buill M279 501 272	8.5" Base,	6	0.38	3	0.36	16	0.11	5.12
1535+00 1597	1-3/2	As bui	ırface, MA base,	As built W270-301-372	5" Base,	3	0.38	2	0.36	15	0.11	3.51
Count of C	1-372	As Bu	ırface, MA base,	As Ruilt M278,501,372	8.5" Base,	6	0.38	3	0.36	16	0.11	5.12
1589+00 1611+00 1651+00	1-3/2	A3 001	ırface, MA base,	AS Built (W278-301-372	8" Base,	3	0.38	2	0.36	15	0.11	3.51
8	72	As Built N	urface, MA Base,	As Built M401-505-372	13" Base,							
1651+00 1693+00 NB 1696+00 SB All except NB outside Surface, 6" HMA Base, 16" GAB Median: 2" Surface, 7" HMA base, 1713+00 EB 1720+00 East Spur: MD 187 to Y- East Spur: MD 18	72	As Built N	urface, MA Base, GAB	As Built M401-505-372	13" Base,	3	0.38	6	0.36	16	0.11	5.06
1698+00 WB 1713+00 EB 1713+00 EB East Spur: MD 187 to Y- East Spur: MD 187 to	72	As Built N	ırface, MA Base,	As Built M401-505-372	13" Base,							
calit Madina and Outsida:	72	As Built N	ırface, MA base,	As Built M401-508-372	7" Base,	2	0.38	7	0.36	18	0.11	5.26
Split Median and Outside:	72	As Built N	" HMA base,	As Built M401-508-372	Not shown in as builts	2	0.38	10.5	0.36	9	0.11	5.53
10 1742+00 1805+00 EB 1812+00 WB 187	72	As Built N	ırface, MA base, GAB	As Built M401-508-372	7" Base,	2	0.38	7	0.36	18	0.11	5.26
11 2000+00 2061+00 West Spur: Democracy Blvd to Y-split West Spur: Democracy Shoulder, outside shoulder varies	72	As Built N	ırface, HMA Base,	As Built M401-513-372	Not shown in as builts	2	0.38	10	0.36	15	0.11	6.01
12 2061+00 2105+00 West Spur: I-495 to Democracy Blvd No full depth shoulder As Built M485-017-320	20	As Built N		As Built M485-017-320				1				

& I think these were considered foll depth by planning because they had details w/ surface, base and subbase but when compared to the cxisting widered

roadway these areas have buer

SN'S

outside

= Full Depth Shoulder

= Full Depth Median

ortotale = Both Full Depth Shouldes and Median

Subject I - 270	Page 3 of 15
Russ Grement Answers	cm. No. 8 1605-001
Prepared By SAW Date IL/4/16 Checked By	
What is a normal pavement Section in this	area?
· Determine the regimed Structural Number (SN) be	2 Seel on
highest concentratee ADT	
· Highest Concentrated ADT determined from	
o Design inputs determined using SHA Pavement =	nd Geotech
Design guide and Table 6.10 (0.5-8)	
+ a improve unsvitable pavement subgrade to a	
of 3. The fore, a soil resident modulus of	
used for analysis	
• The Design Etc - F18's was determined using	an AASHTO
Pavenent Design sprendsheet (q.9)	Ade 470
1986 pavenent design program (P-10)	C 7///3/170
. The analysis cosulted in a required SN = 8.75	
The fill depth parement section below services to cequired SN (Note: Desired Structural Coefficient from and Geotechnical Design Guide 4.07, see p12+	m SHA Ravement
Z' Sustace HMA	
15" Base HMA	
18" GAB Subbase	
SN=9-04	

8 2 11/8/16 SMB 11/8/16

Statio	on Limits				204	5 ADT Vol	limae					20.4	10 ADT Vo	lumes			E.d.	sting # of lane	•	T n		<i>y</i>	Total 2015	Total 2040
		Location	0 11		% of			% of	Τ			% of	T		% of	1	Southboun				osed # of lane		ADT/# of	ADT/# of
From	То			bound	total	North		total	Total		bound	total		bound	total	Total	d	Northbound	Total	Southbound	Northbound	Total	lanes	lanes
100+00	190+00	I-70 to MD 85	55,	,475	0.49	57,	000	0.51	112,475	66	,550	0.49	68	,050	0.51	134,600	3	4	7	4	5	9	16068	14956
190+00	460+00	MD 85 to MD 80	39,	,900	0.46	46,	800	0.54	86,700	46	,550	0.46	54	,650	0.54	101,200	2	2	4	3	3	6	21675	16867
460+00	660+00	MD 80 to MD 109	41,	,050	0.47	45,	500	0.53	86,550	48,	,000	0.48	52	,975	0.52	100,975	2	2	4	3	3	6	21638	16829
660+00	860+00	MD 109 to MD 121	43,	,050	0.48	47,	200	0.52	90,250	50,	800	0.48	55	,375	0.52	106,175	2	2	4	3	3	6	22563	17696
860+00	1000+00	MD 121 to Father Hurley Blvd	48,	,750	0.48	51,	900	0.52	100,650	60,	,100	0.48	63	,975	0.52	124,075	3	3	6	4	4	8	16775	15509
1000+00	1055+00	Father Hurley Blvd to MD 118	56,	,075	0.47	62,	925	0.53	119,000	65,	900	0.47	74,	,125	0.53	140,025	4	4	8	5	5	10	14875	14003
1050+00	1095+00	MD 118 to Middlebrook Rd	61,	675	0.47	68,	875	0.53	130,550	72,	350	0.47	81,	,125	0.53	153,475	3	4	7	4	5	9	18650	17053
1095+00	1225+00	Middlebrook Rd to MD 124	77,	,500	0.48	83,	375	0.52	160,875		N/A	See	new seg	gments l	pelow		4	4	8	5	5	10	20109	N/A
1095+00	1190+00	Middlebrook Rd to Watkins Mill Rd								89,	350	0.48	97,	,075	0.52	186,425	4	4	8	5	5	10		18643
1190+00	1225+00	Watkins Mill Rd to MD-124			N/A	New Se	egment			74,	,100	0.43	Express	71,875	0.57	170,975	4	5	9	5	6	11		15543
1225+00	1260+00	MD 124 to MD 117	83,	,000	0.48	Express Local	69,000 19,775	0.52	171,775	92,	900	0.48	Express	71,875 29,550	0.52	194,325	4	Express 4 Local 2	10	5	Express 5 Local 3	13	17178	14948
1260+00	1340+00	MD 117 to I-370	100	,775	0.49	Express Local	67,075 38,400	0.51	206,250	111	,900	0.48	Express Local	73,575 45,750	0.52	231,225	5	Express 5 Local 2	12	6	Express 6 Local 3	15	17188	15415
1340+00	1390+00	I-370 to Shady Grove Rd	Express Local	59,575 46,475	0.51	Express Local	60,600 43,100	0.49	209,750	Express Local	64,450 52,400	0.50	Express	66,475 48,350	0.50	231,675	Express 4 Local 2	Express 5 Local 2	13	Express 5 Local 3	Express 6 Local 3	17	16135	13628
1390+00	1490+00	Shady Grove Rd to MD 28	Express	76,150	0.49	Express	72,575	0.51	219,000	Express	83,450	0.49	Express	81,425	0.51	240,575	Express 4	Express 4	12	Express 5	Express 5	16	18250	15036
1490+00	1540+00	MD 28 to MD 189	Local Express	31,125 72,400	0.50	Local Express	39,150 68,625	0.50	247,200	Local Express	33,450 79,250	0.49	Local Express	42,250 76,875	0.51	271,175	Express 4	Local 2 Express 4	12		Local 3 Express 5	16	20600	16948
			Local	50,050	0.00	Local	56,125	0.00	217,200	Local	54,500	0.10	Local	60,550	0.01	271,170	Local 2	Local 2	12	Local 3	Local 3	10	20000	10548
1540+00	1615+00	MD 189 to Montrose Rd	Express	72,400	0.49	Express	81,550	0.51	249,350	Express	79,250	0.49	Express	91,175	0.51	273,475	Express 4	Express 4	12	Express 5	Express 5	16	20779	17092
			Local	50,500		Local	44,900			Local	55,000		Local	48,050			Local 2	Local 2		Local 3	Local 3			
1615+00	1690+00	Montrose Rd to Y- split	121	,925	0.48	129	,625	0.52	251,550	132	,600	0.48	142	,425	0.52	275,025	6	6	12	7	7	14	20963	19645
1690+00	1750+00	East Spur: Y-split to MD 187		325	0.50	58,4	400	0.50	117,725	64,	350	0.50	64,	075	0.50	128,425	3	3	6	4	4	8	19621	16053
1750+00	1830+00	East Spur: MD 187 to I-495	54,	725	0.49	56,	700	0.51	111,425	58,	850	0.49	62,	425	0.51	121,275	3	3	6	4	4	8	18571	15159
2000+00	2055+00	West Spur: Y-split to Democracy Blvd	62,	600	0.47	71,2	225	0.53	133,825	68,	250	0.47	78,	350	0.53	146,600	4	4	8	5	5	10	16728	14660
2055+00	2095+00	West Spur: Democracy Blvd to I-495	73,	325	0.52	68,9	925	0.48	142,250	79,	900	0.51	75,	600	0.49	155,500	3	3	6	4	4	8	23708	19438

* Used for design for grestion # 2 New Segment Highest Total ADT per # of lanes * Used to determine growth rate for question #3

Lowest Total ADT per # of lanes

Page D-8

of the existing roadway, both structurally and functionally. New pavement design does not take into account any of the existing conditions of the pavement other than geotechnical and drainage conditions because it is a new design.

It is the design engineer's responsibility to use both design processes concurrently where needed and take care to monitor that both designs are agreeable with one another for design and for construction related reasons.

9.12.03.01 Preliminary Steps

- Step 1. Conduct the steps as detailed in Preliminary Procedures.
- Step 2. Conduct the steps as detailed in <u>Testing & Data Collection</u>.
- Step 3. Conduct the steps as detailed in <u>Analysis Procedures</u>.

9.12.03.02 *Design Inputs*

Click to go to Concrete Overlay Design

Calculate the required structural capacity (SC_f) for future traffic for each new pavement section. SC_f is obtained from Figures 3.1 and 3.7 and the nomograph equations on page II-32 and II-45 in the "AASHTO Guide for Design of Pavement Structures", for flexible and rigid pavement sections respectively. The following design inputs are required in order to use the nomograph or equation on pages II-32 and II-45:

- Initial Serviceability: 4.2
- Terminal Serviceability:

Interstates	3.0
Other Expressways and Principal Arterials	2.9
Minor Arterials	2.8
Collectors and Locals	2.6

Reliability:

Interstates	95
Other Expressways and Principal Arterials	90
Minor Arterials	85
Collectors and Locals	80

- Standard Deviation: 0.49 for Flexible, 0.39 for Rigid
- Design ESALs: Refer to <u>Traffic Analysis</u>.
- Design Subgrade Resilient Modulus (M_r) Obtained from geotechnical soils investigation for new pavement designs. <u>Materials and Typical Design Properties</u> includes default values for various types of subgrade materials.
- Modulus of Subgrade Reaction (k) Obtained from geotechnical soils investigation for new pavement designs. <u>Materials and Typical Design Properties</u> includes default values for various types of subgrade materials. The modulus of subgrade reaction can

Functional			RSL = 50		
Class	IRI	SCI	FCI	Rut	FN
1	45	100	100	0.07	55
2	50	100	100	0.07	50
6	55	100	100	0.07	50
7	60	100	100	0.07	50
8	70	100	100	0.07	50
9	70	100	100	0.07	45
11	45	100	100	0.07	55
12	50	100	100	0.07	50
14	55	100	100	0.07	50
16	60	100	100	0.07	50
17	70	100	100	0.07	50
19	70	100	100	0.07	45

To determine the RSL for other values, interpolate between the values given in the preceding charts.

Note: the procedure to determine the actual fix life (in calendar years, from the initial to the final performance targets), using a combination of MEPDG and performance data is detailed in Pavement Preservation & Rehabilitation Design. This value will be used to compare against the LMY targets required for the Districts for Fund 77 projects.

6.01.01.07 Traffic Lane Distribution

Click to go to Traffic Analysis

Use the following table to select the appropriate traffic lane distribution factor based on the number lanes in each (design) direction. Refer to <u>Traffic Analysis Data Collection</u>.

Number of Lanes in Design Direction	Range of Percent of ADTT in Design Lane – New Construction or Right-Side Widening	Desired Percent of ADTT in Design Lane – New Construction or Right-Side Widening			
1	100	100			
2	80 – 100	90			
3	60 – 80	80			
4	50 – 75	70			
5+	40 – 70	60			

Number of Lanes in Design Direction	Range of Percent of ADTT in Design Lane – Left Side Widening	Desired Percent of ADTT in Design Lane – Left Side Widening			
2	30 – 50	40			
3	10 – 30	20			
4+	5 – 15	10			

6.01.02 Shoulder Design

Click to go to New Pavement Design

The design inputs required for shoulder pavement design vary depending on the existing conditions at the project site, the functional classification of the roadway, and the pavement type. These design inputs follow the same guidelines as those developed by AASHTO, but modified for local conditions. The design inputs are identical to those for new design with the exception of the truck adjustment factor.

6.01.02.01 Truck Adjustment Factor (Shoulder)

The design ADTT for the pavement design of the shoulder will be based on a percentage of the design ADTT for the mainline roadway. Use the following table to select the appropriate ADTT adjustment factor based on the functional class of the roadway:

Functional Class	Percent of Design ADTT			
Interstate	100%			
Freeways and Expressways	100%			
Principal Arterial – Other	100%			
Minor Arterial	10%			
Major Collector	10%			
Minor Collector	10%			
Collector	10%			
Local	10%			

For pavement design purposes, any auxiliary, acceleration, deceleration and ramp lanes that are directly adjacent to mainline pavement shall be considered to be part of the mainline pavement until those lanes split off at the gore area.

6.01.03 Temporary/Detour Road Design

The design inputs required for temporary / detour road pavements vary depending on the existing conditions at the project site, the functional classification of the roadway, the pavement type, and whether the road will be removed or left in service. These design inputs follow the same guidelines as those developed by AASHTO, but modified for local conditions.

TAI

Sing U 30 70 80

12 16 Tanc Ui 604 12 .18. 24, 30, 32, 32,

34, **ESAI** Truci

Note.

TABLE 6.10 DISTRIBUTION OF TRUCK FACTORS FOR DIFFERENT CLASSES OF HIGHWAYS AND VEHICLES IN THE UNITED STATES*

306

						2	TIME THEIR					
			Rural systems	ystems					Urban	Urban systems		
	ار ب	ē	;	Colle	Collectors							
Vehicle type	hterstate	Other	Minor	Major	Minor	Range	Interstate	Other Freeways	Other Principal	Minor	Collectors	Range
Single-unit trucks	21.73											
2-axle, 4-tire	0.003	0.003	0.003	0.017	0.003	0.003-0.017	0.002	0.015	0.002	0.006	ı	0.006-0.0
2-axlc, 6-tire	0.21	0.25	0.28	0.41	0.19	0.19-0.41	0.17	0.13	0.24	0.23	0.13	0.13-0.2
3-axle or more	19.0	98.0	90.1	1.26	0.45	0.45 - 1.26	0.61	0.74	1.02	97.0	0.72	0.61-1.02
All single units	90.0	0.08	0.08	0.12	0.03	0.03-0.12	0.05	90.0	60.0	0.04	0.16	0.04-0.16
Tractor semitrailers												
4-axle or less	0.62	0.92	0.62	0.37	16.0	0.37-0.91	0.98	0.48	0.71	0.46	0.40	0.40-0.98
5-axlcb	1.09	1.25	1.05	1.67	1.11	1.05-1.67	1.07	1.17	0.97	0.77	0.63	0.63-1.17
6-axle or moreb	1.23	1.54	ਜੂ-	2.21	1.35	1.04-2.21	1.05	1.19	06.0	0.64	1	0.64-1.19
All multiple units	1.04	1.21	0.97	1.52	1.08	0.97-1.52	1.05	96-0	0.91	0.67	0.53	0.53-1.05
All trucks	0.52	0.38	0.21	0.30	0.12	0.12-0.52	0.39	0.23	0.21	0.07	0.24	0.07-0.39

Compiled from data supplied by the Highway Statistics Division, U.S. Federal Highway Administration.
 Including full-trailer combinations in some states.

Source. After AI (1991).

The Aspha 1986) recommen total growth faci

Sec. 6.4 Traff

Page D-12

AASHTO Pavement Design

Assumes CBR = 3

Project: I-270

Based on ADT

Date: 11/7/2016

Revised based on SHA comments

Constr. Year ADT	142,2 <mark>50</mark>	Design Period	25 Years
Design ADT	155,5 <mark>0</mark> 0	Directional Distribution	52 48
Est. EAL for Autos	0.06	Lane Distribution -Autos	60 / 40
Est. EAL for Trucks	0.52	Lane Distribution -Trucks	100 / 0
		Truck Traffic	8%

Determine Growth Rate, r, from Traffic Data

Current ADT (1+r) Design Period Design ADT =

r = 0.0036

 $\frac{(1+r)^{\text{Design Period}}}{r} - 1$ Growth Factor =

GF = 26.1

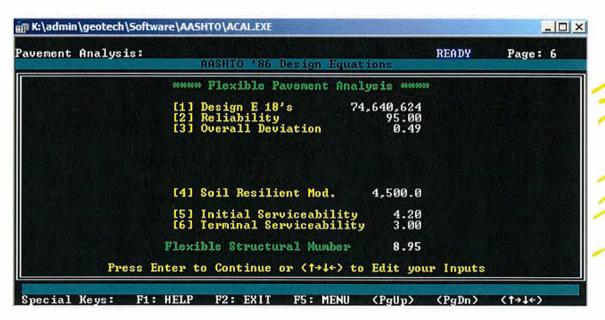
Calculate Design EAL

Design Traf	fic =	Current ADT	* Directional	Distribution	* Lane Distrib	oution * Gro	wth Factor
Traffic	Current	Directional	Lane	Growth	Design	EAL	Design
Type	ADT	Distribution	Distribution	Factor	Traffic	Factor	Daily EAL
Autos	130,870	0.52	0.6	26.1	1065721	0.06	63943
Trucks	11380	0.52	1	26.1	154452	0.91	140552

204,495

Design EAL - E18's =

Design Daily EAL X 365 =


74,640,622

Using AASHTO 1986 Pavement Design Program, develop flexible structural number required: (See p.10)

Design E 18's 74,640,622 Reliablitity (%) 95 0.49 **Overall Deviation** Resilient Modulus (psi) 4500 **=**CBR X 1500 **Initial Service** 4.2 Final Service 3

Reg'd Structural Number = 8.95

BW 11/7/16 SAB 11/7/16

Prepared By BAW Date 11/9/16 Checked By SNB Date 4/7/16

How long will the custent shoulder last se used	2 a s a
e Previously determined design inputs were used for analysis (p. 5-8)	
· The lowest shoulder structural mumber was determined with SAA (
· The design inputs and structural number were in	
the AASHTO 1986 pavement design program and yell	
· Agrowth rate was determined by using 2015 on ADT data (251550) 25 -1] · Anexel spread steet was areated in order to move	2 2040
design persod (which in this case is equal to fin	ne until
terminal servicability of 3 is reached) and return 1 Through trailend error with the spread sheet, a a	
1: Fe of 15 years was blancines - The should e use w/o modification	
SAY 10-YEARS LESS THAN ENTENDED DE	SW LIFE

= Used to determine structura (number for question #3

DESIGN PROPERTIES FOR PAVEMENT MATERIALS – AASHTO 1993 4.07

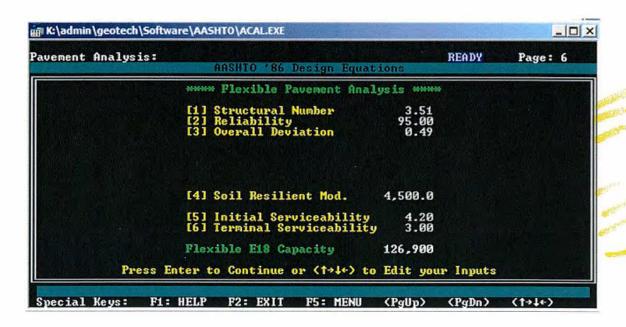
Click to go to <u>Flexible Pavement</u> for New Design – AASHTO 1993. Click to go to <u>Overlay Design – Existing Flexible Pavement</u> – AASHTO 1993

The following table presents numerous design parameters for materials commonly used by MDSHA.

Drainage Coefficient	ΑN	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	*	1.0
Structural Coefficient for Deteriorated Material	Α×	N/A	N/A	0.38	0.38	0.38	0.38	0.38	0.38	0.36	0.36	0.34	0.20	0.20	0.15	0.20
Structural Coefficient Range After Deterioration	¥	ΝA	N/A	0.3 - 0.44	0.3 – 0.44	0.3 - 0.44	0.3 - 0.44	0.3 - 0.44	0.3 - 0.44	0.3 – 0.40	0.3 – 0.40	0.3 - 0.38	0.10 - 0.25	0.10 - 0.25	0.10 - 0.20	0.15 - 0.25
Max. Lift Thickness	14.0"	14.0"	14.0"	1.0"	1.5"	2.0"	2.0"	3.0"	2.5"	4.0"	5.0"	.0'9	6.0"	8.0″	8.0"	.0.9
Desired Lift Thickness	N/A	N/A	N/A	0.75"	1.5"	1.5"	2.0"	2.0"	2.5"	3.0"	4.0"	5.0"	6.0"	.0'9	.0'9	.0.9
Min. Lift Thickness	6.0″	.0'9	.0'9	0.5"	1.0"	1.0"	1.5"	1.5"	2.0"	2.0"	3.0"	4.0"	4.0"	3.0"	3.0"	4.0"
Desired Structural fraicifieo	Ş	0.25	0.20	0.44	0.44	0.44	0.44	0.44	0.44	0.40	0.40	0.38	0.20	0.20	0.15	0.20
Structural Coefficient Range for New Material	N/A	0.20 - 0.35	0.15 - 0.30	0.44	0.44	0.44	0.44	0.44	0.44	0.40	0.40	0.38	0.10 - 0.25	0.10 - 0.25	0.10 - 0.20	0.15 - 0.25
əsU ngisəO	Surface	Base	Base	Surface	Surface	Surface, W/L	Surface	Surface	Surface	Base, Surface	Base	Base	Base	Base	Base	Base
IsinətsM	PCC	Break/Crack and Seat PCC	Rubbilized PCC	HMA Superpave 4.75 mm	HMA Superpave 9.5 mm Gap Graded	HMA Superpave 9.5 mm	HMA Superpave 12.5 mm Gap Graded	HMA Superpave 12.5 mm	HMA Superpave 19.0 mm Gap Graded	HMA Superpave 19.0 mm	HMA Superpave 25.0 mm	HMA Superpave 37.5 mm	Asphalt Treated Aggregate Base	Penetration Macadam	Macadam	Soil Cement Base Course

Page D-16

Drainage freicient	1.0	*	*	*	*	*	*	*	*
Structural Coefficient for Deteriorated Material	90.0	0.11	0.10	80.0	0.08	0.04	0.05	90.0	0.07
Structural Coefficient Range After Deterioration	0.05 - 0.07	0.08 - 0.14	0.06 - 0.12	0.05 - 0.10	0.05 - 0.10	0.03 - 0.06	0.04 - 0.08	0.04 - 0.08	0.05 - 0.09
Max. Lift Thickness	8.0"	.0.9	6.0"	12.0"	.0.9	8.0"	8.0"	8.0"	8.0"
Desired Lift seendoidT	.0.9	.0'9	.0'9	.0'9	.0.9	.0'9	.0'9	.0'9	.0'9
Min. Lift Thickness	4.0"	3.0"	3.0"	3.0"	3.0"	3.0"	3.0"	3.0"	3.0"
Desired Structural Coefficient	90.0	0.12	0.10	80.0	0.08	0.04	0.05	90.0	0.07
Structural Coefficient Range for New Material	0.05 - 0.07	0.08 - 0.14	0.06 - 0.12	0.05 - 0.10	0.05 - 0.10	0.03 - 0.06	0.04 - 0.08	0.04 - 0.08	0.05 - 0.09
əsU ngisəO	Subbase	Base	Base	Base	Base	Subbase	Subbase	Subbase	Subbase
Material	Cement Modified Subgrade*	Graded Aggregate Base, GAB	Bank Run Gravel	GSS w/ GAB	Soil Contaminated Aggregate Base	Common Borrow	Select Borrow	Capping Borrow	Modified Borrow


the unbound layer is affected by the thickness of the overlying material and degree of saturation of the base layer. This section further describes this relationship between degree of saturation and the effect on structural coefficient. * MDSHA has adopted an approach to adjust the structural coefficient of unbound base rather than introduce a drainage coefficient. The structural coefficient of

= Used for design for guestion #2

- Yell to determine structura (number for gustion #5

4-23

BW 11/7/16 SAB 11/7/16

8w 11/7/16

AASHTO Pavement Design

Assumes CBR = 3 Based on ADT

Constr. Year ADT 142,250 Design ADT 150,487 Est. EAL for Autos 0.06 Est. EAL for Trucks 0.52 Project: I-270

Design: Design Period analysis

Date: 11/7/2016

Revised based on SHA comments

Design Period **Directional Distribution** Lane Distribution -Autos Lane Distribution -Trucks Truck Traffic

15.773	Years	
52	48	THE REAL PROPERTY.
60	/ 40	100
100	10	-
8%	-	

Determine Growth Rate, r, from Traffic Data

Current ADT (1 + r) Design Period Design ADT =

0.003575

Growth Factor =

GF = 16.19676

Calculate Design EAL

Design Traffic = Current ADT * Directional Distribution * Lane Distribution * Growth Factor

Traffic	Current	Directional	Lane	Growth	Design	EAL	Design
Type	ADT	Distribution	Distribution	Factor	Traffic	Factor	Daily EAL
Autos	130,870	0.52	0.6	16.2	661337	0.06	39680
Trucks	11380	0.52	1	16.2	95846	0.91	8 7 220

126,900

Submitted to:

Appendix E

Model Calibration Memorandum

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

PURPOSE

The purpose of this memorandum is to provide supporting information for developing the VISSIM traffic models for 2015 and 2040 build design years related to the I-270 Innovative Congestion Management Design-Build proposal, including the necessary revisions to the 2015 existing and 2040 no-build base models. The memorandum consists of the following four (4) parts:

- The model parameters for the proposed VISSIM improvement concepts;
- Discussion of the truck weigh stations south of MD 109, which were not modeled in the VISSIM models provided by SHA, and the assumptions used to model the virtual weigh station improvement;
- Revisions for the 2040 No-Build base models that SHA provided to fix northbound discrepancies at Watkins
 Mill Road and match the geometry shown in the design plans provided as part of the RFP files; and
- Methodologies and assumptions to develop Ramp Metering Control.

Note that the Active Traffic Management improvement was not modeled in the VISSIM build files, so the mobility benefits could potentially be greater than those discussed in Section 2 of the proposal.

MODEL PARAMETERS

In developing the proposed improvement concepts, calibration parameters, such as vehicle inputs, vehicle routes, driving behavior, link behavior type, lane change distance, speed distributions and decisions were not modified from the SHA-provided VISSIM models. If any proposed design changed a segment within the VISSIM model, engineering judgement was used to incorporate the proper calibration adjustment. The detailed VISSIM model parameters and assumptions are listed below in Table E-1.

Table E-1. VISSIM Model Parameters and Assumptions

Scenarios	Existing and 2040 No Build AM	Existing and 2040 No Build PM	Alternative AM	Alternative PM	
VISSIM Version		Version 7.0	00-13 32-bit		
Simulation Resolution		8 time ste	ps/second		
Seeding Time (seconds)	0 – 5400	0 – 1800	0 – 5400	0 – 1800	
Analysis Period (seconds)	5400 – 9000	1800 – 5400	5400 – 9000	1800 – 5400	
Recording Time		3600 s	econds		
Number of Simulation Runs			5		
Random Seeds	Starting seed 8, with an increment of 27				
Driver Behavior	No changes to the VISS	SIM calibrated model	If proposed design char engineering judgment to adjustment	-	
Signal Controller Frequency			1		
Vehicle Input		Exact '	Volume		

TRUCK WEIGH STATIONS

In reviewing the I-270 VISSIM files provided by SHA, it was observed that the models did not account for the utilization of the truck weigh stations located approximately one mile to the south of MD 109 in both the northbound and southbound directions. The AM and PM simulations for both 2015 and 2040 revealed that all trucks by-passed the truck weigh station.

While the existing and no-build concepts were not modified from what was provided by SHA, the 2015 and 2040 build concepts were analyzed with all trucks using a virtual weigh station along northbound and southbound I-270 in the vicinity of the existing weigh station. The virtual weigh station was modeled in VISSIM under the assumption that 10% of all trucks would be flagged due to a violation and subject to exit to the weigh station for inspection. Trucks exiting the weigh station were modeled to slow down to 10 mph before merging back onto northbound and southbound I-270.

Since the no-build models did not incorporate the truck weigh station, the quantitative benefits of the virtual weigh station improvement could not be documented as part of the proposal.

WATKINS MILL ROAD INTERCHANGE

After reviewing the 2040 no-build base models that SHA provided, coding discrepancies were found on the northbound local lanes at the Watkins Mill Road interchange. The models did not match the interchange geometry shown in the design plans that were provided as part of the I-270 RFP package. This discrepancy would significantly impact the model results for both 2040 no-build and 2040 build. Both 2040 no-build and proposed models were updated to be consistent with the geometry in the design plans from the RFP between MD 124 and Middlebrook Rd. The revisions to the northbound local lanes at Watkins Mill Road interchange are listed in the Table E-2.

Table E-2. 2040 No-Build VISSIM Base Model Revisions at Watkins Mill Road Interchange

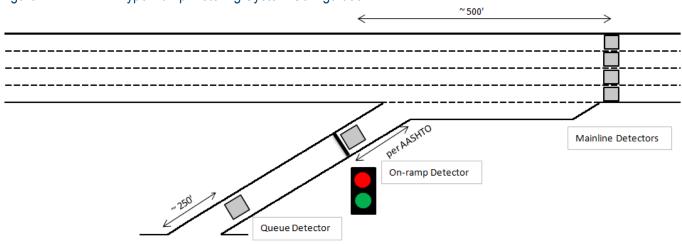
	Original 2040 No Build Base Models	Revised 2040 No Build Base Models
Revision 1	2-Lanes on northbound local lane between MD 124 and Watkins Mill Rd	1-Lane on northbound local lane between MD 124 and Watkins Mill Rd with acceleration and deceleration lanes for on- and off- ramps
Revision 2	Northbound local lane merges with on-ramp from Watkins Mill Road, then merges to northbound I-270 mainline	Northbound local lane merges to I-270 mainline just south of the Watkins Mill Road bridge

ADAPTIVE RAMP METERING

Ramp meters are traffic control signals placed at entrances to freeways to address four main operational considerations:

- Reduce freeway demand
- 2. Break up vehicle platoons that form from upstream ramp terminal intersections
- 3. Control the number of vehicles that are allowed on the facility
- 4. Increase the throughput on the main line by reducing the frequency and length of periods of flow breakdown

The first criterion is to provide a disincentive for vehicles making shorter trips from using the freeway. While this is an important element when considering adaptive ramp metering, this component cannot be adequately incorporated into the VISSIM model. The latter three criteria are to ensure the total traffic entering the freeway remains below the bottleneck capacity on the freeway for as long as possible, and can be assessed through the modeling effort. When ramp meters are installed properly, they have the potential to improve freeway speeds, provide safer operations, decrease fuel and vehicle emissions, and improve vehicle throughput. More discussion regarding adaptive ramp metering may be found in Sections 2, 3, and 4 of the proposal.


Proposed Algorithm:

The ALINEA algorithm was used to implement adaptive ramp metering in the VISSIM build files. ALINEA is a localized, traffic responsive ramp metering strategy. It is shown to be simple, efficient, effective, and easily implemented. Its primary objective is to maximize mainline throughput by maintaining occupancy downstream of the entrance ramp at a level lower than the flow breakdown level. Metering rates are calculated using a closed-loop traffic responsive control where these rates are used to maintain the desired mainline occupancy. ALINEA can also be modified to allow for an excessive queue override. This control may be required to increase the metering rate to discharge excessive vehicle queues on the ramp to minimize interference with arterial traffic operations.

In general, the ALINEA ramp metering system would require three sets of detectors. First, downstream mainline detectors are used to measure mainline occupancy rates at the point of flow breakdown downstream of the entrance ramp. On-ramp detection is used to determine vehicle throughput while queue detectors are used to assess excessive queue lengths.

Figure E-1 shows a typical layout of the ALINEA type ramp metering system.

Figure E-1. ALINEA Type Ramp Metering System Configuration

For ramps operating under ALINEA control logic, its metering rate during interval t is calculated as follows:

$$r(t) = r(t - 1) + K_r[O - O_{out}(t)]$$

where:

r(t) = Metering rate for time period t

O = Desired occupancy of the downstream detector (Generally between 18 to 31 percent)

 $O_{out}(t)$ = Measured occupancy at time t

r(t-1) = Metering rate in the previous time period

 K_r = Regulatory constant (Suggested value of 70 - this figure has been used in the majority of modeling studies and field applications, however, it can be adjusted depending on the responsiveness required.)

Implementation in VISSIM:

The following section describes the geometric, algorithmic, and operational assumptions that were used to implement ramp metering in the VISSIM build models.

Design-Based Assumptions:

Ramp Meter Signal Placement

The ability of metered vehicles to smoothly merge with freeway traffic requires adequate acceleration distance. AASHTO's "A Policy on Geometric Design of Highways and Streets" Tables 10-3 and 10-4 provide guidance on required ramp acceleration lengths. The ramp meter signal heads were located in the VISSIM build models using the minimum length required for a vehicle to travel from a stopped condition to accelerate to highway speeds. Based on the location of the ramp meter signal, the available storage for each ramp was calculated.

Excessive Queue Detection

Research indicates that the excessive queue detector should be installed at least 250 feet downstream of an intersection and that the location of the detector should be revised if the excessive queue detector is frequently activated. During the VISSIM build simulations, the average queue lengths were contained on the ramps. The excessive queue detectors were not routinely activated, so the locations were not revised.

ALINEA-Based Assumptions:

Based on previous research, there are four parameters that should be calibrated if ALINEA is implemented in the field:

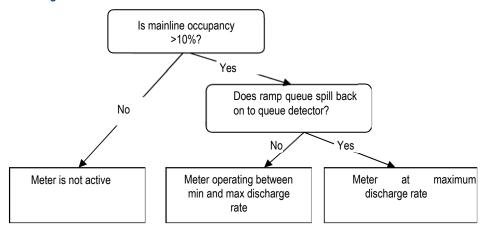
- Desired Occupancy Threshold (O)
- K_r Regulatory Constant
- Downstream Detector Location
- Time to update cycle length

For the purpose of the VISSIM modeling, the following values were assumed based on documented research and best practices:

- O was set at 2% below the downstream critical occupancy at bottlenecklocations
- K_r = 70 vehicles per hour
- Downstream detector location = slightly upstream of the point of flow breakdown (approximately 500 feet)
- Time interval (time to update ramp metering rates) = 30 seconds

Ramp Meter Rates and Queue Occupancy Assumptions:

The following discharge and occupancy rates were assumed for the VISSIM analysis:


- Minimum discharge rate: Varying between 180 veh/hr/ln 500 veh/hr/ln (adjusted based on queues and ramp demand)
- Maximum discharge rate: Varying between 900 veh/hr/ln 1050 veh/hr/ln (adjusted based on queues and ramp demand)
- Minimum mainline occupancy for ramp metering activation: 10%

In addition to the parameters described above, the excessive queue detectors were constantly monitored during the simulation period. For the purpose of this analysis, if the excessive queue detector was occupied for 80 percent of the time during a given time interval (30 seconds), the ramp meter was switched to the maximum discharge rate until the queue was flushed and queuing was eliminated on the ramp. This was to avoid interfering with arterial operations.

Figure E-2 shows a flowchart of potential ramp metering rates based on mainline and ramp conditions.

Figure E-2. Ramp Metering Rate Flowchart

Submitted to:

Appendix F

Comprehensive Traffic Model Results

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

Submitted to:

Appendix F

1 - VISSIM Traffic Models

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

Appendix F: Comprehensive Traffic Model Results

The purpose of this appendix is to present simulation results from the VISSIM traffic models. The following sections are included:

- VISSIM Traffic Models
- Travel Time Figures
- Ramp Metering Queue Tables
- Throughput vs. Demand Graphics
- Travel Speed Heat Maps

This appendix does not include the Concept Evaluation files, which are presented in Appendix G.

1. VISSIM TRAFFIC MODELS

The following scenarios were modeled in VISSIM:

- Existing AM No Build files provided by SHA
- Existing PM No Build files provided by SHA
- Existing AM Build roadway improvements, adaptive ramp metering, and virtual weigh stations modeled
- Existing PM Build roadway improvements, adaptive ramp metering, and virtual weigh stations modeled
- 2040 AM No Build files provided by SHA, slightly modified to properly model the Watkins Mill interchange (see Appendix E for more details)
- 2040 PM No Build files provided by SHA, slightly modified to properly model the Watkins Mill interchange (see Appendix E for more details)
- 2040 AM Build roadway improvements, adaptive ramp metering, and virtual weigh stations modeled
- 2040 PM Build roadway improvements, adaptive ramp metering, and virtual weigh stations modeled

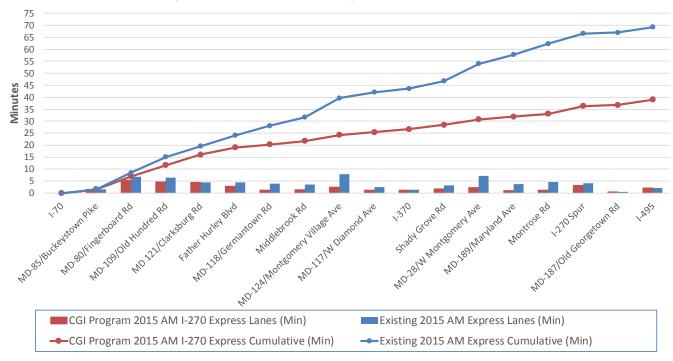
The VISSIM files for each scenario are included electronically. Refer to Appendix E for a discussion on how the improvements were modeled in VISSIM. Note that ATM improvements were not modeled in VISSIM.

Appendix F

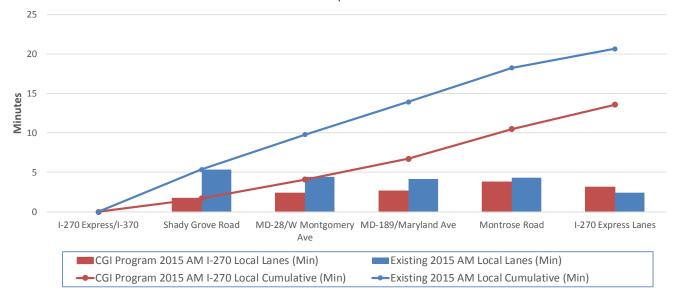
2 - Travel Time Tables

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

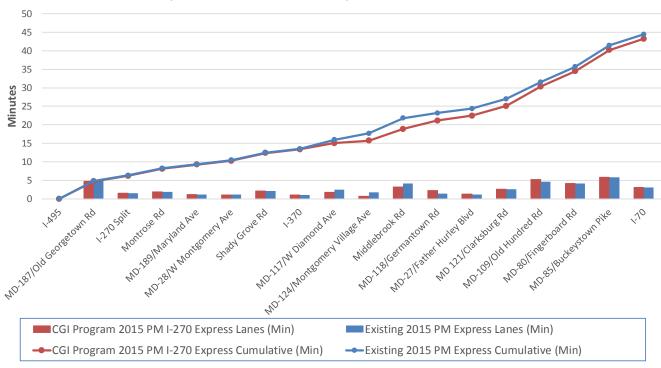


Appendix F: Comprehensive Traffic Model Results

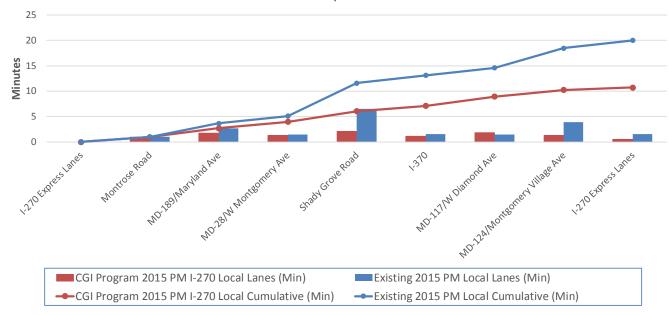

2. TRAVEL TIME FIGURES

The following figures compare travel time results between build (CGI Program) and no-build (existing) scenarios for both 2015 and 2040. The peak direction (i.e., southbound in the AM, northbound in the PM) travel time results are compared for each segment and cumulatively.

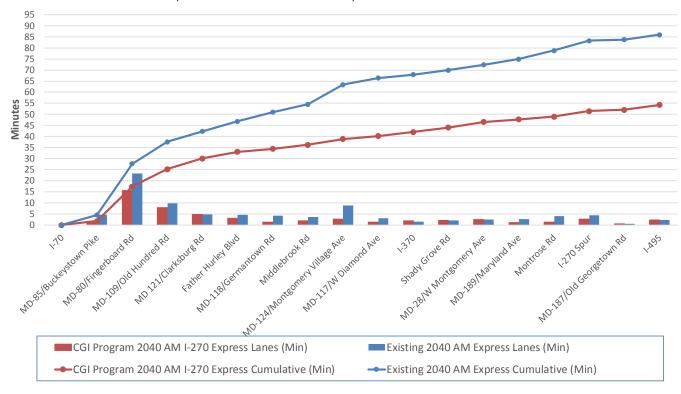
2015 Southbound AM Peak Express Lanes Travel Time Comparison



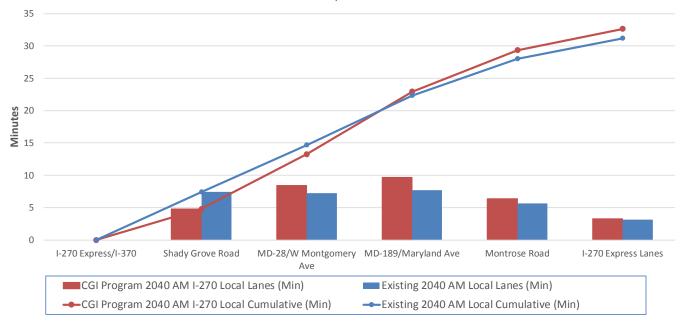
2015 Southbound AM Peak Local Lanes Travel Time Comparison



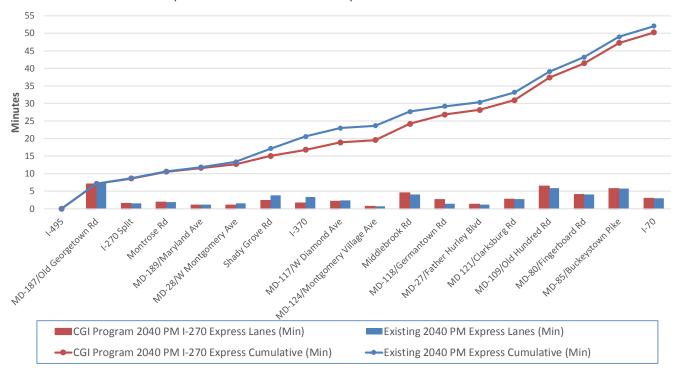
2015 Northbound PM Peak Express Lanes Travel Time Comparison



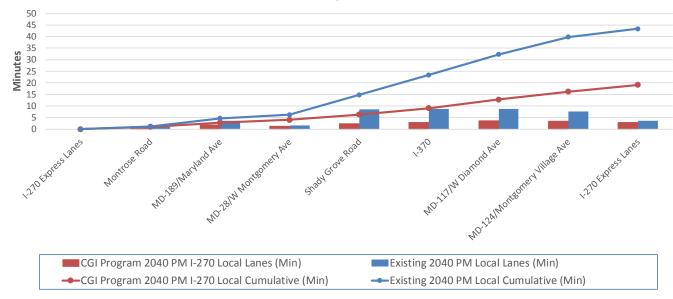
2015 Northbound PM Peak Local Lanes Travel Time Comparison



2040 Southbound AM Peak Express Lanes Travel Time Comparison



2040 Southbound AM Peak Local Lanes Travel Time Comparison



2040 Northbound PM Peak Express Lanes Travel Time Comparison

2040 Northbound PM Peak Local Lanes Travel Time Comparison

Appendix F

3 - Ramp Metering Queue Tables

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

3. RAMP METERING QUEUE TABLES

Table F-1 shows the 2015 AM peak average queue length of ramps with adaptive ramp metering compared to the storage length of each ramp. The queues are contained along the ramps and do not spill back onto the arterials.

Table F-1. Ramp Meter Queue Table

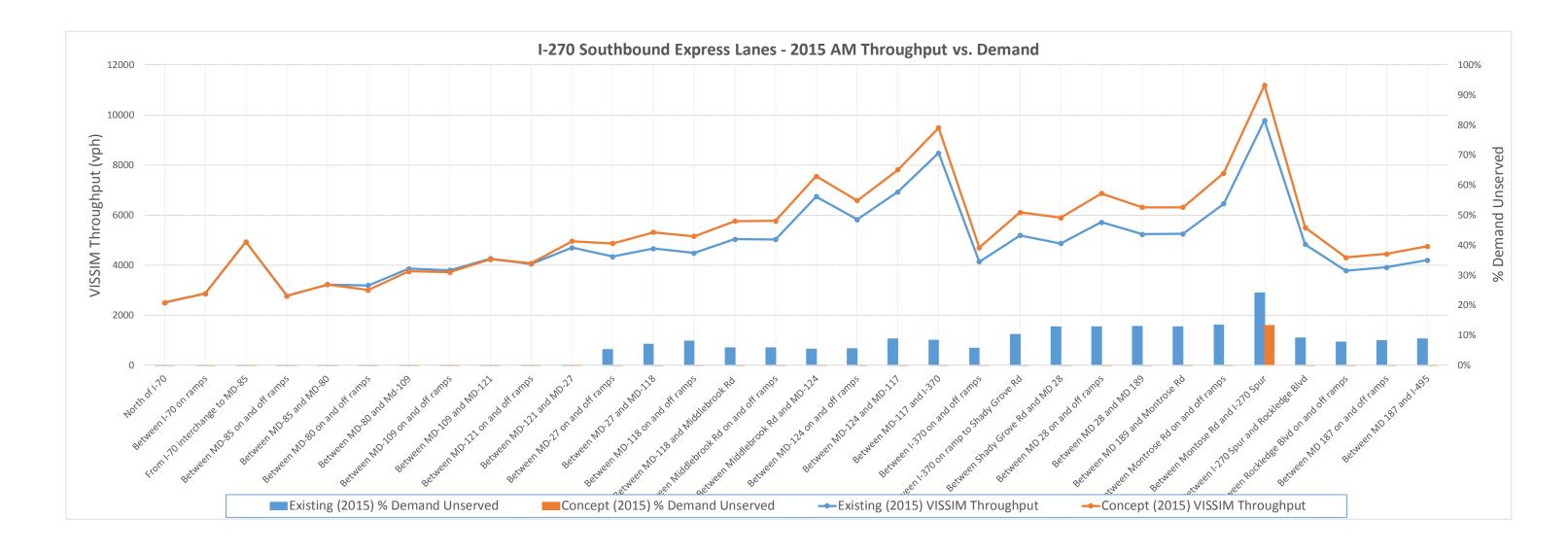
	RAMP METER LOCATION	STORAGE LENGTH (FT)	2015 AM PEAK AVERAGE QUEUE (FT)
	On ramp from Montrose East	1,500	1,375
	On ramp from Montrose West	900	637
	On ramp from MD 189	1,100	1,030
•	On ramp from MD 28 East	1,500	1,249
↑ =	On ramp from MD 28 West	600	343
rave	On ramp from Shady Grove North	800	479
of T	On ramp from Shady Grove South	1,200	1,037
ion	I-370 Eastbound	1,650	0
I-270 Southbound Direction of Travel	I-370 Westbound	1,900	53
	On ramp from MD 117	1,150	824
uno	On ramp from Montgomery Village Avenue	600	86
ithb	On ramp from Middlebrook Road	1,500	938
Sou	On ramp from MD 118 North	1,500	316
270	On ramp from MD 118 South	1,400	43
<u> </u>	On ramp from MD 27 East	1,500	237
Т	On ramp from MD 27 West	1,500	1,416
	On ramp from MD 121	900	308
	On ramp from MD 109	800	101
	On ramp from MD 80	650	184

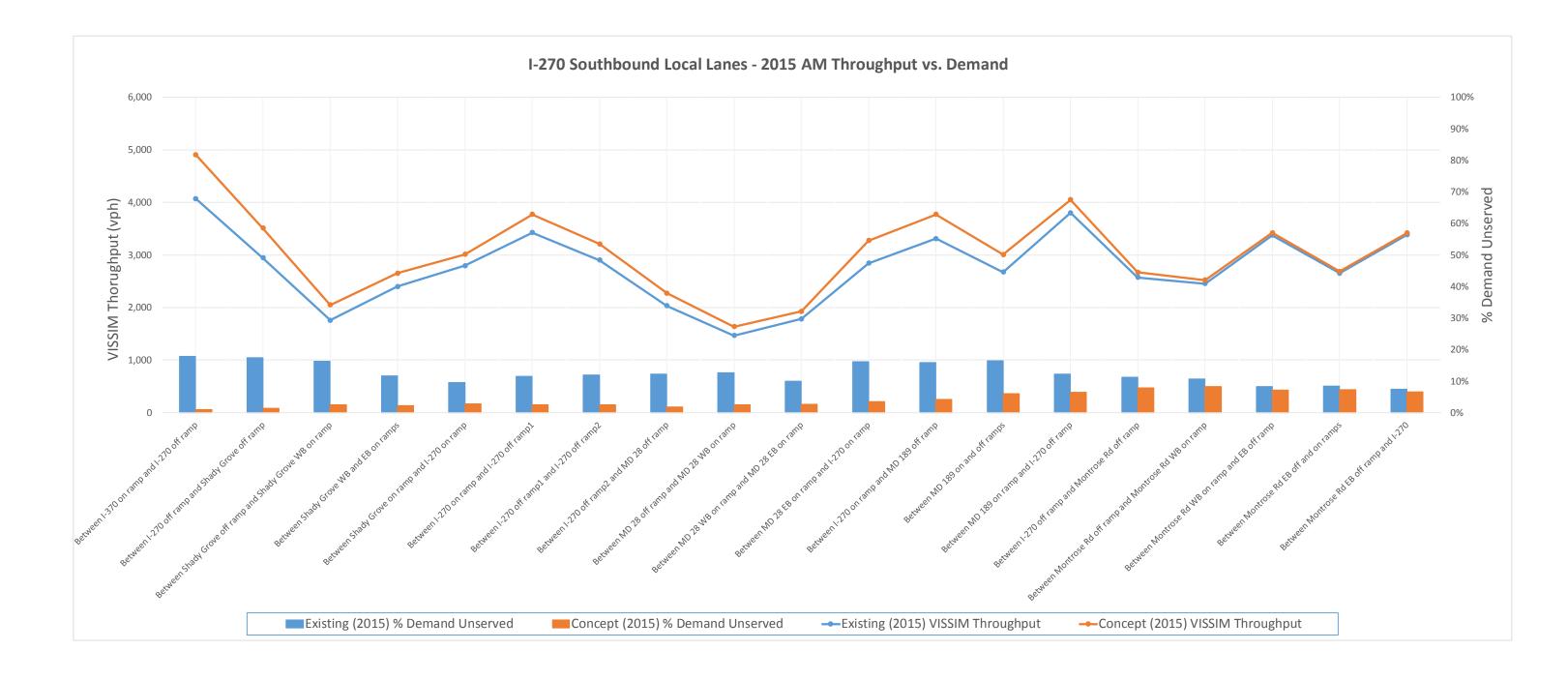
Appendix F

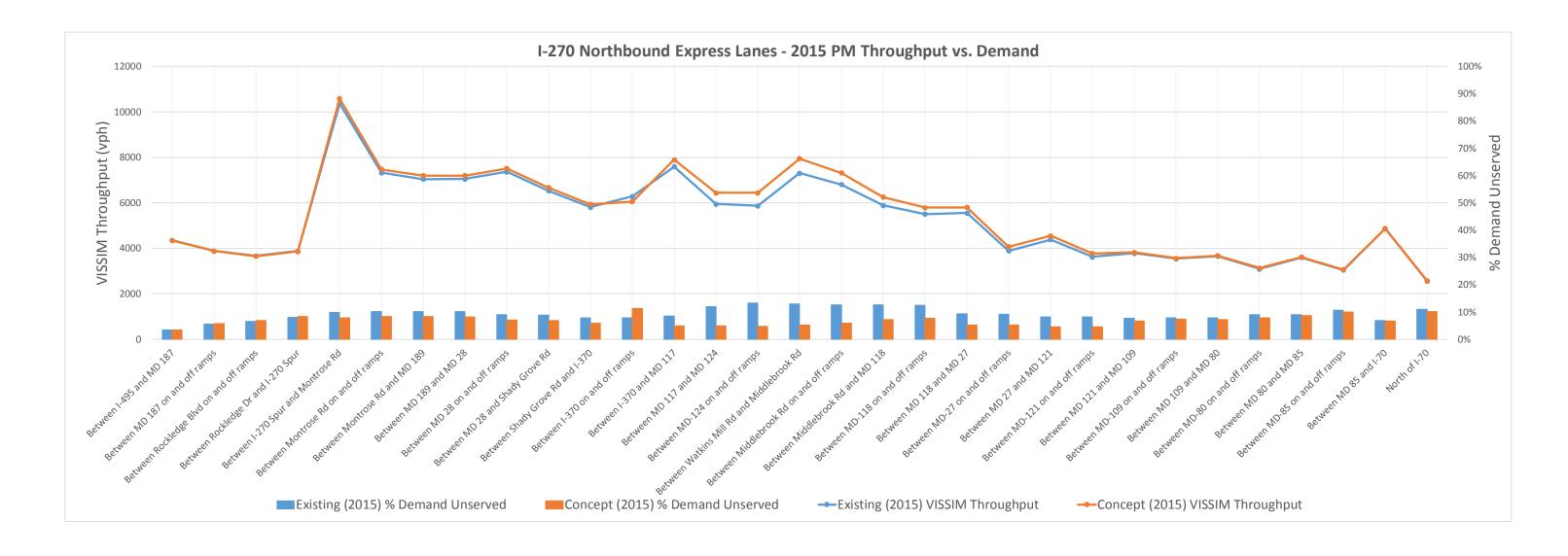
4 - Throughput versus **Demand Graphics**

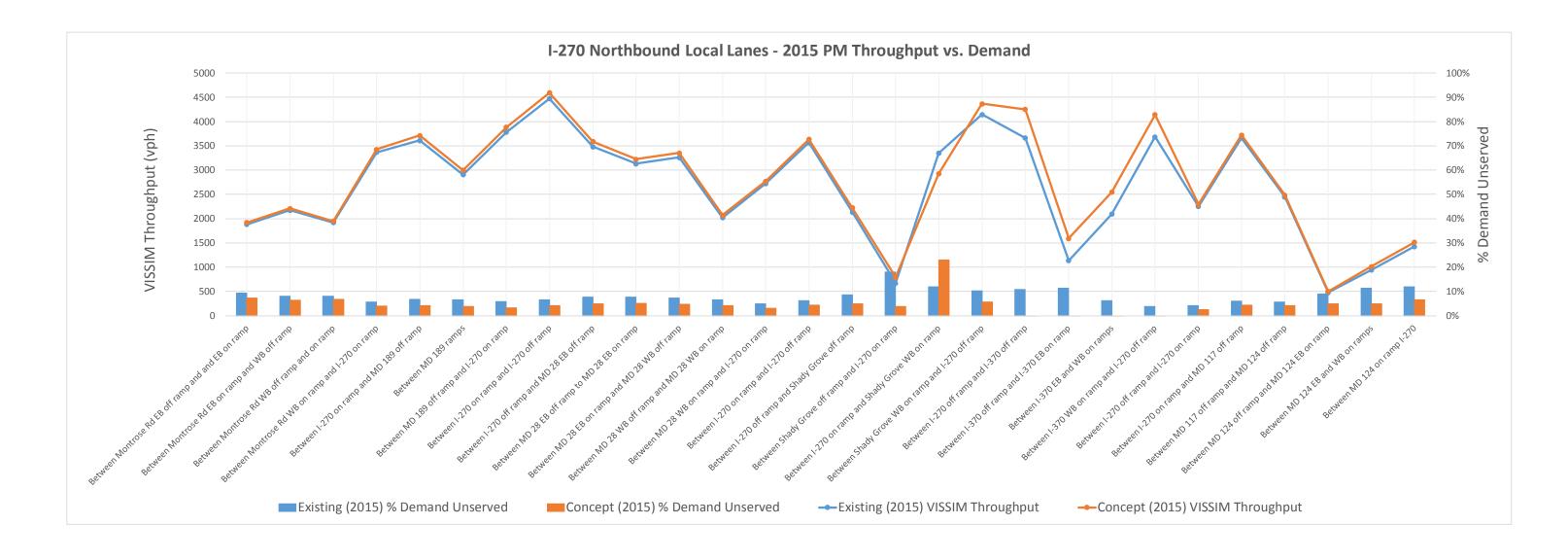
Submitted by:

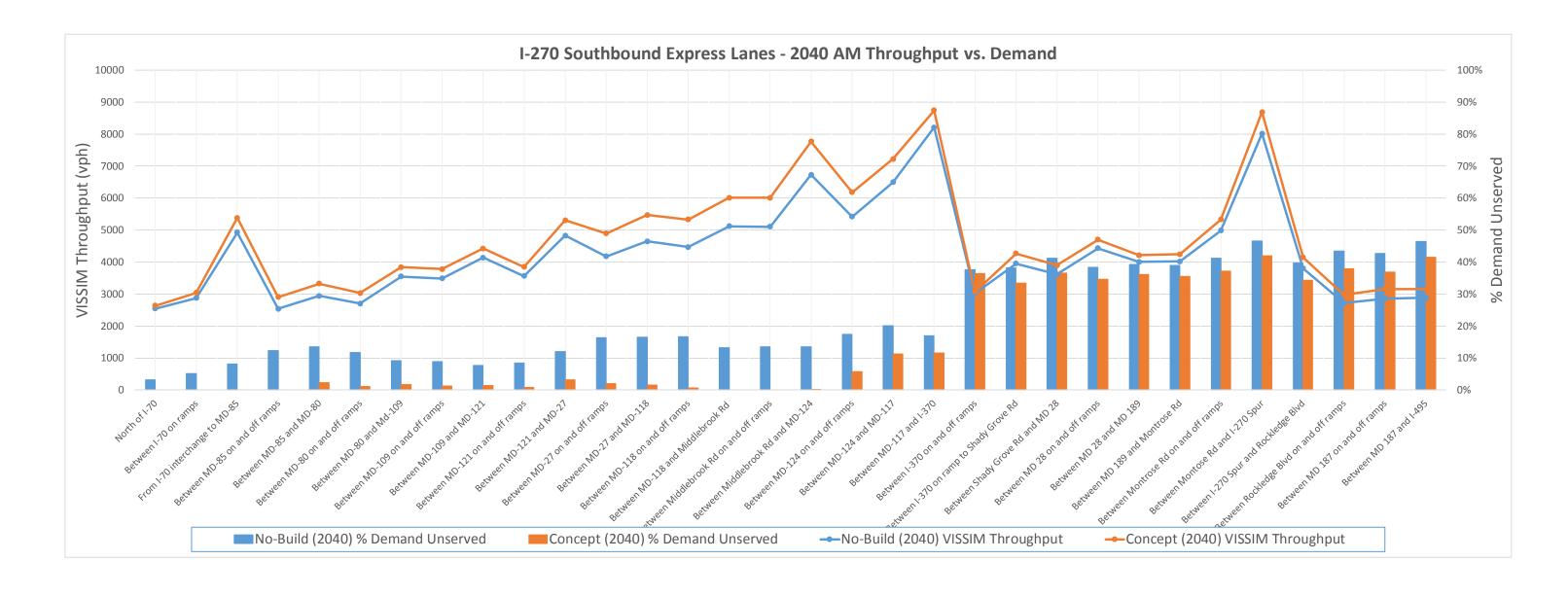
GONCRETE Ch2M: Bruce & Merrilees

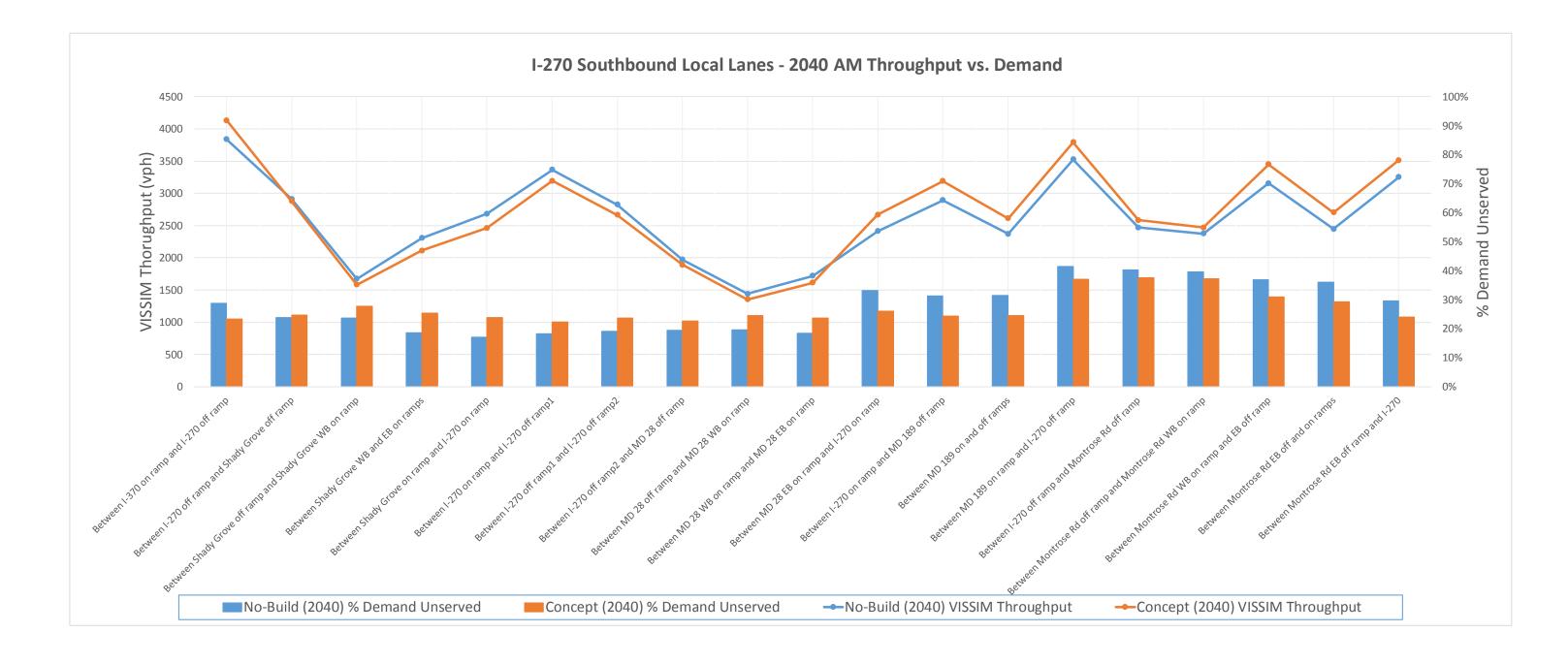


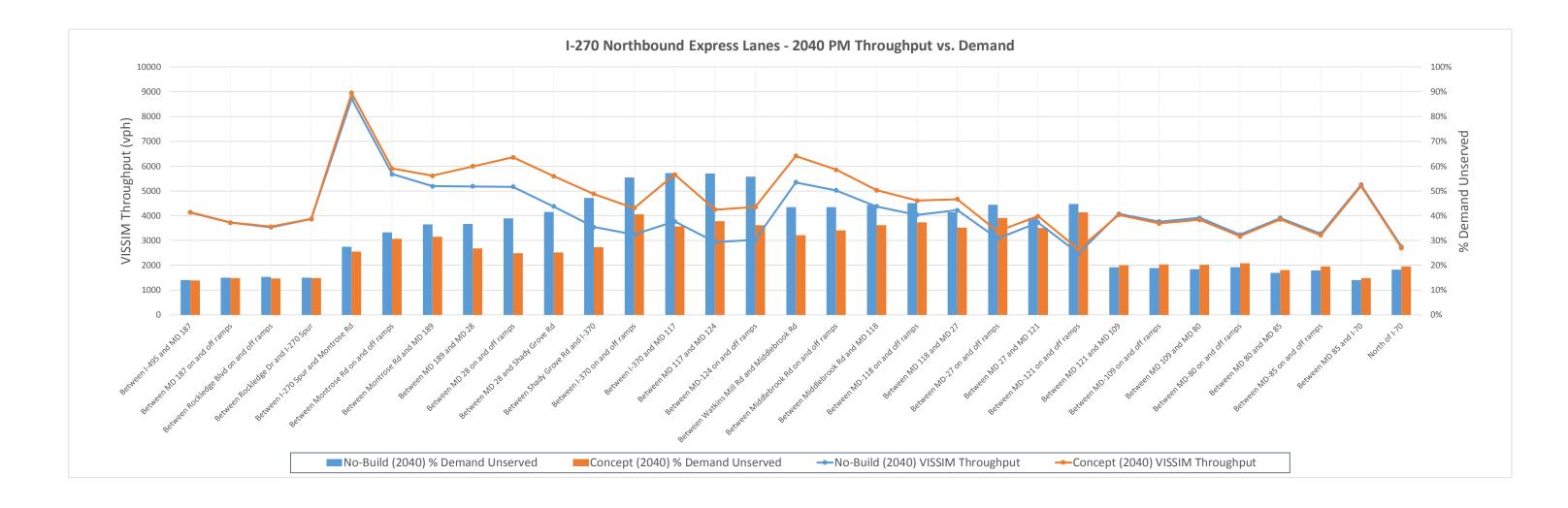


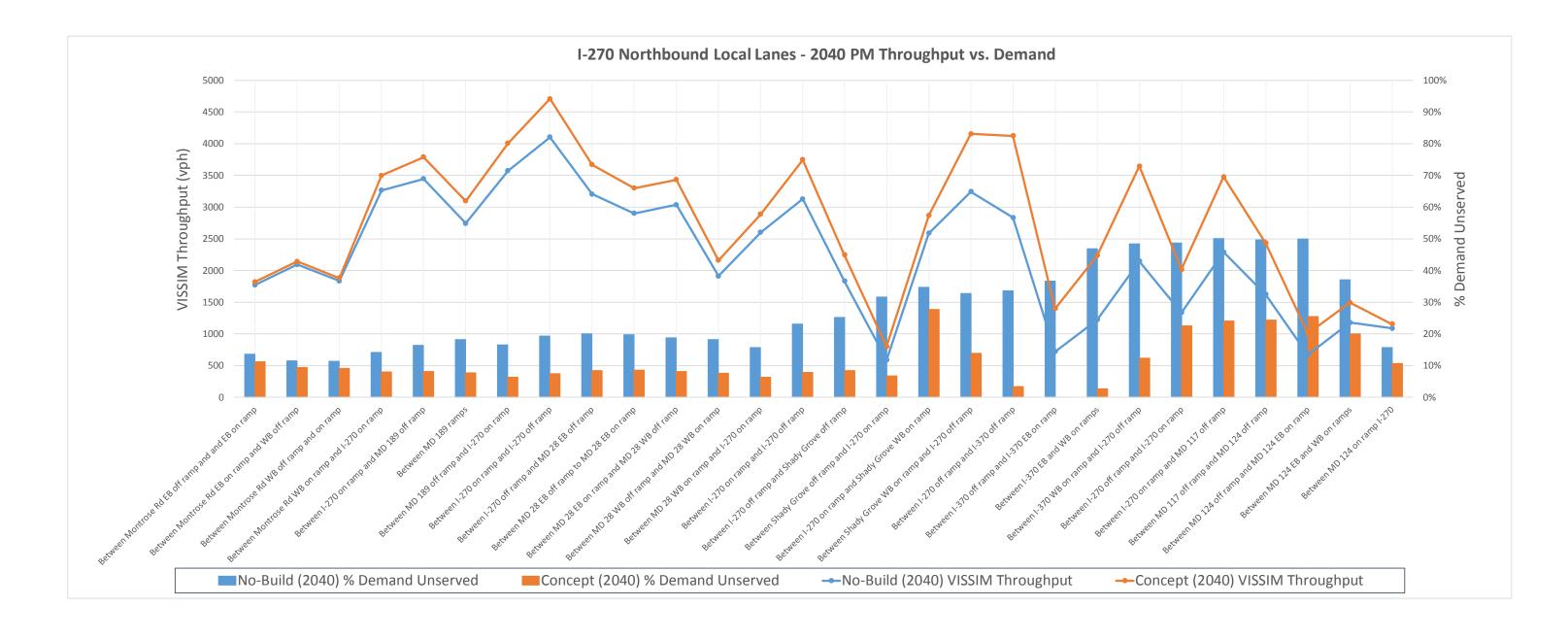

4. THROUGHPUT VS. DEMAND GRAPHICS

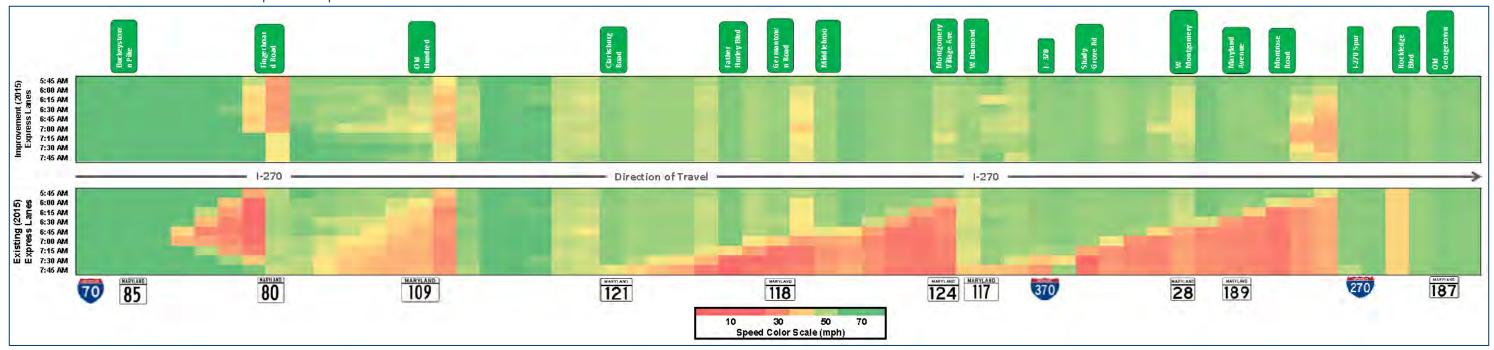

The following pages show figures that compare peak direction VISSIM throughput by segment for the build (concept) and no-build (existing) scenarios for both 2015 and 2040. The figures also compare the concept and existing percent demand unserved for each segment.


Note that the demand shown on the figures includes all vehicles (HOV lanes and regular lanes).

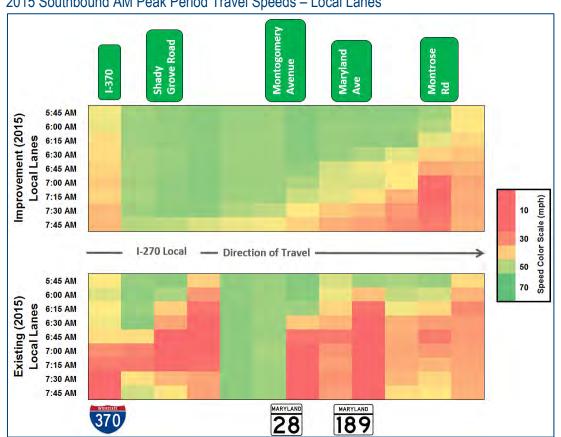




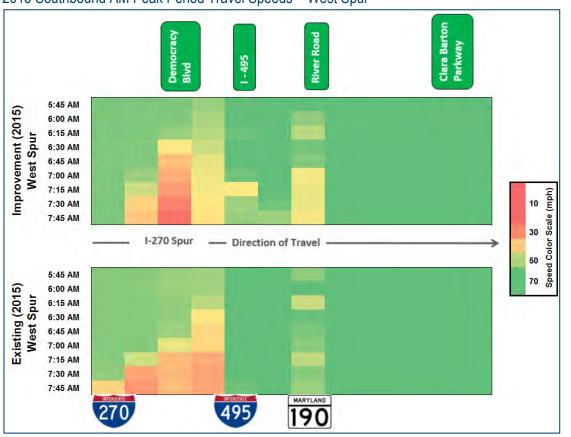




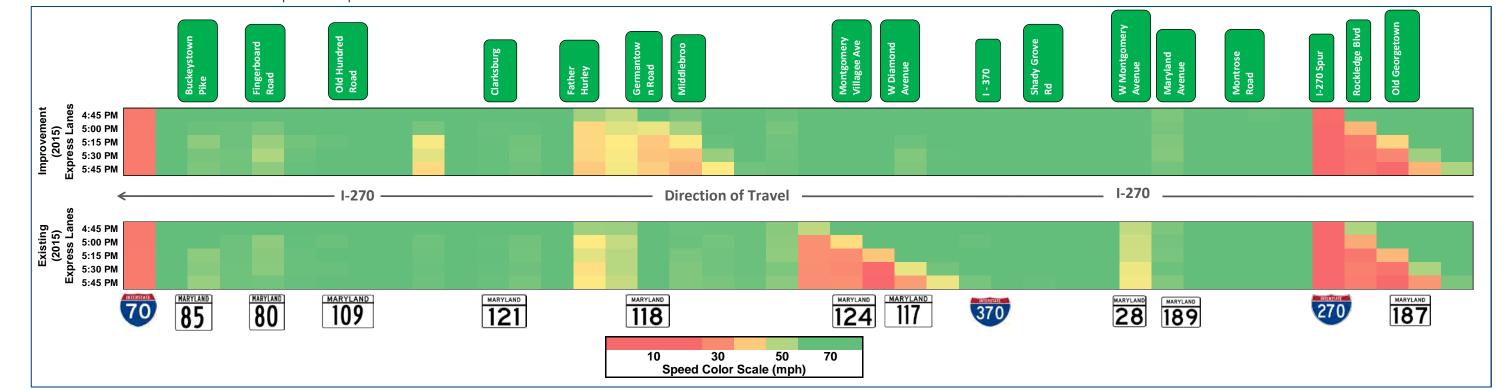
5. THROUGHPUT VS. DEMAND GRAPHICS


The following figures show heat maps that compare peak direction travel speeds for the no-build (existing) and improvement scenarios. Southbound travel speeds during the AM peak period are compared for 2015 and 2040. Northbound travel speeds during the PM peak period are also compared for 2015 and 2040.

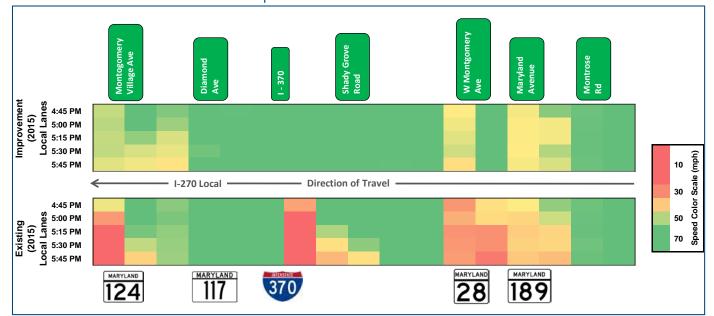
F

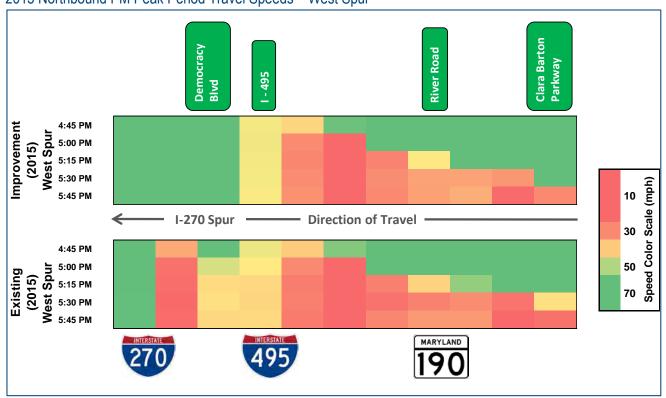

2015 Southbound AM Peak Period Travel Speeds - Express Lanes

2015 Southbound AM Peak Period Travel Speeds – Local Lanes

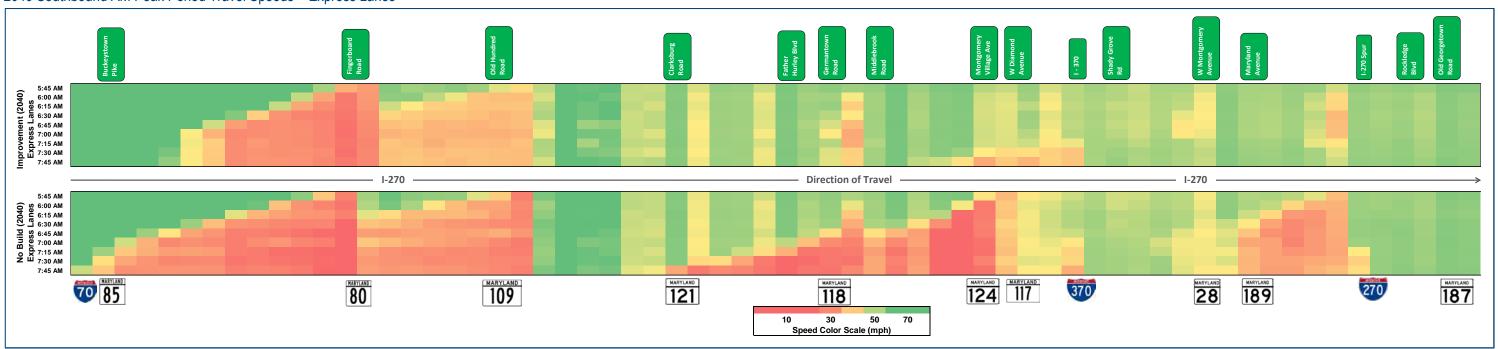


2015 Southbound AM Peak Period Travel Speeds - West Spur

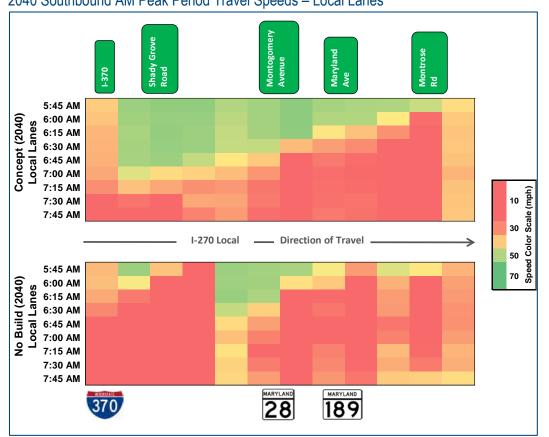



2015 Northbound PM Peak Period Travel Speeds – Express Lanes

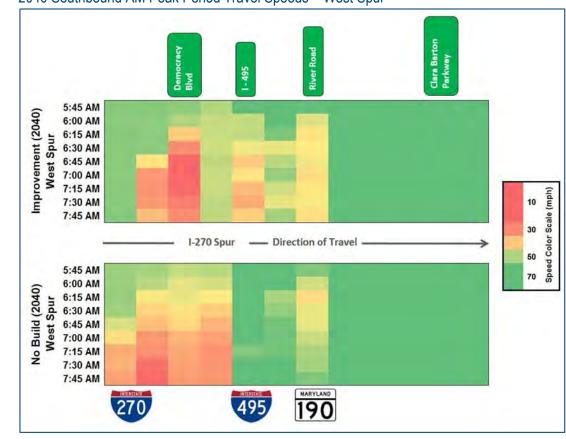
2015 Northbound PM Peak Period Travel Speeds - Local Lanes



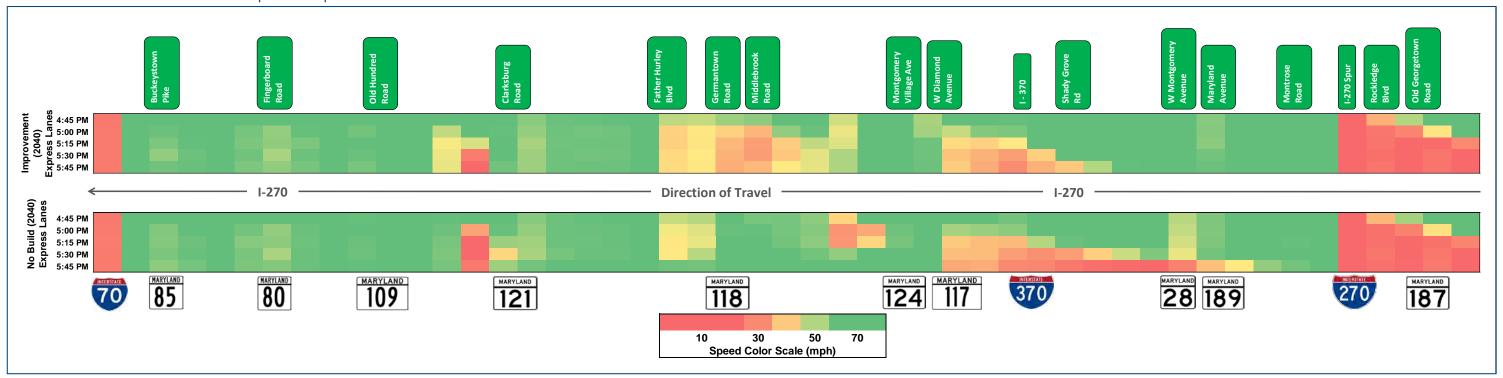
2015 Northbound PM Peak Period Travel Speeds - West Spur



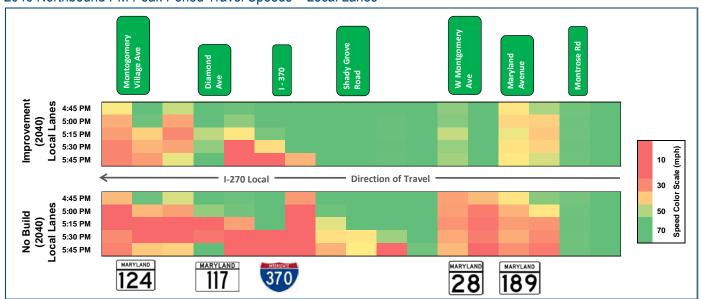
F


2040 Southbound AM Peak Period Travel Speeds - Express Lanes

2040 Southbound AM Peak Period Travel Speeds – Local Lanes



2040 Southbound AM Peak Period Travel Speeds - West Spur



F

2040 Northbound PM Peak Period Travel Speeds – Express Lanes

2040 Northbound PM Peak Period Travel Speeds - Local Lanes

2040 Northbound PM Peak Period Travel Speeds – West Spur

Submitted to:

Appendix G

Concept Evaluation Tables

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

Appendix G: Concept Evaluation Tables

The following pages present Concept Evaluation tables. SHA provided Concept Evaluation templates in order to compare no-build and build VISSIM simulation results for 2015 and 2040. The Concept Evaluation tables compare results for the following categories:

- Vehicle Travel Time and Speed
- Vehicle Density
- Vehicle Throughput
- Vehicle Queue Length
- Intersection Delay and Level of Service
- Network Performance

The tables were provided prepopulated with results from 2015 and 2040 no-build simulations. It is important to note that, as discussed in Appendix E – Model Calibration Memorandum, the 2040 no-build VISSIM files that were provided by SHA were revised. The SHA-provided files did not model the Watkins Mill Road interchange as depicted in final design plans that were also included with the RFP. In order to properly compare the results of the 2040 no-build and build scenarios, the files were revised to match the Watkins Mill Road interchange plans. Therefore, the Concept Evaluation table values for 2040 no-build that are contained in this appendix will not match the values in the Concept Evaluation tables that were provided by SHA.

The Concept Evaluation template files are also included electronically.

I-270 Concept Evaluation (VISSIM Results)

Table of Contents

2015 Conditions	1
AM Peak	2
Vehicle Travel Time and Speed	
Table A.1: I-270 Vehicle Travel Time	3
Table A.2: I-270 Local Vehicle Travel Time	4
Figure A.1: I-270 Travel Time Graph – Northbound	5
Figure A.2: I-270 Travel Time Graph — Southbound	6
Figure A.3: I-270 Spur Travel Time Graph – Northbound	7
Figure A.4: I-270 Spur Travel Time Graph – Southbound	8
Figure A.5: I-270 Local Travel Time Graph – Northbound	9
Figure A.6: I-270 Local Travel Time Graph – Southbound	10
Table A.3: I-270 Vehicle Speed	11
Table A.4: I-270 Local Vehicle Speed	12
Vehicle Density	
Figure A.7: HCM 2010 Density Level of Service Criteria	13
Table A.5: I-270 Vehicle Density	14
Table A.6: I-270 Spur Vehicle Density	16
Table A.7: I-270 Local Vehicle Density	17
Vehicle Throughput	
Table A.8: I-270 Vehicle Throughput	18
Table A.9: I-270 Local Vehicle Throughput	19
Vehicle Queue Length	
Table A.10: I-270 On Ramp Queue Length – Northbound	20
Table A.11: I-270 Off Ramp Queue Length – Northbound	21
Table A.12: I-270 On Ramp Queue Length – Southbound	22
Table A.13: I-270 Off Ramp Queue Length – Southbound	23
Intersection Delay and Level of Service	
Table A.14: Existing Intersection Delay and Level of Service	24
Table A.15: Alternative Intersection Delay and Level of Service	30
Network Performance	
Table A.16: Network Performance	36

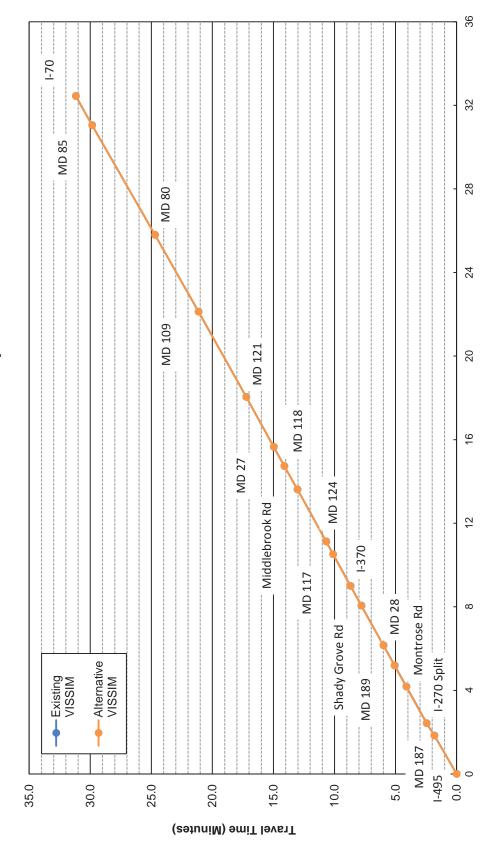
PM Peak	37
Vehicle Travel Time and Speed	
Table B.1: I-270 Vehicle Travel Time	38
Table B.2: I-270 Local Vehicle Travel Time	39
Figure B.1: I-270 Travel Time Graph – Northbound	40
Figure B.2: I-270 Travel Time Graph – Southbound	41
Figure B.3: I-270 Spur Travel Time Graph – Northbound	42
Figure B.4: I-270 Spur Travel Time Graph – Southbound	43
Figure B.5: I-270 Local Travel Time Graph – Northbound	44
Figure B.6: I-270 Local Travel Time Graph – Southbound	45
Table B.3: I-270 Vehicle Speed	46
Table B.4: I-270 Local Vehicle Speed	47
Vehicle Density	
Figure B.7: HCM 2010 Density Level of Service Criteria	48
Table B.5: I-270 Vehicle Density	49
Table B.6: I-270 Spur Vehicle Density	51
Table B.7: I-270 Local Vehicle Density	52
Vehicle Throughput	
Table B.8: I-270 Vehicle Throughput	53
Table B.9: I-270 Local Vehicle Throughput	54
Vehicle Queue Length	
Table B.10: I-270 On Ramp Queue Length – Northbound	55
Table B.11: I-270 Off Ramp Queue Length – Northbound	56
Table B.12: I-270 On Ramp Queue Length – Southbound	57
Table B.13: I-270 Off Ramp Queue Length – Southbound	58
Intersection Delay and Level of Service	
Table B.14: Existing Intersection Delay and Level of Service	59
Table B.15: Alternative Intersection Delay and Level of Service	65
Network Performance	
Table B.16: Network Performance	71
2040 Conditions	72
AM Peak	73
Vehicle Travel Time and Speed	
Table C.1: I-270 Vehicle Travel Time	74
Table C.2: I-270 Local Vehicle Travel Time	75

	Figure C.1: I-270 Travel Time Graph – Northbound	76
	Figure C.2: I-270 Travel Time Graph – Southbound	77
	Figure C.3: I-270 Spur Travel Time Graph – Northbound	78
	Figure C.4: I-270 Spur Travel Time Graph – Southbound	79
	Figure C.5: I-270 Local Travel Time Graph – Northbound	80
	Figure C.6: I-270 Local Travel Time Graph – Southbound	81
	Table C.3: I-270 Vehicle Speed	82
	Table C.4: I-270 Local Vehicle Speed	83
Veh	hicle Density	
	Figure C.7: HCM 2010 Density Level of Service Criteria	84
	Table C.5: I-270 Vehicle Density	85
	Table C.6: I-270 Spur Vehicle Density	87
	Table C.7: I-270 Local Vehicle Density	88
Veh	hicle Throughput	
	Table C.8: I-270 Vehicle Throughput	89
	Table C.9: I-270 Local Vehicle Throughput	90
Veh	hicle Queue Length	
	Table C.10: I-270 On Ramp Queue Length – Northbound	91
	Table C.11: I-270 Off Ramp Queue Length – Northbound	92
	Table C.12: I-270 On Ramp Queue Length – Southbound	93
	Table C.13: I-270 Off Ramp Queue Length – Southbound	94
Inte	ersection Delay and Level of Service	
	Table C.14: Existing Intersection Delay and Level of Service	95
	Table C.15: Alternative Intersection Delay and Level of Service	101
Net	twork Performance	
	Table C.16: Network Performance	107
PM	1 Peak	108
٧	Vehicle Travel Time and Speed	
	Table D.1: I-270 Vehicle Travel Time	109
	Table D.2: I-270 Local Vehicle Travel Time	110
	Figure D.1: I-270 Travel Time Graph – Northbound	111
	Figure D.2: I-270 Travel Time Graph – Southbound	112
	Figure D.3: I-270 Spur Travel Time Graph – Northbound	113
	Figure D.4: I-270 Spur Travel Time Graph – Southbound	114
	Figure D 5: I-270 Local Travel Time Graph – Northbound	115

	Figure D.6: I-270 Local Travel Time Graph – Southbound	. 116
	Table D.3: I-270 Vehicle Speed	117
	Table D.4: I-270 Local Vehicle Speed	118
Veh	nicle Density	
	Figure D.7: HCM 2010 Density Level of Service Criteria	.119
	Table D.5: I-270 Vehicle Density	120
	Table D.6: I-270 Spur Vehicle Density	122
	Table D.7: I-270 Local Vehicle Density	123
Veh	nicle Throughput	
	Table D.8: I-270 Vehicle Throughput	.124
	Table D.9: I-270 Local Vehicle Throughput	.125
Veh	nicle Queue Length	
	Table D.10: I-270 On Ramp Queue Length – Northbound	.126
	Table D.11: I-270 Off Ramp Queue Length – Northbound	.127
	Table D.12: I-270 On Ramp Queue Length – Southbound	.128
	Table D.13: I-270 Off Ramp Queue Length – Southbound	.129
Inte	ersection Delay and Level of Service	
	Table D.14: Existing Intersection Delay and Level of Service	.130
	Table D.15: Alternative Intersection Delay and Level of Service	. 136
Net	work Performance	
	Table D.16: Network Performance	. 142

2015 Conditions

AM Peak


Table A.1: AM Peak - Existing - I-270 Vehicle Travel Time

I-270 Northbound	Segment Length (miles)	Existing VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change	I-270 Southbound	Segment Length (miles)	Existing VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change
From I-495 interchange					From I-70				
to MD 187	1.8	109.0	109.7	0.9%	to MD 85	1.7	97.0	97.0	0.0%
to I-270 Split	0.6	37.5	38.1	0.0%	to MD 80	5.4	414.5	321.9	-22.4%
to Montrose Rd	1.8	100.1	99.9	0.0%	to MD 109	3.7	390.6	281.3	-28.1%
to MD 189	1.0	57.6	57.7	0.0%	to MD 121	3.6	273.2	265.1	-2.9%
to MD 28	1.0	55.1	54.7	0.0%	to MD 27	2.5	267.9	175.8	-34.3%
to Shady Grove Rd	1.9	108.4	108.5	0.0%	to MD 118	1.1	241.4	75.0	-68.9%
to I-370	0.9	53.0	53.0	0.0%	to Middlebrook Rd	1.1	211.7	87.3	-59.0%
to MD 117	1.5	85.5	85.4	0.0%	to MD 124	2.2	480.5	152.7	-68.1%
to MD 124	0.6	34.5	34.5	0.0%	to MD 117	0.9	148.4	71.0	-52.0%
to Middlebrook Rd	2.5	140.9	140.3	-0.7%	to I-370	1.0	90.2	75.8	-15.6%
to MD 118	1.1	64.8	64.9	0.0%	to Shady Grove Rd	1.5	190.3	103.2	-45.8%
to MD 27	0.9	51.8	51.8	0.0%	to MD 28	1.9	431.1	137.3	-68.2%
to MD 121	2.4	135.3	135.3	0.0%	to MD 189	1.0	227.1	68.4	-70.0%
to MD 109	4.1	234.5	234.0	0.0%	to Montrose Rd	1.0	276.2	72.0	-73.9%
to MD 80	3.7	213.8	213.9	0.0%	to I-270 Split	1.9	250.6	192.3	-23.5%
to MD 85	5.3	309.0	309.1	0.0%	to MD 187	0.4	30.0	30.2	0.0%
to I-70	1.4	79.9	79.8	0.0%	to I-495 interchange	1.9	131.8	132.8	0.8%
I-270 Total (miles/minutes)	32.4	31.2	31.2	0.0%	I-270 Total (miles/minutes)	32.7	69.2	39.0	-43.5%
I-270 Spur Northbound					I-270 Spur Southbound				
From Cabin John Pkwy					From I-70				
to MD 190	0.5	32.2	32.2	0.0%	to I-270 Split	30.3	3990.6	2,176.2	-45.5%
to I-495	1.1	66.7	66.7	0.0%	to Democracy Blvd	0.7	88.4	77.3	-12.5%
to Democracy Blvd	1.4	91.2	92.3	1.1%	to I-495	1.3	183.1	180.1	-1.6%
to I-270 Split	0.9	51.0	50.5	0.0%	to MD 190	1.3	92.2	101.5	9.8%
to I-70	30.0	1724.3	1,722.8	-0.1%	to Cabin John Pkwy	0.6	35.0	35.1	0.0%
I-270 Spur Total (miles/minutes)	34.0	32.8	32.7	0.0%	I-270 Spur Total (miles/minutes)	34.2	73.2	42.8	-41.1%

Table A.2: AM Peak - Existing - I-270 Local Vehicle Travel Time

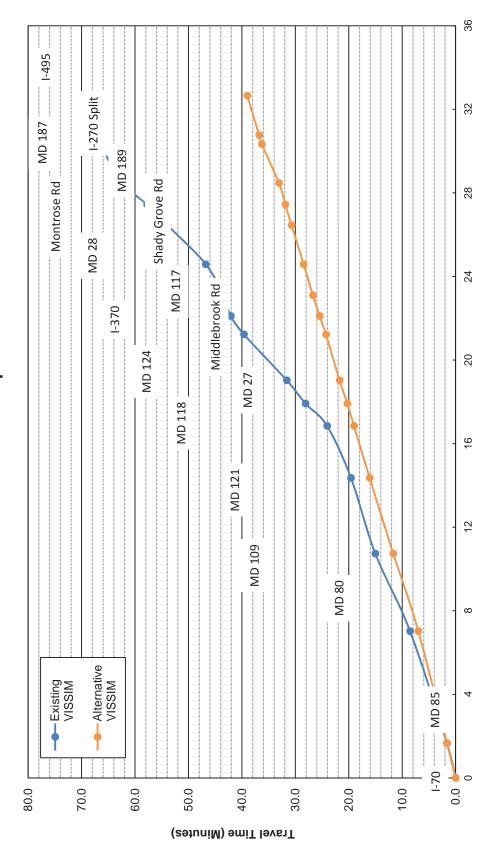

I-270 Northbound	Segment Length (miles)	Existing VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change	I-270 Southbound	Segment Length (miles)	Existing VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change
From C-D start					From C-D start				
to Montrose Rd	0.8	51.6	52.5	1.9%	to Shady Grove	1.3	322.1	102.5	-68.0%
to MD 189	1.3	79.3	79.1	0.0%	to MD 28	1.8	264.8	143.3	-46.0%
to MD 28	1.0	60.7	58.5	-3.3%	to MD 189	1.1	249.5	157.7	-36.5%
to Shady Grove	2.0	119.1	119.1	0.0%	to Montrose	1.2	259.4	225.2	-13.1%
to I-370	1.0	56.3	55.8	0.0%	to I-270 mainline	0.9	144.4	186.7	29.9%
to MD 117	1.2	72.3	72.4	0.0%					
to MD 124	0.8	52.1	61.1	17.3%					
to I-270 mainline	0.4	21.4	21.1	0.0%					
I-270 Local Total (miles/minutes)	8.5	8.5	8.7	0.0%	I-270 Local Total (miles/minutes)	6.3	20.7	13.6	-33.3%

Figure A.1: AM Peak - Existing I-270 Travel Time Graph - Northbound

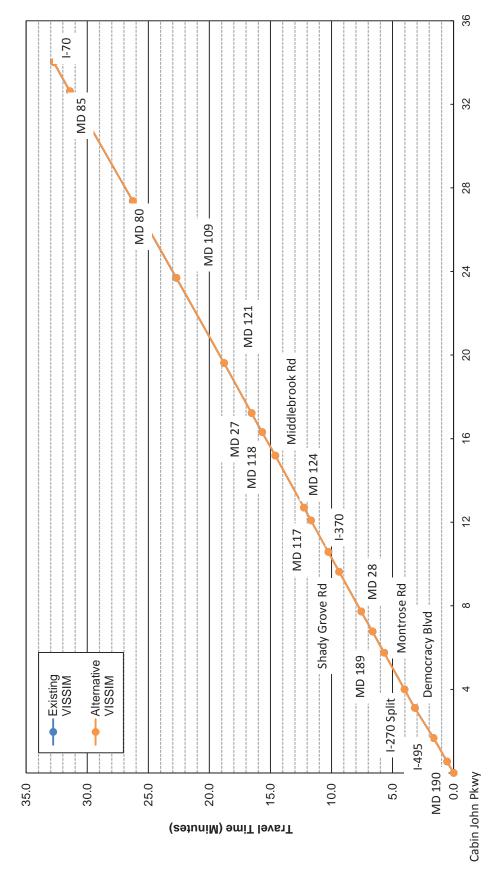

Miles Along Corridor / Direction of Traffic Flow

Figure A.2: AM Peak - Existing I-270 Travel Time Graph - Southbound

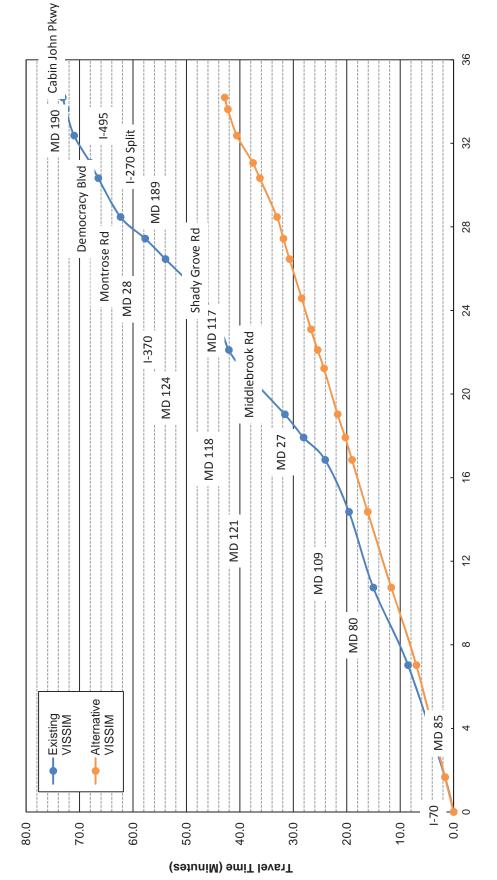

Miles Along Corridor / Direction of Traffic Flow

Figure A.3: AM Peak - Existing I-270 Spur Travel Time Graph - Northbound

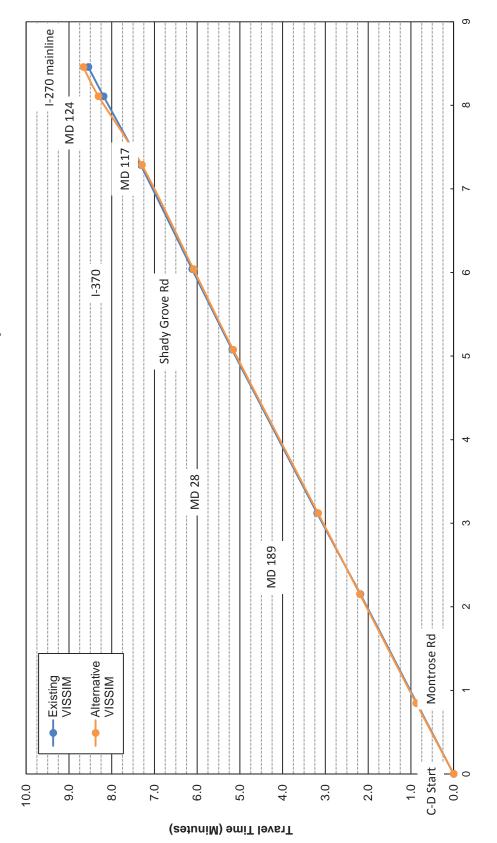

Miles Along Corridor / Direction of Traffic Flow

Figure A.4: AM Peak - Existing I-270 Spur Travel Time Graph - Southbound

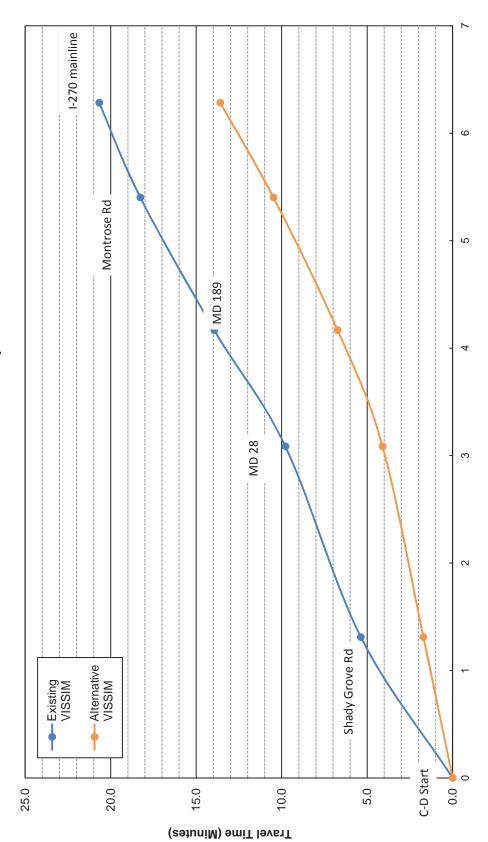

Miles Along Corridor / Direction of Traffic Flow

Figure A.5: AM Peak - Existing I-270 Local Travel Time Graph - Northbound

Miles Along Corridor / Direction of Traffic Flow

Figure A.6: AM Peak - Existing I-270 Local Travel Time Graph - Southbound

Miles Along Corridor / Direction of Traffic Flow

Table A.3: AM Peak - Existing - I-270 Vehicle Speed

I-270 Northbound	Existing VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change	I-270 Southbound	Existing VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change
From I-495 interchange				From I-70			
to MD 187	60.5	60.2	-1.6%	to MD 85	61.7	61.7	0.0%
to I-270 Split	56.7	55.8	-1.8%	to MD 80	46.5	59.9	27.7%
to Montrose Rd	63.0	63.2	0.0%	to MD 109	34.3	47.6	41.2%
to MD 189	63.3	63.2	0.0%	to MD 121	47.7	49.2	2.1%
to MD 28	62.9	63.4	0.0%	to MD 27	33.4	50.9	54.5%
to Shady Grove Rd	63.0	63.0	0.0%	to MD 118	16.0	51.5	218.8%
to I-370	64.1	64.1	0.0%	to Middlebrook Rd	18.9	45.8	142.1%
to MD 117	63.8	63.9	0.0%	to MD 124	16.5	51.8	225.0%
to MD 124	63.9	64.0	0.0%	to MD 117	21.5	44.9	104.5%
to Middlebrook Rd	63.6	63.8	0.0%	to I-370	39.3	46.8	20.5%
to MD 118	62.3	62.2	0.0%	to Shady Grove Rd	28.1	51.9	85.7%
to MD 27	63.6	63.7	0.0%	to MD 28	15.7	49.2	206.3%
to MD 121	63.7	63.7	0.0%	to MD 189	15.5	51.5	240.0%
to MD 109	62.6	62.7	0.0%	to Montrose Rd	13.5	51.6	300.0%
to MD 80	61.9	61.9	0.0%	to I-270 Split	26.7	34.8	29.6%
to MD 85	61.2	61.2	0.0%	to MD 187	52.3	51.9	0.0%
to I-70	62.7	62.8	0.0%	to I-495 interchange	51.7	51.3	-1.9%
I-270 Total (miles/minutes)	62.4	62.4	0.0%	I-270 Total (miles/minutes)	28.3	50.3	78.6%
I-270 Spur Northbound				I-270 Spur Southbound			
From Cabin John Pkwy				From I-70			
to MD 190	60.3	60.3	0.0%	to I-270 Split	27.4	50.2	85.2%
to I-495	61.2	61.2	0.0%	to Democracy Blvd	29.8	34.0	13.3%
to Democracy Blvd	56.6	55.9	-1.8%	to I-495	25.8	26.2	0.0%
to I-270 Split	62.9	63.6	1.6%	to MD 190	48.9	44.5	-10.2%
to I-70	62.7	62.7	0.0%	to Cabin John Pkwy	58.6	58.5	-1.7%
I-270 Spur Total (miles/minutes)	62.3	62.3	0.0%	I-270 Spur Total (miles/minutes)	28.0	47.9	71.4%

Table A.4: AM Peak - Existing - I-270 Local Vehicle Speed

I-270 Northbound	Existing VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change	I-270 Southbound	Existing VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change
From C-D start				From C-D start			
to Montrose Rd	59.0	57.9	-1.7%	to Shady Grove	14.6	46.0	206.7%
to MD 189	59.3	59.5	0.0%	to MD 28	24.1	44.6	87.5%
to MD 28	57.4	59.5	5.3%	to MD 189	15.6	24.7	56.3%
to Shady Grove	59.1	59.1	0.0%	to Montrose	17.1	19.7	17.6%
to I-370	61.7	62.3	0.0%	to I-270 mainline	22.0	17.0	-22.7%
to MD 117	62.1	62.0	0.0%				
to MD 124	56.8	48.5	-15.8%				
to I-270 mainline	58.9	59.8	1.7%				
I-270 Local Total (miles/minutes)	59.4	58.6	0.0	I-270 Local Total (miles/minutes)	18.2	27.7	0.6

Figure A.7: HCM 2010 Density Level of Service Criteria (pc/mi/ln)

HCM 2010 Freeway LOS	<u>, , , , , , , , , , , , , , , , , , , </u>
<11	A
>11 - 18	В
> 18 - 26	С
> 26 - 35	D
> 35 - 45	Е
> 45	F
HCM 2010 Freeway Merge and Diverge	Segment LOS
< 10	A
> 10 - 20	В
> 20 - 28	С
> 28 - 35	D
> 35 - 40	Е
> 40	F
HCM 2010 Freeway Weaving Segn	nent LOS
< 10	A
> 10 - 20	В
> 20 - 28	C
> 28 - 35	D
> 35 - 40	Е
> 40	F
HCM 2010 C-D Weaving Segmen	nt LOS
< 12	A
> 12 - 24	В
> 24 - 32	С
> 32 - 36	D
> 36 - 40	Е
> 40	F

Table A.5: AM Peak - Existing - I-270 Vehicle Density

		Existing		Alternative	63				Existing	ng .	Alternative	ve	
I-270 Northbound	Type	Density Loc/mi/ln)	ros	$\left. \begin{array}{c} \text{Density} \\ \text{(nc/mi/ln)} \end{array} \right $ LC		% Change	I-270 Southbound	Type	Density (nc/mi/ln)	ros	Density 1	ros	% Change
1-270	Freeway	25	C	25		%0	I-270	Freeway	20	C	20	C	%0
o MD 187	Diverge	19	В		В	%0	I-270 Merge from WB I-70	Merge	13	В	13	В	%0
	Freeway	22	C	22		%0	I-270	Freeway	24	C	24	C	%0
I-270 Diverge to Rockledge Rd	Diverge	19	В	19 H	В	%0	I-270 Merge from EB I-70	Merge	20	В	20	В	%0
I-270	Freeway	19	C	19	7)	%0	I-270	Freeway	28	D	28	D	%0
I-270 Weave from MD 187 to I-270 HOV	Weave	10	В	11 F	B 1	10%	I-270 Diverge to SB MD 85	Diverge	31	D	31	D	%0
I-270 Lane Drop	Merge	15	В	15 I	В	%0	I-270	Freeway	27	D	27	D	%0
1-270	Freeway	27	D		D	%0	I-270 Diverge to NB MD 85	Diverge	15	В	15	В	%0
I-270 Merge from I-270 Spur	Merge	24	C		В -	-17%	I-270	Freeway	23	C	23	C	%0
I-270 Weave from I-270 HOV to I-270 C-D	Weave	27	C	25		-7%	I-270 Merge from MD 85	Merge	14	В	14	В	%0
1-270	Freeway	23	C	22	()	-4%	I-270	Freeway	36	E	27	D .	-25%
I-270 Diverge to C-D (MD 189)	Diverge	21	C	18 F	В	-14%	I-270 Diverge to MD 80	Diverge	39	E	19	В	-51%
1-270	Freeway	18	В	18 H	В	%0	I-270	Freeway	75	H	36	Е.	-52%
I-270 Diverge to C-D (MD 28)	Diverge	19	В	20 E	В	2%	I-270 Merge from MD 80	Merge	85	江	24	C	72%
1-270	Freeway	15	В	15 F	В	%0	I-270	Freeway	55	ഥ	39	E	-29%
I-270 Merge from C-D (MD 189)	Merge	18	В	18 F	В	%0	I-270 Diverge to MD 109	Diverge	33	D	21	C .	-36%
I-270 Diverge to C-D (Shady Grove Rd)	Diverge	26	C	23	- C	-12%	I-270	Freeway	99	F	42	Ε.	-36%
1-270	Freeway	14	В	14 F	В	%0	I-270 Merge from MD 109	Merge	55	Н	26	C	-53%
I-270 Weave from C-D (MD 28) to C-D (Shady Grove Rd)	Weave	13	В	14 E	В	%8	I-270	Freeway	47	F	46	F	-2%
I-270	Freeway	11	В	11 F	В	%0	I-270 Diverge to SB Weigh Station	Diverge	19	В	20	C	5%
I-270 Merge from C-D (Shady Grove Rd)	Merge	10	В	8	A -:	-20%	I-270	Freeway	39	E	38	E	-3%
I-270	Freeway	13	В	12 F	В	-8%	I-270 Merge from SB Weigh Station	Merge	20	C	20	C	%0
	Merge	11	В	11 E	В	%0	I-270	Freeway	41	E	41	E	%0
I-270 Diverge to C-D (MD 117)	Diverge	16	В	17 E	В	%9	I-270 Diverge to MD 121	Diverge	20	C	18	В	-10%
I-270	Freeway	13	В	13 E	В	%0	I-270	Freeway	31	D	27	D -	-13%
I-270 Merge from C-D (MD 124)	Merge	14	В	14 I	В	%0	I-270 Merge from MD 121	Merge	32	D	23	С .	-28%
	Freeway	17	В	13 E	В -:	-24%	I-270	Freeway	53	F	33	D .	-38%
Middlebrook Rd	Diverge	11	В	8	A -	-27%	I-270 Diverge to MD 27	Diverge	55	F	22	C	%09-
	Freeway	15	В	10	A -	-33%	I-270	Freeway	80	上	25	C	%69-
Middlebrook Rd	Diverge	10	А		B 1	10%	I-270 Merge from WB MD 27	Merge	83	F	23	С)	-72%
	Freeway	14	В		В	%0	I-270	Freeway	78	H	32	О	-29%
I-270 Diverge to EB MD 118	Diverge	11	В	12 E	В	%6	I-270 Weave from EB MD 27 to MD 118	Weave	92	F	25	C	%29-
I-270 Diverge to WB MD 118	Diverge	14	В	15 E	В	7%	I-270	Freeway	68	F	33	D .	-63%
I-270	Freeway	13	В	13 E	В	%0	I-270 Merge from WB MD 118	Merge	70	F	28	D -	%09-
I-270 Weave from MD 118 to MD 27	Weave	13	В	13 E	В	%0	I-270	Freeway	85	F	45	E	-47%
I-270	Freeway	12	В	12 F	В	%0	I-270 Merge from EB MD 118	Merge	70	F	35	D -	-50%
I-270 Merge from EB MD 27	Merge	13	В	13 E	В	%0	I-270	Freeway	75	F	39	E -	-48%
I-270	Freeway	13	В	13 E	В	%0	I-270 Merge from Middlebrook Rd	Merge		工	38	E	-62%
WB MD 27	Merge	10	А	10		%0	I-270	Freeway		ഥ	36	Ξ	%99-
	Freeway	14	В	14 I	В	%0	I-270 Diverge to MD 124	Diverge	93	F	25	C	-73%
I-270 Diverge to MD 121	Diverge	10	А	10	4	%0	I-270	Freeway	92	ഥ	35	E -	-62%

Table A.5: AM Peak - Existing - I-270 Vehicle Density

		Existing		Alternative	/e				Existing	5,0	Alternative	ve	
I-270 Northbound	Type	Density L(nc/mi/ln)	SC	Density I	SOT	% Change	I-270 Southbound	Type	Density (pc/mi/ln)	SC	Density (pc/mi/ln)	SOT	% Change
I-270	Freeway	12	В	12	В	%0	I-270 Merge from WB MD 124	Merge	119	F	36	E	-70%
I-270 Merge from EB MD 121	Merge	6	А	6	A	%0	1-270	Freeway	47	ഥ	42	田	-11%
I-270 Lane Drop	Merge	13	В	13	В	%0	I-270 Merge from MD 117	Merge	46	上	47	ഥ	2%
I-270	Freeway	18	C	13	В	-28%	1-270	Freeway	48	F	44	E	%8-
I-270 Diverge to NB Weigh Station	Diverge	10	A	10	В	%0	I-270 Diverge to I-370	Diverge	43	Ь	33	D	-23%
1-270	Freeway	20	C	20	C	%0	1-270	Freeway	51	ഥ	35	D	-31%
I-270 Merge from NB Weight Station	Merge	10	В	10	В	%0	I-270 Diverge to I-270 C-D	Diverge	81	ഥ	29	D	-64%
1-270	Freeway	20	C	20	C	%0	1-270	Freeway	36	E	23	C	-36%
I-270 Diverge to MD 109	Diverge	11	В	11	В	%0	I-270 Merge from I-270 (I-370)	Merge	94	F	23	C	-76%
1-270	Freeway	19	C	19	C	%0	I-270 Diverge to I-270 C-D (Shady Grove Rd) Diverge	Diverge	87	F	32	D	-63%
I-270 Merge from MD 109	Merge	10	В	10	A	%0	I-270	Freeway	06	F	26	D	-71%
1-270	Freeway	20	C	20	C	%0	I-270 Merge from I-270 C-D (Shady Grove Rd Northern)	Merge	102	F	20	C	-80%
I-270 Diverge to MD 80	Diverge	12	В	12	В	%0	1-270	Freeway	98	F	32	D	-63%
I-270	Freeway	18	В	18	В	%0	I-270 Merge from I-270 C-D (Shady Grove Rd Southern)	Merge	107	F	33	D	%69-
I-270 Merge from MD 80	Merge	12	В	12	В	%0	I-270 Diverge to I-270 C-D (MD 189)	Diverge	68	F	38	E	-57%
I-270	Freeway	22	С	22	C	%0	1-270	Freeway	100	Ь	31	D	%69-
I-270 Diverge to Scenic View	Diverge	11	В	11	В	%0	I-270 Merge from I-270 C-D (MD 189)	Merge	123	F	32	D	-74%
I-270	Freeway	22	С	22	С	%0	I-270	Freeway	83	F	64	F	-23%
I-270 Merge from Scenic View	Merge	11	В	11	В	%0	I-270 Merge from I-270 C-D	Merge	41	F	31	D	-24%
I-270	Freeway	22	C	22	C	%0	I-270 Diverge to I-270 HOV Lane	Diverge	21	C	32	D	52%
I-270 Diverge to NB MD 85	Diverge	12	В	13	В	%8	I-270 Diverge to I-270 Spur	Diverge	40	E	28	D	-30%
I-270	Freeway	21	C	21	C	%0	I-270	Freeway	24	C	27	D	13%
I-270 Diverge to SB MD 85	Diverge	16	В	16	В	%0	I-270 Diverge to Rockledge Dr / MD 187	Diverge	16	В	20	С	25%
I-270	Freeway	17	В	17	В	%0	I-270	Freeway	25	C	28	D	12%
I-270 Weave from MD 85 to I-70	Weave	11	В	11	В	%0	I-270 Merge from Rockledge Dr	Merge	20	В	22	C	10%
I-270	Freeway	15	В	15	В	%0	I-270	Freeway	25	C	29	D	16%
						%0	I-270 Merge from Rockledge Dr / MD 187	Merge	22	C	25	С	14%
						%0	I-270	Freeway	27	D	31	D	15%

Table A.6: AM Peak - Existing - I-270 Spur Vehicle Density

Alternative	% Change	-27%
ŀ	Tos	D
	Density (pc/mi/ln)	35
ıng	ros	ഥ
Existing	Density (pc/mi/ln)	48
	Type	Freeway
	I-270 Southbound	I-270 Spur
	% Change	%0
ıve	ros	D
Alternative	Density (pc/mi/ln)	34
ıg	ros	D
Existing	Density (pc/mi/ln)	34
	Type	Freeway
	I-270 Spur Northbound	

-13%

Merge

I-270 C-D Merge From WB MD 124

-20% -63% -49% -61% %89--46% -28% -48% %69--54% -54% -42% -39% -45% 103% %02 41% 34% 22% 55% 46% 35% %01 %9 %6 О (pc/mi/ln) Density 26 5 36 26 50 46 69 90 98 82 200 33 27 22 39 39 19 27 42 81 45 59 31 61 (pc/mi/ln) Density 134 109 88 53 9/ 62 53 89 75 29 20 36 64 9 48 89 40 26 53 29 54 59 87 20 61 Freeway Diverge Diverge Diverge Diverge Weave Merge Freeway Freeway Merge Freeway Freeway Merge Diverge Freeway Merge reeway reeway Freeway Diverge Freeway Diverge Freeway Merge Freeway reeway Weave Freeway Merge Merge -270 C-D Merge from WB Shady Grove Rd 1-270 C-D Merge from EB Shady Grove Rd 1-270 Weave between Montrose Rd Loops I-270 C-D Weave from I-370 EB to I-270 -270 C-D Merge from EB Montrose Rd I-270 C-D Diverge to WB Montrose Rd I-270 C-D Diverge to Shady Grove Rd I-270 C-D Merge from WB MD 28 I-270 C-D Merge from EB MD 28 1-270 C-D Merge from MD 189 1-270 C-D Diverge to MD 189 I-270 C-D Merge from I-270 1-270 C-D Diverge to MD 28 I-270 C-D Merge from I-270 I-270 C-D Diverge to I-270 I-270 C-D Diverge to I-270 I-270 C-D Diverge to I-270 -270 Souhbound I-270 C-D -33% -59% -43% -27% 29% 33% 10% %0 %/-15% %/9 17% %9 %81 %0 %0 %0 %0 %0 %0 4% %0 %0 %0 %/ 4% %0 %9 %0 %0 %0 % % %0 %0 %0 %0 % TOS Ω (pc/mi/ln) Density 4 33 19 13 20 28 28 29 16 22 13 12 16 22 28 35 10 15 24 19 21 9 TOS О Ω (pc/mi/ln) Density 19 30 7 10 15
 Table A.7: AM Peak - Existing - I-270 Local Vehicle Density
 21 13 20 28 28 29 22 15 29 28 26 35 23 19 S 6 Diverge Diverge Diverge Freeway Freeway Weave Freeway Freeway Freeway Freeway Freeway Weave Weave Diverge Freeway Freeway Freeway Freeway Merge Diverge Merge Diverge Merge Freeway Freeway Freeway Weave Freeway Merge Merge Freeway Weave Merge Merge Diverge Freeway Merge Merge -270 C-D Weave between Montrose Rd Loop I-270 C-D Merge from WB Shady Grove Rd 1-270 C-D Merge from I-270 and Drop Lane I-270 C-D Weave between I-270 (to MD 28 [-270 C-D Merge from I-270 and EB Shady I-270 C-D Weave between MD 28 Ramps I-270 C-D Merge from WB Montrose Rd 1-270 C-D Weave from I-270 to MD 117 I-270 C-D Diverge to EB Montrose Rd 1-270 C-D Diverge to Shady Grove Rd I-270 C-D Weave from I-370 to I-270 I-270 C-D Merge from EB MD 124 I-270 C-D Merge from MD 28 WB I-270 C-D Merge from MD 189 1-270 C-D Diverge to MD 189 I-270 C-D Diverge to MD 124 I-270 C-D Diverge to MD 28 I-270 C-D Merge from I-270 I-270 C-D Diverge to I-270 I-270 C-D Diverge to I-270 I-270 Merge from I-370 EB I-270 C-D Diverge to I-370 1-270 Northbound from MD 189) -270 C-D -270 C-D I-270 C-D I-270 C-D I-270 C-D I-270 C-D I-270 C-D -270 C-D -270 C-D -270 C-D Grove Rd I-270 C-D I-270 C-D I-270 C-D Ramps

Table A.8: AM Peak - Existing - I-270 Vehicle Throughput

Table A.8: AM Peak - Existing - I-270 Vehicle I-270 Northbound	Existing VISSIM Throughput	Alternative VISSIM Throughput	% Change	I-270 Southbound	Existing VISSIM Throughput	Alternative VISSIM Throughput	% Change
Between I-495 and MD 187	4495	4495	0%	North of I-70	2502	2503	0%
Between MD 187 on and off ramps	3999	3999	0%	Between I-70 on ramps	2857	2856	0%
Between Rockledge Blvd on and off ramps	3361	3362	0%	From I-70 interchange to MD-85	4925	4925	0%
Between Rockledge Dr and I-270 Spur	3094	3093	0%	Between MD-85 on and off ramps	2771	2771	0%
Between I-270 Spur and Montrose Rd	8311	8306	0%	Between MD-85 and MD-80	3221	3220	0%
Between Montrose Rd on and off ramps	4705	4697	0%	Between MD-80 on and off ramps	3185	3000	-6%
Between Montrose Rd and MD 189	4376	4374	0%	Between MD-80 and Md-109	3861	3747	-3%
Between MD 189 and MD 28	4381	4375	0%	Between MD-109 on and off ramps	3800	3714	-2%
Between MD 28 on and off ramps	4677	4688	0%	Between MD-109 and MD-121	4257	4231	-1%
Between MD 28 and Shady Grove Rd	3378	3387	0%	Between MD-121 on and off ramps	4043	4073	1%
Between Shady Grove Rd and I-370	2853	2867	0%	Between MD-121 and MD-27	4694	4952	5%
Between I-370 on and off ramps	3129	2860	-9%	Between MD-27 on and off ramps	4342	4868	12%
Between I-370 and MD 117	4195	4198	0%	Between MD-27 and MD-118	4665	5312	14%
Between MD 117 and MD 124	3275	3266	0%	Between MD-118 on and off ramps	4480	5155	15%
Between MD-124 on and off ramps	3278	3269	0%	Between MD-118 and Middlebrook Rd	5032	5760	14%
Between Watkins Mill Rd and Middlebrook Rd	4082	4080	0%	Between Middlebrook Rd on and off ramps	5031	5770	15%
Between Middlebrook Rd on and off ramps	3784	3790	0%	Between Middlebrook Rd and MD-124	6737	7555	12%
Between Middlebrook Rd and MD 118	3344	3344	0%	Between MD-124 on and off ramps	5818	6578	13%
Between MD-118 on and off ramps	3008	3007	0%	Between MD-124 and MD-117	6930	7811	13%
Between MD 118 and MD 27	2831	2832	0%	Between MD-117 and I-370	8479	9491	12%
Between MD-27 on and off ramps	2232	2231	0%	Between I-370 on and off ramps	3024	3301	9%
Between MD 27 and MD 121	2515	2520	0%	Between I-370 on ramp to Shady Grove Rd	4111	4714	15%
Between MD-121 on and off ramps	2211	2223	1%	Between Shady Grove Rd and MD 28	3568	4329	21%
Between MD 121 and MD 109	2420	2428	0%	Between MD 28 on and off ramps	4420	5286	20%
Between MD-109 on and off ramps	2263	2264	0%	Between MD 28 and MD 189	3950	4734	20%
Between MD 109 and MD 80	2363	2369	0%	Between MD 189 and Montrose Rd	3941	4743	20%
Between MD-80 on and off ramps	2126	2123	0%	Between Montrose Rd on and off ramps	4968	5884	18%
Between MD 80 and MD 85	2656	2651	0%	Between Montose Rd and I-270 Spur	8098	9159	13%
Between MD-85 on and off ramps	2016	2018	0%	Between I-270 Spur and Rockledge Blvd	3901	4415	13%
Between MD 85 and I-70	2858	2861	0%	Between Rockledge Blvd on and off ramps	2845	3202	13%
North of I-70	1832	1832	0%	Between MD 187 on and off ramps	2986	3356	12%
				Between MD 187 and I-495	3083	3408	11%
I-270 Spur Northbound				I-270 Spur Southbound			
Between I-495 and Democracy Blvd	5178	5180	0%	Between I-270 Split and HOV on ramp	4233	4857	15%
Between Democracy Blvd on and off ramps	4035	4028	0%	Between HOV on ramp and Democracy Blvd	4165	4794	15%
Between Democracy Blvd and I-270 Split	4304	4294	0%	Between Democracy Blvd on and off ramps	3636	4169	15%
				Between Democracy Blvd and I-495	4140	4685	13%

Table A.9: AM Peak - Existing - I-270 Local Vehicle Throughput

Table A.9: AM Peak - Existing - I-270 L	ocal Vehicle Throu						
I-270 Local Northbound	Existing VISSIM Throughput	Alternative VISSIM Throughput	% Change	I-270 Local Southbound	Existing VISSIM Throughput	Alternative VISSIM Throughput	% Change
Between Montrose Rd EB off ramp and and EB on ramp	2355	2351	0%	Between I-370 on ramp and I-270 off ramp	4068	4904	21%
Between Montrose Rd EB on ramp and WB off ramp	2567	2562	0%	Between I-270 off ramp and Shady Grove off ramp	2942	3511	19%
Between Montrose Rd WB off ramp and on ramp	2151	2145	0%	Between Shady Grove off ramp and Shady Grove WB on ramp	1759	2050	17%
Between Montrose Rd WB on ramp and I- 270 on ramp	3067	3070	0%	Between Shady Grove WB and EB on ramps	2398	2651	11%
Between I-270 on ramp and MD 189 off ramp	3387	3392	0%	Between Shady Grove on ramp and I-270 on ramp	2797	3008	8%
Between MD 189 ramps	2705	2710	0%	Between I-270 on ramp and I-270 off ramp1	3423	3768	10%
Between MD 189 off ramp and I-270 on ramp	3252	3261	0%	Between I-270 off ramp1 and I-270 off ramp2	2902	3208	11%
Between I-270 on ramp and I-270 off ramp	3988	3996	0%	Between I-270 off ramp2 and MD 28 off ramp	2031	2271	12%
Between I-270 off ramp and MD 28 EB off ramp	2948	2953	0%	Between MD 28 off ramp and MD 28 WB on ramp	1466	1636	12%
Between MD 28 EB off ramp to MD 28 EB on ramp	2599	2604	0%	Between MD 28 WB on ramp and MD 28 EB on ramp	1781	1925	8%
Between MD 28 EB on ramp and MD 28 WB off ramp	2664	2688	1%	Between MD 28 EB on ramp and I-270 on ramp	2841	3272	15%
Between MD 28 WB off ramp and MD 28 WB on ramp	1160	1181	2%	Between I-270 on ramp and MD 189 off ramp	3310	3769	14%
Between MD 28 WB on ramp and I-270 on ramp	1631	1652	1%	Between MD 189 on and off ramps	2671	3005	13%
Between I-270 on ramp and I-270 off ramp	2926	2951	1%	Between MD 189 on ramp and I-270 off ramp	3800	4047	7%
Between I-270 off ramp and Shady Grove off ramp	2518	2545	1%	Between I-270 off ramp and Montrose Rd off ramp	2573	2669	4%
Between Shady Grove off ramp and I-270 on ramp	321	322	0%	Between Montrose Rd off ramp and Montrose Rd WB on ramp	2455	2519	3%
Between I-270 on ramp and Shady Grove WB on ramp	1562	1250	-20%	Between Montrose Rd WB on ramp and EB off ramp	3375	3420	1%
Between Shady Grove WB on ramp and I- 270 off ramp	1887	1891	0%	Between Montrose Rd EB off and on ramps	2652	2684	1%
Between I-270 off ramp and I-370 off ramp	1609	1894	18%	Between Montrose Rd EB off ramp and I- 270	3384	3414	1%
Between I-370 off ramp and I-370 EB on ramp	332	611	84%				
Between I-370 EB and WB on ramps	826	1107	34%				
Between I-370 WB on ramp and I-270 off ramp	2397	2675	12%				
Between I-270 off ramp and I-270 on ramp	1334	1336	0%				
Between I-270 on ramp and MD 117 off ramp	2251	2260	0%				
Between MD 117 off ramp and MD 124 off ramp	1034	1033	0%				
Between MD 124 off ramp and MD 124 EB on ramp	98	97	-1%				
Between MD 124 EB and WB on ramps	487	487	0%				
Between MD 124 on ramp I-270	815	813	0%				

Table A.10: AM Peak - Existing - I-270 On Ramp Queue Length - Northbound

Table A.10: AM Peak - Existing - I-270 (la	E * /*	A 34 4*	
	Existing	Alternative	0/	Existing	Alternative	0/
I-270 Northbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
	Average Queue		Change		Maximum	Change
D 11 1 D	(feet)	(feet)	00/	Queue (feet)	Queue (feet)	00/
Rockledge Dr on ramp	0	0	0%	0	0	0%
MD 189 C-D on ramp	0	0	0%	0	0	0%
MD 28 C-D on ramp	0	0	0%	0	0	0%
Shady Grove Rd C-D on ramp	0	0	0%	0	0	0%
I-370 C-D on ramp	0	0	0%	0	0	0%
MD 124 C-D on ramp	0	0	0%	0	0	0%
MD 118 on ramp	0	0	0%	0	0	0%
MD 27 EB on ramp	0	0	0%	0	0	0%
MD 27 WB on ramp	0	0	0%	0	0	0%
MD 121 on ramp	0	0	0%	0	0	0%
MD 109 on ramp	0	0	0%	0	0	0%
MD 80 on ramp	0	0	0%	0	0	0%
MD 85 on ramp	0	0	0%	0	0	0%
	Existing	Alternative		Existing	Alternative	
I-270 Spur Northbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
1 270 Spai 1 tormsound	Average Queue	Average Queue	Change		Maximum	Change
	(feet)	(feet)		Queue (feet)	Queue (feet)	
Democracy Blvd EB on ramp	0	0	0%	0	0	0%
Democracy Blvd WB on ramp	0	0	0%	0	0	0%
	Existing	Alternative		Existing	Alternative	
I-495 Northbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
1 155 TOT THIS GAIL	Average Queue	Average Queue	Change	Maximum	Maximum	Change
	(feet)	(feet)		Queue (feet)	Queue (feet)	
Cabin John Pkwy on ramp	0	0	0%	0	0	0%
MD 190 on ramp	0	0	0%	0	0	0%
	Existing	Alternative		Existing	Alternative	
I-270 C-D Northbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
127002170100	Average Queue	Average Queue	Change	Maximum	Maximum	Change
	(feet)	(feet)		Queue (feet)	Queue (feet)	
Montrose Rd EB on ramp	0	0	0%	0	0	0%
Montrose Rd WB on ramp	0	0	0%	0	0	0%
I-270 on ramp	0	0	0%	0	0	0%
MD 189 on ramp	0	0	0%	0	0	0%
I-270 on ramp	0	0	0%	0	0	0%
MD 28 EB on ramp	0	0	0%	17	6	-65%
MD 28 WB on ramp	0	0	0%	0	0	0%
Shady Grove Rd EB on ramp	0	0	0%	0	0	0%
I-270 on ramp	0	0	0%	0	0	0%
Shady Grove Rd WB on ramp	0	0	0%	0	0	0%
I-370 EB on ramp	0	0	0%	0	0	0%
I-370 WB on ramp	0	0	0%	0	0	0%
I-270 on ramp	0	0	0%	0	0	0%
MD 124 EB on ramp MD 124 WB on ramp	0	0	0% 0%	0	0	0% 0%

Table A.11: AM Peak - Existing - I-270 Off Ramp Queue Length - Northbound

Table A.11. AWI Leak - Existing - 1-270 O	Existing	Alternative		Existing	Alternative	
	VISSIM	VISSIM	%	VISSIM	VISSIM	%
I-270 Northbound						
	Average Queue	Average Queue	Change	Maximum	Maximum	Change
MD 107 CC ND	(feet) 56	(feet) 83	48%	Queue (feet)	Queue (feet) 397	14%
MD 187 off ramp NB						
MD 187 off ramp SB	87	111	28%	439	543	24%
Rockledge Dr off ramp	5	10	100%	316	335	6%
Tower Oaks Blvd off ramp	14	15	7%	165	147	-11%
Montrose Rd off ramp EB	0	0	0%	0	0	0%
Montrose Rd off ramp WB	0	0	0%	0	0	0%
MD 189 off ramp WB	11	11	0%	97	96	-1%
MD 189 off ramp EB	1	3	200%	131	274	109%
MD 28 off ramp EB	48	50	4%	296	290	-2%
MD 28 off ramp WB	1	0	-100%	119	0	-100%
Shady Grove Rd off ramp - Redland Blvd	0	0	0%	0	0	0%
Shady Grove Rd off ramp WB	191	192	1%	620	690	11%
Shady Grove Rd off ramp EB	0	0	0%	0	0	0%
I-370 off ramp WB	0	0	0%	0	0	0%
I-370 off ramp EB	0	0	0%	0	0	0%
MD 117 off ramp	218	249	14%	793	994	25%
MD 124 off ramp	340	422	24%	957	1237	29%
Watkins Mill Rd off ramp*						
Middlebrook Rd EB off ramp	0	0	0%	0	0	0%
Middlebrook Rd WB off ramp	0	0	0%	0	0	0%
MD 118 WB off ramp - Seneca Meadows	0	0	0%	19	4	-79%
MD 118 WB off ramp	0	0	0%	0	0	0%
MD 118 EB off ramp	0	0	0%	0	0	0%
MD 27 off ramp WB	5	6	20%	83	94	13%
MD 27 off ramp EB	0	0	0%	0	0	0%
MD 121 off ramp WB	0	0	0%	37	33	-11%
MD 121 off ramp EB	0	0	0%	0	0	0%
MD 109 off ramp EB	3	2	-33%	97	89	-8%
MD 109 off ramp WB	0	0	0%	0	0	0%
MD 80 off ramp EB	5	5	0%	110	104	-5%
MD 80 off ramp WB	2	0	-100%	34	0	-100%
MD 85 NB off ramp	0	0	0%	0	0	0%
MD 85 SB off ramp	0	0	0%	66	38	-42%
MD 83 SB off famp	Existing	·	070			-4 2/0
	VISSIM	Alternative VISSIM	%	Existing VISSIM	Alternative VISSIM	%
I-270 Spur Northbound	Average Queue	Average Queue	Change	Maximum	Maximum	Change
		0 -	Change	Queue (feet)		Change
Clara Barton Pkwy off ramp EB	(feet)	(feet)	0%	157	Queue (feet) 157	0%
Clara Barton Pkwy off ramp WB	0	0	0%	0	0	0%
MD 190 off ramp EB	0	1	0%	0	114	0%
	0	0		0		
MD 190 off ramp WB	108	105	0%	589	502	0%
Democracy Blvd off ramp WB			-3%			-15%
Democracy Blvd off ramp EB * Ramp in Future Scenario	16	15	-6%	149	123	-17%

^{*} Ramp in Future Scenario

Table A.12: AM Peak - Existing - I-270 On Ramp Queue Length - Southbound

Table A.12. AWI I ear - Existing - 1-270 O	Existing	Alternative		Existing	Alternative	
	VISSIM	VISSIM	%	VISSIM	VISSIM	%
I-270 Southbound	Average Queue	Average Queue	Change	Maximum	Maximum	Change
	(feet)	(feet)	Change	Queue (feet)	Queue (feet)	Change
MD 85 on ramp	0	0	0%	0	0	0%
MD 80 on ramp	575	0	-100%	2307	0	-100%
MD 109 on ramp	66	0	-100%	841	0	-100%
MD 121 WB on ramp	8	0	-100%	263	0	-100%
MD 121 EB on ramp*						
MD 27 WB on ramp	145	0	-100%	1297	0	-100%
MD 27 EB on ramp	1	0	-100%	89	0	-100%
MD 118 WB on ramp	0	0	0%	0	0	0%
MD 118 EB on ramp	0	0	0%	9	0	-100%
Middlebrook Rd on ramp	161	0	-100%	1641	0	-100%
MD 124 WB on ramp	254	0	-100%	2615	0	-100%
MD 117 on ramp	94	1	-99%	1640	88	-95%
I-370 C-D on ramp	805	0	-100%	1861	0	-100%
Shady Grove Rd C-D on ramp North	2	0	-100%	160	0	-100%
Shady Grove Rd C-D on ramp South	68	0	-100%	927	0	-100%
MD 189 C-D on ramp	1393	0	-100%	3991	0	-100%
Montrose Rd C-D on ramp	2	0	-100%	246	81	-67%
Rockledge Dr on ramp	0	0	0%	0	0	0%
MD 187 on ramp	0	0	0%	0	0	0%
	Existing	Alternative		Existing	Alternative	
						0.7
I-270 Spur Southbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
I-270 Spur Southbound	VISSIM Average Queue	VISSIM Average Queue	% Change	VISSIM Maximum	VISSIM Maximum	% Change
		Average Queue (feet)	Change	Maximum Queue (feet)	Maximum Queue (feet)	Change
I-270 Spur Southbound Democracy Blvd on ramp	Average Queue (feet)	Average Queue (feet)		Maximum Queue (feet)	Maximum Queue (feet)	
	Average Queue (feet) 0 Existing	Average Queue (feet) 0 Alternative	Change 0%	Maximum Queue (feet) 0 Existing	Maximum Queue (feet) 9 Alternative	Change 0%
Democracy Blvd on ramp	Average Queue (feet) 0 Existing VISSIM	Average Queue (feet) 0 Alternative VISSIM	Change 0%	Maximum Queue (feet) 0 Existing VISSIM	Maximum Queue (feet) 9 Alternative VISSIM	Change 0%
	Average Queue (feet) 0 Existing VISSIM Average Queue	Average Queue (feet) 0 Alternative VISSIM Average Queue	Change 0%	Maximum Queue (feet) 0 Existing VISSIM Maximum	Maximum Queue (feet) 9 Alternative VISSIM Maximum	Change 0%
Democracy Blvd on ramp I-495 Southbound	Average Queue (feet) 0 Existing VISSIM Average Queue (feet)	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet)	Change 0% Change	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet)	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet)	Change 0% % Change
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10	Change 0% Change	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240	Change 0% Change -76%
Democracy Blvd on ramp I-495 Southbound	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0	Change 0% Change	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0	Change 0% % Change
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative	0%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative	0% % Change -76% 0%
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM	0% Change -96% 0%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM	0% % Change -76% 0%
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp MD 190 on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue VISSIM Average Queue	0% Change -96% 0%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum	0% % Change -76% 0%
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet)	Average Queue (feet) O Alternative VISSIM Average Queue (feet) 10 O Alternative VISSIM Average Queue (feet)	Change 0% Change -96% 0% Change	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet)	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet)	Change 0% Change -76% 0% Change
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet) 2305	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue (feet) 10	Change 0% Change -96% 0% Change -100%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet) 5053	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet) 478	0% % Change -76% 0% Change
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet) 2305 1241	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue (feet) 10 0 10 10 0 10 0 10 0 0	Change % Change -96% 0% Change -100% -100%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet) 5053 2914	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet) 478 51	Change 0% Change -76% 0% Change -91% -98%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet) 2305 1241 1	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue (feet) 10 0 10 0 0 0	Change 0% Change -96% 0% Change -100% -100% -100%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet) 5053 2914 150	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet) 478 51 13	Change 0% Change -76% 0% Change -91% -98% -91%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet) 2305 1241 1 0	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue (feet) 10 0 0 10 0 0 0	Change 0% Change -96% 0% Change -100% -100% -100% 0%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet) 5053 2914 150 29	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet) 478 51 13 32	Change 0% Change -76% 0% Change -91% -98% -91% 10%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp I-270 on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet) 2305 1241 1 0 0	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue (feet) 10 0 0 0 0 0 0	Change 0% Change -96% 0% Change -100% -100% -100% 0%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet) 5053 2914 150 29 39	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet) 478 51 13 32 0	Change 0% Change -76% 0% Change -91% -98% -91% 10% -100%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet) 2305 1241 1 0 0 6	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue (feet) 10 0 0 0 0 0 7	Change 0% Change -96% 0% Change -100% -100% -100% 0% 0% 17%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet) 5053 2914 150 29 39 121	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet) 478 51 13 32 0 56	Change 0% Change -76% 0% Change -91% -91% -91% -100% -54%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet) 2305 1241 1 0 0 6 3166	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue (feet) 10 0 0 0 7 35	Change 0% Change -96% 0% Change -100% -100% -100% 0% 0% 17% -99%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet) 5053 2914 150 29 39 121 3877	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet) 478 51 13 32 0 56 125	Change 0% Change -76% 0% Change -91% -91% -91% -91% -94% -91% -700% -54% -97%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp I-270 on ramp I-270 on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet) 2305 1241 1 0 0 6 3166 0	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue (feet) 10 0 0 0 0 7 35 8	Change 0% Change -96% 0% Change -100% -100% -100% 0% 0% 17% -99% 0%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet) 5053 2914 150 29 39 121 3877 55	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet) 478 51 13 32 0 56 125 315	Change 0% Change -76% 0% Change -91% -98% -91% 10% -100% -54% -97% 473%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 WB on ramp MD 28 EB on ramp I-270 on ramp MD 28 EB on ramp MD 28 FB on ramp I-270 on ramp MD 28 FB on ramp I-270 on ramp MD 28 FB on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet) 2305 1241 1 0 0 6 3166 0 111	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue (feet) 10 0 0 0 0 7 35 8 60	Change 0% Change -96% 0% Change -100% -100% 0% 0% 17% -99% 0% -46%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet) 5053 2914 150 29 39 121 3877 55 1104	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet) 478 51 13 32 0 56 125 315 499	Change 0% Change -76% 0% Change -91% -91% -91% 10% -100% -54% -97% 473% -55%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp I-270 on ramp I-270 on ramp	Average Queue (feet) 0 Existing VISSIM Average Queue (feet) 260 0 Existing VISSIM Average Queue (feet) 2305 1241 1 0 0 6 3166 0	Average Queue (feet) 0 Alternative VISSIM Average Queue (feet) 10 0 Alternative VISSIM Average Queue (feet) 10 0 0 0 0 7 35 8	Change 0% Change -96% 0% Change -100% -100% -100% 0% 0% 17% -99% 0%	Maximum Queue (feet) 0 Existing VISSIM Maximum Queue (feet) 1015 0 Existing VISSIM Maximum Queue (feet) 5053 2914 150 29 39 121 3877 55	Maximum Queue (feet) 9 Alternative VISSIM Maximum Queue (feet) 240 0 Alternative VISSIM Maximum Queue (feet) 478 51 13 32 0 56 125 315	Change 0% Change -76% 0% Change -91% -98% -91% 10% -100% -54% -97% 473%

^{*} Ramp in Future Scenario

Table A.13: AM Peak - Existing - I-270 Off Ramp Queue Length - Southbound

	Existing	Alternative	0/	Existing	Alternative	0/
I-270 Southbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
	Average Queue	Average Queue	Change	Maximum	Maximum	Change
MD 05 CD - ff	(feet)	(feet)	0%	Queue (feet)	Queue (feet)	0%
MD 85 SB off ramp	0	0	0%	0	0	0%
MD 85 NB off ramp	0	1	0%	69	101	46%
MD 80 off ramp	0	0	0%	7	6	-14%
MD 109 off ramp WB MD 109 off ramp EB	0	0	0%	0	0	0%
	1	2	100%	93	108	16%
MD 121 off ramp EB	0	0	0%	0	0	0%
MD 121 off ramp WB	53	61	15%	279	264	-5%
MD 27 off ramp EB	45	7	-84%			-39%
MD 27 off ramp WB				289	175	
MD 118 off ramp EB	31	34	10%	161	156	-3%
MD 118 off ramp WB	0	0	0%	0	0	0%
Watkins Mill Rd off ramp*	7.5	0.2	220/	2.42	262	60/
MD 124 off ramp EB	75	92	23%	342	362	6%
MD 124 off ramp WB	18	24	33%	405	394	-3%
I-370 off ramp WB	0	0	0%	0	0	0%
I-370 off ramp EB	0	0	0%	0	0	0%
Shady Grove Rd off ramp - Omega Drive	6	11	83%	194	244	26%
Shady Grove Rd off ramp	0	0	0%	0	0	0%
MD 28 off ramp	3	6	100%	132	162	23%
MD 189 off ramp EB	40	49	23%	296	324	9%
MD 189 off ramp WB	0	0	0%	0	0	0%
Montrose Rd off ramp WB	0	0	0%	0	0	0%
Montrose Rd off ramp EB	0	0	0%	0	0	0%
Rockledge Dr off ramp	18	55	206%	261	439	68%
	Existing	Alternative		Existing	Alternative	
I-270 Spur Southbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
1-270 Spur Southbound	Average Queue	Average Queue	Change	Maximum	Maximum	Change
	(feet)	(feet)		Queue (feet)	Queue (feet)	
Democracy Blvd off ramp EB	51	60	18%	230	254	10%
Democracy Blvd off ramp WB	0	0	0%	0	0	0%
MD 190 off ramp WB	995	1233	24%	2271	4295	89%
MD 190 off ramp EB	0	0	0%	0	0	0%
Clara Barton Pkwy WB off ramp	0	0	0%	0	0	0%

^{*} Ramp in Future Scenario

Table A.14: AM Peak - Existing - Intersection Delay and Level of Service

Intersection LOS			U						U						В						В							В						U							۷						∢						U					•	∢		
Intersection Delay			33.3						28.8						10.2						19.8							16.1						22.2							2.5						3.5						20.7					ŗ	\		
TOS	ш О «	∀ ш с	O O	7 L 4	: ш ш «	∢ (O < 4	ВВ	4 4 •	∢ ∢ ⋄	4 4 4	Α.	∢ ∢ ं	O 4 <	τ ∢ «	< < <	4 4	: "	9 B <	(ш а	a 4 0	В В	ш	4 ∢	< <	α 🗸 α	n 8 °	< < <	4 4 4	a U «	∢ (O A	4 4	4 4	₹ U (JAr	A	A	< < 0	0 A	∢ ∢ ⋄	∢ ∢ ⋄	4 4 4	∢ ′	2 × ×	∢ ∢	4 4	∢ ∢ <	4 4	g 8	A B C	B B B	2 0 0	C	U 4	∢ .	< < <	: 4 4	4 4	A A	4 4
Max Queue	282	552	552	165	302	302	0 0	0 483	0 0	0 0	000	0	316	0	0 0	000	0 0	, 52	262	146	467	208	111	111	0 0	0 11	115	165	196	544	781	113 0	113	0	226	0 0	0	0	0 0	0	36	0 0	54	0 1	0	0	0	34	269	147	147	312	427	459	123	98	0 0 0	0 0	0	0 87	0 28
Ave. Queue	57	123	123	42	75 75	amp	0 0	98	0 0	0 0	000	0 dwr	0 0	0 0	000	000	0 0	2 2	34 34	23	43	70	17	17	0 0	0 2	12	1 9 0	13	94	d dwa	0	0	0	26	0 0	0 0	0	0 0 1	0	0 0 0	0 0		Q.	1 0 0						13	31	98	117	13	ramp 2	0 0 0	0 0	0 0	1	> 0
Delay at Sam's Club Drive	76 24 6	57	24	81	72 61	270 NB on and off r	0 0	0 15	0 0	0 0	0 0 0	270 SB on and off ra	4 0 2	0 0		000	0 0	at Crestwood Blvd	15	9 77	9	62	56	6 1-270 NB on and rar	0	2-2-15	17	t ∞ c	0 4 (24	-270 SB on and off ra	25	0	0 0	22 2	0 0	0 0 00 00 00 00 00 00 00 00 00 00 00 00	0	7 0 0	0 ,	- I R C	0 %		-270 SB on and off ran	0 0	0 0	0 0	9 6	s 20 C	at Gateway Center I	12	11 17	37	32	33	1- 270 NB on and off	0 0 0	0 0	0	2	0
Volume 1- MD 85	312	110	52 81	47	204	2- MD 85 at I-	0 0	0 547	0 0	0 0	0 0 0	3- MD 85 at I-	812	0 0	000	000	0 0	4- MD 85	585	57	751	19	37	19 7- MD 80 at	3 3 3	183	183	38 38	0 7 2	684	6- MD 80 at I-	22	262	0	241	133	0 0 00 00 00 00 00 00 00 00 00 00 00 00	0	0 0 0	0 0	29	0 40	462	8- MD 80 at I-2	15 0 41	0 0	0	70	109	9- MD 121:	279	577	2 / 88	547	12 21	10- MD 121 at	253	0 0	318	151	0 0
Movement	NB Left NB Through	SB Left	- S S	EB 1	WB Left WB Through	3	NB T	SB TI	SB Right EB Left	EB TI	WB Left WB Through WB Right	NB Left	NB Through NB Right	SB Through	EB Left	EB Right WR I eff	WB Through WB Right	40 01	NB Through	SB Left	SB Right FB Left	EB Through EB Right	WB Left WB Through	WB Right	NB Left	NB Right	SB Through	EB Left	EB Right	WB Through	WB RIGHT	NB Through	NB Right SB Left	SB Through SB Right	EB Through	WB Left	WB Right	NB Left	NB Through NB Right	SB Through	SB Right EB Left	EB Through EB Right	WB Through	WB RIGHT	NB Left NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Through	NB Left	NB Right	SB Through	EB Left FB Through	EB Right WB Left	WB Through WB Right	NB Left	NB Through NB Right SB Left	SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Right
Approach LOS	8	۵	a	Q	Q		Q	8					Φ	Ω					U	۵	2	Ω	Q	a	4	c	В	<	1	8		⋖			O	L	u			A	•	∢	۷		∢			A	∢		∢	U	Q		۵	•	∢		A		∢
Approach Delay	18.8		42.4	44.4	50.7		42.6	14.6					4.3	41.3					15.8	707	7:51	49.1	43.1	1	7	1.1	12.8	0,1	0.	17.2		4.1			23.0	,	47.1			8.3	ć	3.2	0.4		2.5			3.4	3.6		8.4	16.8	33.6		30.3	,	1.7		0.1		9.6
Approach	NB	8	27	EB	WB		NB	SB	í	EB	WB	:	N N	SB	£	3	WB		NB	9	an a	EB	WB		N N N	2	SB	a	9	WB		N N		SB	EB	3	g AA	:	B N	8S	£	EB	WB		B Z	SB		EB	WB		N N	SB	89		WB	ğ	S N	SB	EB		WB
Intersection			1						2						8						4							2						9							7						8						6					ç	01		

Table A.14: AM Peak - Existing - Intersection Delay and Level of Service

			NB Th	0 123	0 0 10	0 0 9	0 0 120	8 × ×		
	7.7	٧	SB Through SB Right	0 46	0 1	0	0	∢ ∢	1.3	∢
	0.4	∢	EB Left EB Through EB Right	25 0 833	0 0	0 0 0	35 0 0	4 4 4	<u> </u>	
	0.1	4	WB Left WB Through WB Right	277	000	0 0 0	0 0	4 4 4		
	084	6	NB U-Turn	12- MD 27 0	at Observation Dr	0 6	0	< 4 u		
	,	,	NB Right SB Left	12 75	7 52	10	64	A Q		
	40.3	2	SB Right EB Left	43 157 149	30	30 52 29	228 263 290	3 O	19.3	æ
	13.0	В	EB Through EB Right	1202	9	38	329	B V		
	20.1	U	WB Leit WB Through WB Right	2047	21 21	138	788	D V		
		(BN F	13- MD 27 a	31 31	12	06	U a		
	30.7	U	NB Through NB Right SB Left	0 0 0	0 0 0	0 0 0	0 0	∢ ∢ ∢		
			SB TI	0	0	0	0	∢ ∢	11.6	Ф
	0.1	۷	EB TI	891	0 0	0 0	0 0	∢ ∢ <		.
	15.7	8	WBT	0 0 2110	0 0 16	0 0	0 0	8 A A		
			WB Right	0 14- MD 27 a	0 It I-270 SB off ramp	0	0	0 4		
			NB Left NB Through	0	0	0	0	4 4		
			NB Right SB Left	376	0 20	0 64	0 293	A Q		
	49.6	Q	SB Through SB Right	0	0	0	0	∢ ∢	24.7	ر
EB	0.6	∢	EB Left EB Through	657	0 6 0	12	192	∢ ∢ <	· ·)
WB	27.5		WB Left	0 0	0 0 22	0 0	0 0	4 4 0		
	5.57	ر	WB Right	0 15- MD 27	0 at Crystal Bock Dr	0	0	<i>y</i> ∢		
	17.8	В	NB Left NB Through	22 819	18	31	405	8 8		
			NB Right SB Left	72	16	926	418	В	, , ,	
	46.4	O	SB Through SB Right	1333 40	40	356 320	1190	О	a a a	c
	44.6	Q	EB Left EB Through	177	49	47	169	Q Q	0.00	2
9			EB Right WB Left	09 8	63	85	273	C E		
	56.0	ш	WB Through WB Right	104	302	85	273	≖ ∢		
	2.6	4	NB Left	123 727	10 3	1 4 4	70	< <		
			NB Right SB Left	79	1 2	8 12	171	∢ ∢		
	3.7	A	SB Through SB Right	808 32	4 2	8	169 202	∢ ∢	, r	٥
	16.9	В	EB Left EB Through	15	59	∞ ∞ ∘	69	ш ч	1.1	
97		6	WB Left	30	65	12	94	Апп		
9 00	44.2	5	WB Right	21 17 MD 118	9	111	113	А		
			NB Left	0 0	0 0	0 0	0 0	< <		
			NB Right		000	000	000	< < <		
			SB Through					< <		
	C		SB right EB Left	222	33 0	o 44 °	277	٠ ١٠ ٠	11.1	В
	03.0	ر	EB Right	000	000	0 0	0 0	∢ ∢ ∢		
	6.0	ď	WB Through	155	1 17	0 0 %	4	< <		
			JUBIN GW	18- MD 118	at I-270 SB off ram	o v	0/7			
			NB Through NB Right	000	0.0	000	000	4 4		
	41.5	Q	SB Left SB Through	193 0	41.5	34	164	Q V		
			SB Right EB Left	0 0	0.0	0 0	0 0	∢ ∢	7.4	۷
	3.1	A	EB Through EB Right	615	3.1	0	135	4 4		
	3.6	Þ	WB Through	1036	3.6	7	209	∢ ∢ <	1	
			NB loft	19-MD1	18 at Aircraft Dr	×	2 77	("		
	45.2	Q	NB Through	12	80	0 8 0	75	1 4 A		
	60.7	ш	SB Left SB Through	241	58	86	368	шш		
			SB Right EB Left	81 102	67	98	368 310	E B	18.1	В
	10.4	В	EB Through EB Right	932	10	28	310 310	В		
	11.5	В	WB Left WB Through	73	17	31	246	B B		
			WB Right	277 20- Middlebroo	4 k Rd at Observatio	31 Dr .	246	∢ .		
			NB Left NB Through	0 0 0	0 0 0	0 0 0	0 0 0	< < <		
	18.7	α	SB Left	22	35	0 4 0	44	۵ ۵		
	18./	x	SB Through SB Right	25	0 4 %	0 4 6	44	4 4 4	16.1	В
	14.2	В	EB Right	865	12 0	31	226	9 B 4	<u> </u>	
			WB I eft			,				
	7.7.1	α	The Theory	0,704,	0 5	0 %	0 0	∀ a	· ·	

Table A.14: AM Peak - Existing - Intersection Delay and Level of Service

	NB				c	c		ď		7	
				NB Through NB Right	0 0	0 0	0 0	0 0	∢ ∢ ⋅		
				SB Through	0 0	0 0	0 0	000	< < <	16.0	α.
Column		11.2	В	EB Left EB Through EB Right	0 805 0	0 0	0 26 0	0 186 0	> B >		a.
		21.3	U	WB Left WB Through WB Right	743 0 0	21 0	0 0	0 0	U 4 4	.	
1		63.1	ш	NB Left NB Through	22- Middlebrook 147 6	Rd at Waring Stati 52 52	on Rd 145 145	449	Q Q		
		21.9	U	SB	342 3 0	88 37 0	145 1 1	449 29 29	D A		
10 10 10 10 10 10 10 10		18.2	В	EB	3 28 1483	7 12 19	2 124 124	67 845 845	8 B A	25.3	U
No. 1984		16.1	В	W N	76 78 682	10 20 16	124 28 28	845 213 213	B C A		
The control of the				>	35 23- MD	4 124 at MD 355	28	213	4 4		
Fig. Color		50.5	D	NB Through NB Right	306 37	42 2	70	196 0	D A		
The control of the		33.5	U	SB	49 966 619	3.86	121 121 34	406 406 375	т Q 4		ı
		99.1	ш	8 8	615 528	255	1024	1207	: L U <	83.6	ш
		122.0	ш	WB V	582 0 1884	5 0 123	921 0 727	1184 0 1112	A A T		
Fig. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,				>	42 24- MD 124 a	68 t I-270 SB on and o	0 1	0	Э.		
Colored Colo		65.0	ш	NB Through	29	64	15	78	ш ш <		
Comparison		27.6	U	SB Left SB Through	306	67	81	347 347	¥ ш ц		
1	- 1			SB Right EB Left	572 0	9	13	335	4 4	22.2	O
Maintent		15.7	В	EB Through EB Right	904	16	41 50	321	B B		
Column		22.0	U	WB Left WB Through	1193	27	116	1390	U U <		
New Benger	_			WB Ngiit	25- MD	117 at MD 124	2 8	277	ξ μ		
Column		42.7	Q	NB Lett NB Through NB Right	421 407	58 26	95	577 641	T E		
Colored Colo		37.8	۵	SB Left SB Through	181 839	47	126 126	605	٥٥٠		
The color of the		48.4	٥	SB Kignt EB Left EB Through	80 1383	2 108 45	175 174	722 723	A ¬ O	43.0	۵
Colored Colo				EB Right WB Left	66 314	44	187	750 332	В		
Fig. 18		40.7	٥	WB Through WB Right	480 95 26-MD 1	27 0 17 at Bureau Dr	108	332	∪ ∢		
State		52.3	۵	NB Left NB Through	18	70	16	93	ш		
EB Left	1	63.4	ш	NB Right SB Left SB Through	25 191 43	21 70 68	80 80	93 297 297	Ј ш ш		
C			٥	SB Right EB Left	28	36	314	962	8 O C	42.3	۵
Mail	-	47.0	a	EB Right	20	59	322 315 195	951	о ш ч		
No. Licht		31.8	O	WB Through WB Right	852 852 316	19 8	195 169	603 651	- 8 ∢		
No Britishing No Britishing State Stat				NB Left	27- MD 117 a	at I-270 SB off ram 0	0 0	0 0	∢ ‹		
Selegition				NB Through NB Right	0 0 0	0 0 0	0 0 0	0 0 0	< < <		
C				SB Through	000	000	000	000	< < <	,	
C We Reight 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	1.8	∢	EB Left EB Through	0 799	0	0 1	0	∢ ∢	8.0	⋖
NB Regit	+	24.0	U	EB Right WB Left WB Through	310	24 0	0 45 0	0 344 0	4 U 4		
NB Left				WB Right	0 28-MD 117 a	0 at I-270 NB off ram	0	0	A		
SB Hrough				NB Left NB Through NB Right	0 0 0	0 0 0	0 0	0 0 0	< < <		
B	1	49.1	۵	SB Left SB Through	307	54	230	811	. O 4		
B Well-life	+	19.4	В	SB Kignt EB Left EB Through	915 10 782	48 111 18	80	888 888 888	O T 8	30.5	U
NB Right 35	_	;		EB Right WB Left	0 0 8	0 0 ;	0 0 1	0 0 3	< < (
NB Left 35 67 14 97 NB Right 31 11 23 117 SB Right 134 72 37 167 SB Right 124 2 37 167 B EB Through 957 3 42 237 WB Right 957 3 42 237 WB Right 957 3 42 237 WB Right 709 10 20 261 WB Right 104 5 20 261 WB Right 0 0 0 0 SB Left 0 0 0 0 EB Left 0 0 0 0 EB Left 0 0 0 0 EB Right 0 0 0 EB Right 0 0 0 0 EB Ri		14.2	۰	WB Right	9 1000	5 17 at Perry Pkwy	55	373	0 ∢		
C SB Right 31 11 23 117		42.5	۵	NB Left NB Through	35	67	14	96	шш		
SB Right		33.88	U	NB Right SB Left SB Through	31 91 13	11 72 72	37	117	8 ш ш		
EB Through 957 3 42 237				SB Right EB Left	124 119	2 69	37	167 237	В	13.6	В
A WERTHOUGH 709 100 20 261 WERRIGHT 104 5 20 261 WERRIGHT 104 5 20 261 NB RIGHT 104 5 20 261 NB RIGHT 0 0 0 0 0 SB Left 0 0 0 0 0 SB Right 0 0 0 0 0 EB Left 0 0 0 0 0 EB Right 0 0 0 0 0 EB Right 0 0 0 0 0 EB Right 0 0 0 0 0 WHINGING 0 0 0 0 0 EB Right 0 0 0 0 0 0 WHINGING 0 0 0 0 0 EB Right 0 0 0 0 0 0 WHINGING 0 0 0 0 0 EB Right 0 0 0 0 0 0 WHINGING 0 0 0 0 WHINGING 0 0 0 0 0		10.3	В	EB Through EB Right	957	m 1 5	42 29	237	< < □		
Second		6.6	¥	WB Left WB Through WB Right	5 709 104	87 10 5	20 20 20	261 261 261	4 A A		
Na Right		20	٩	NB Left	30- Shady Grove 0	Rd at I-270 NB off 0	amp 0	0	∢ ∢		
B SB Through 1284 10 31 344 SB Right 0 0 0 0 0 EB Left 0 0 0 0 0 EB Through 0 0 0 0 0 EB Right 0 0 0 0 0 TEB Right 0 0 0 0 0 TEB Right 0 0 0 0 0 TEB Right 0 0 0 0 0 0 0 TEB Right 0 0 0 0 0 0 0 TEB Right 0 0 0 0 0 0 0 TEB Right 0 0 0 0 0 0 0 0 TEB Right 0 0 0 0 0 0 0 0 TEB Right 0 0 0 0 0 0 0 0 0 TEB Right 0 0 0 0 0 0 0 0 0 0 TEB Right 0 0 0 0 0 0 0 0 0 0 0 0 TEB Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9.5	∢	NB Through NB Right	917	600	21	216	< < <		
EB Through 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10.1	В	SB Through SB Right	1284	10	31	344	∀ B ∀	24.6	C
E WB Left 1008 57 201 631				EB Left EB Through	0	0 0	0 0	0 0	< < <)
E WBThrough 0 0 0		56.8	ı	WB Left	1008	57	201		C	_	

Table A.14: AM Peak - Existing - Intersection Delay and Level of Service

	14.6 B	NB Left	0 0	0	.0	2	1		
В		NB Right SB Left SB Through	1692	0 11	0 46	0	8 P P		
Q		SB Ngnt EB Left EB Through EB Right	313 0 642	0 37 0 48	0 42 0 102	360 0 0 463	A D A	21.0	υ
		WB Left WB Through WB Right	0 0	0 0	0 0	0	A A A		
		NB U-Turn NB Through	32-MD 28 a	1 1-270 SB off ramp	0 0 0	000	< < <		
۵		S S	456	0 44 0 %	72	304	X Q 4 <		
ш		EB EB	1050 663	87 11	1521	2131 2134	K 4 4 8	32.6	U
4		WB Left WB Through WB Right	0 1879 0	0	32 0	0 405 0	4 4 4		
U		NB Left NB Through	213	0 51	54 62	306	A O		
v		SB	139 25 0	11 60 0	62 19 0	315 169 0	В В а		
8			224 224 829 0	28 11	46	333	3 U B 4	17.4	ω
В		WB Left WB Through WB Right	22 887 0	11 12 0	41 29 0	286 249 0	; B B ;		
		NB NB	34- MD 185 62 6	9 at Great Falls Rd 45 42	16	111	0 0		
) <		NB Right SB Left SR Through	99	8 46 40	20	121 162 162	A 0 0		
		SB Right EB Left EB Through	601 325 920	0 16 8	0 114	0 215 229	A 8 A	10.0	В
		EB Right WB Left WB Through WB Right	13 3 315 10	6 21 12 9	26 16 16 27	265 184 184 218	A D B A		
		NB Left	35- MD 18 133	89 at I-270 Ramps 51	25	119	Q		
		NB Through NB Right SB Left	0 0 184	0 0 48	0 0	0 0 316	4 4 Q		
<u> </u>		SB Through SB Right EB Left	0 0 384 529	0 0 20 26	0 0 81	0 0 458 458	A A B D	41.6	۵
		EB Right WB Left	533	0 50	137	497	A O		
		w B Inrougn WB Right	0 36-MD 189	0 0 at Wooton Pkwy	0	0	A		
Q		NB Left NB Through NB Right	129 100 151	52 80 12	52 52 52	178 178 178	D E B		
L.		SB Left SB Through SB Right	385 516 0	105 81 0	294 218 0	792 720 0	ч ч «	58.1	ш
Q		EB Left EB Through EB Right	132 958 95	75 48 23	214 214 214	884 884 884	D C		
۵		WB Left WB Through WB Right	423 390 58	62 27 5	108	314 314 314	D Q		
		NB Left NB Through	37- Montrose F 0 0	Rd at Tower Oaks B	0 0 0	0 0 0	4 4 <		
L.		SB Through	126	40	201	957	(O V		
		EB Left EB Through FB Right	28 1424 0	16	25	421 421 0	- B 4 4	26.1	U
Ą		WB Left WB Through WB Right	0 1443 62	0 6 4	0 26 26	0 286 286	4 4 4		
8		NB Left NB Through	38- Tower Oaks 475 12	16 17.0 17.0	25 19	187	8 B		
		SB Left SB Through SB Right	2 0 2 2	0.0	000	16	< < < <		
В		EB Left EB Through EB Right	7 621 91	11.4	39	282 282 272	B B B	14.8	x
8		WB Left WB Through WB Right	0 84	0.0 12.6 4.2	4 4 0	71 71 0	A 8 A		
		NB Left	39- Montrose F 26	Rd at Tower Oaks Bl 45	21	127			
		NB Right SB Left	297	30 0 70	21 0 128	12/ 0 520 510) E P		
		SB Through SB Right EB Left	605 64 56	26 18 123	127 130 558	519 533 723	C B	61.8	В
		EB Through EB Right WB Left	816 45 362	146 147 48	559 582 77	724 747 299	7 J		
۵		WB Right	231 134	7 7 Thus as and or	91	299 329	0 0 4		
		NB Left NB Through	Rockledge Blvd ar 0 85	32	11 ramp 0 30 30	0 146	A O C		
٧		SB Left SB Through	0 0 986	0 0	9 9	146 75 75)		
U		4-1-10 av	0 2	.0 35	U 109	U 424	C	16.0	В
		SB Right EB Left EB Through FR Right	501 550	50	109	424 0	Q 4		

Table A.14: AM Peak - Existing - Intersection Delay and Level of Service

Intersection LOS				O							ш						ı	a.						Ш						Ç	J						89						٩						В							æ		
Intersection Delay				20.5							195.3						;	44.4						62.8						, , ,	7.77						14.0						6.3						12.4							11.8		
SOT	4 4	¥ 4	4 4	4 4	: 4 <	¥ U w) 4				T 0 .	E E	L L	ш	F	A A	C	4 4	A B	A	A	ч	E	Απ	A	A A	A	В В	В	C	E D	B B	4 4	O	4 4	A A	4 4	B A &	A B A	₫	: 4 4	4 4	: 4 4	4 4	D	A	A A	A D	4 4 4	4 4 4	4 4 4	۷ ۷	шш	л (т ц	- 4	: 4	A	В
Max Queue	25	0	0	0 0	0 0	664	0	1512	1512	2696	2696 895	896 920	2147	2147	435	0 0	590	0	355	355	0	892	268	0 200	700	0	0	380	414	666	180	180	19	165	0	0	0	439	0 176 0	0	0 0	0 0	0 0	274	188	0	0	237	0 0 0	0 0	00;	103	111	111	151	454	477	662
Ave. Queue	1 0	0	0	0 0	0 0	86	0	1149	1149	2547	2547	207	1957 1957	1957 mps	240	0 0	91	0	0	63	ups		63									45	0	amp 26	0	0	0	52 0	21	O dws			0 0	, ,	30	dw			0 0 0	0 0	0 0	+ 0	12	12	27	53	42	46
Delay LI-270 SB on and of	ж C	0	0	0 0	0 0	23	0 at Tuckerman In	172	859	171	192 47	58	243 165	100 70 NB on and off ra	90	0 0	24	0	0	75	70 NB on and off ra	132 0	56	0	0 88	0	0 at Rock Spring Dr	61	16	23	64 54	16 14	-1	vd at I-270 NB off ra 31	0	0	0	13	10	lvd at I-270 SB on ra	0 0	0	0 0	5	37	0 lvd at I-270 SB off ra	0	49	0 2 0	000	0 0	2 0 at Burdette Rd	69	95			5	
Volume - Bockledge Blvd at	68	0	0	0	0 0	986	0 42- MD 187	184	143	1511	177	548 135	702 354	135 43- MD 187 at I-2	153 1250	0	1718	0	0 120	10	37 at I-2		193 1641				MD 187			1837			8 4	47-Democracy Bly	0	0	0	1585	0 736 0	48- Democracy Bl				1691	210	0 49- Democracy Bl	0	334	173	0 0	0 0 22	323 50- MD 19	19	8 41	13	eft 47	15	1437
Movement 41	NB Left	NB Right	SB	S	B.	WB Left	>	- -		SB	SB Right EB Left	3 3	× ×	WB Right	NB Left NB Through	_	SB	EB Left EB Through	" -	§ >	NB Left	NB Through NB Right	SE T	SB EB	EB Through EB Right	WW	WB Right	NB Left NB Through	NB Right SB Left	SB	EB	EB Right WB Left	WB ×	NB Left	NB Through NB Right	SB	,	ш	WB Left WB Through WB Right		NB Through	SB	3 5 -	EB Thro	WB L	WBRi	NB Le	NB Ri	SB Thro	EB Thro	WB L	WBRI	NB Le	NB Rig	SB Thro	EB Left EB Through	EB Rig WB L	WBThr
Approach LOS	4								_	ш		ш	ш		ш		υ			ш		L.	٨		ш			8		C	Q		∢		С			8	ω					٩	A				U			τ	ш		U	٨		8
Approach Delay	2.6	5.0				216		. 000	290.3	172.4	r.	65.2	203.3		67.1		24.4			64.9		131.6	7.5		91.6			19.7		21.0	38.3		4.8		31.2			13.5	10.1					5.0	8.6				33.1		r.	C:3	992	/6.6	33.2	9.6		10.7
Approach	SE SE	QN	SB		EB	WB	!	G A	gN	SB	Ę	EB	WB		NB		SB	EB		WB		NB	SB		EB	WB		NB		SB	EB		WB		NB	SB		EB	WB		NB	88	3	EB	WB		NB		SB	EB	2		a N	NR.	SB	EB		WB
Intersection				41							42	I				1	9	24	1					44						7	7	1					47	L				1	48					1	49		ı			ı		20		

Table A.14: AM Peak - Existing - Intersection Delay and Level of Service

88 88 BB					coid)	Ave. «dede	Max whene	LOS	IIII Section Delay	III CEI SECTIOII FOO
R R R			49° I GIV	51- MD 190 a	51- MD 190 at I-270 NB on ramp		c	<		
88 89			NB Through	0	0	0	0	۷		
SB SB			NB Right	0	0	0	0	۷		
SB BB			SB Left	0	0	0	0	٧		
EB			SB Through	0	0	0	0	A		
EB			SB Right	0	0	0	0	۷	37.1	۵
G L	0	L	EB Left	493	78	233	519	т «		
	0T:/	_	FB Right	0 0	0	0 0	0 0	€ 4		
			WBIeff	0	0	0	0 0	< ∢		
WB	14.6	В	WBThrough	975	15	62	601	: B		
!			WBRight	0	0	0	0	Ā		
				52- MD 190	52- MD 190 at I-270 SB off ramp				-	
			NB Left	251	79		2228	Э		
NB	78.7	Е	NB Through	0	0	0	0	٨		
			NB Right	0	0	0	0	٧		
			SB Left	0	0	0	0	A		
SB			SB Through	0	0	0	0	٧		
			SB Right	0	0	0	0	Α	77 33	α
			EB Left	0	0	0	0	A	14.3	20
EB	2.9	A	EB Through	864	3	9	140	A		
			EB Right	0	0	0	0	A		
			WB Left	0	0	0	0	A		
WB	4.8	Α	WB Through	675	5	9	147	A		
			WB Right	0	0		0	٧		
				53-MD 190	at Seven Locks Rd					
			NB Left	17	29		123	3		
NB	66.4	В	NB Through	44	99		123	Е		
			NB Right	0	0		0	∢ '		
ć	ļ	ı	SB Left	581	29		969	Э		
SB	6/.6	ш	SB Through	145	89 2		969	ч		
			SB Right	13	73		969	3	43.0	٥
É	Č	(EB Left	18	18 25	93	480	U (
EB	29.4	ی	EB Through	781	29		480)		
			EB Right	32	30		480	2		
!			WB Left	121	113		329	L.		
WB	34.1	U	WB Through	642	27		331	υ.		
			WB Right	159			57	A		
_			9-1-014	54- MD 124 a	54- MD 124 at I-270 NB off ramp		ď	4		
į			NB Left	0	0	0	0	Α,		
SA N	84.3	_	NB Inrougn	0	0 8	0	0	۸ı		
			NB RIBUT	920	\$ 0	340	903	- ≪		
g			Sp Leit	0	0	0 0	0	τ <		
3			SB Dight	0	0	0 0	0 0	< <		
			FRIAT	0	0 0	0 0	0 0	< ⊲	95.4	ш
EB	107.9	ш	EB Through	813	108	473	1086	ш		
			EB Right	0	0	0	0	٨		
			WB Left	0	0	0	0	A		
WB			WB Through	0	0	0	0	A		
			WB Right	0	0		0	⋖		
				55- Democracy B	55- Democracy Blvd at I-270 NB off ramp					
2	C	ć	NB Left	0	0	0	0	V «		
Q.	6.70	3	NB HITOURI	900	0 00	717	0	τ c		
			NB NIGHT	076	oc <	717	TOO	> د		
ay.			SB Through	0 0	0 0	0 0	o c	€ 4		
3			SB Right	0	0	0	Ô	₹ ∀	1	
			FRIPH	0	o c	0 0	0 0	€ 4	16.9	В
EB	4.6	Ą	FB Through	1586	o 10	2 22	8	< ⊲		
<u> </u>	!		EB Right	0	0	0	0	: V		
			WB Left	0	0	0	0	A		
WB			WB Through	0	0	0	0	٧		
			WB Right	0	0	0	0	٨		

Table A.15: AM Peak - Existing - Alternative Intersection Delay and Level of Service

ersection Delay Intersection LOS				33.0 C					, xx						11.1 B						19.8 B			_		7.1 A						9.1 A					2.4 A					2.3 A					21.4 C					Q.9	_
LOS In	шО	В	O O	шш	A II	A A	Q A	4 4	В	4 4	4 4 4	A	44.	Φ Δ	(4 4	:	4 4 ·	V I	ш 8 Ф	(ш Ф	A O r	E A E	А	∢ ∢	A B	2	: 4 4	4 4 4	. 8	4 4	4 4 4	В	20 A 80	A	4 4 4	X & B	4 4 4	4 4 4	. ∀	8 Y Y	4 4 4	4 4 4	4 4 4	A A	8 8	A B B	8 B	۵ ۷ ۵	O D	В	4 4	4 4 4	A
ueue Max Queue	237			154		$\frac{\parallel}{\parallel}$					0 0 0		369	271	0 0	0	0					234 234 111	111	0 0	0 110	110 0 162	0 192	340	136	0 136	0 0 0	154	163 0 243	0	0 0 0	107	38	0 0 0	0	89	0 0 0	0 0	46 46 126	101	130	331	331 352 454	1 454 5 487	132 132 155	84	0 0	0 0 0	0
Delay Ave. Q	73 54			72 42 76 42			d off ramp					d off ramp	5 12	46 42		0 0	0 0	Blvd				63 70 9 70 56 16		270 NB on and ramp 0 0 0 0		118 111 2 0 8 7	0 8	8 1 10 30	3B on and off ramp	3 1	0 0 0	0 0 10 10	11 10 0 0 13 18	0 0 NB on and off ramp	0 0 0		3 0		0 0 0 SB on and off ramp				5 0	4 1	teway Center Dr 12 14 13 14	2 18 10 32		44 10: 34 12!	41 22 29 22 6 16	and off ramp			
Volume	102	581	534	81	102 203	12 100	2-MD85 at I-270 N 554	0	548	0 0	000	0 3- MD 85 at I-270 S	814	154	0 0	0	0 0	4- MD 85 at Cr	585	57	751	19 32 37		0 at I-		52	0 7	31 681 503	6- MD 80 at I-270 S	0 250	0 0 0	0 241	133	0 7- MD 109 at I-270 I	0 0 0	119	38 59 0	40 0	0 8- MD 80 at I-270 S	14	41	0 0	70 393	109	9- MD 121 at Ga 95 277	201 47	580	88 548	96 12 21	10- MD 121 at I-270 40	256	0 0 0	210
OS Movement	NB Left NB Through	NB Right SB Left	SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left NB Through	NB Ri	SB Th SB F	EB EB Th	WB Left WB Through	WB Right	NB Left NB Through	NB Right SB Left SR Through	SB Right EB Left	EB Through EB Right	WB Left WB Through	WB Right	NB Left NB Through	SB Left SB Through	SB Right EB Left	EB Through EB Right WB Left	WB Through WB Right	NB Left NB Through	NB Right SB Left	SB Right EB Left	EB Through EB Right	WB Left WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through SB Right	EB Left EB Through	WB Left WB Through	WB Right	NB Through NB Right	SB Through	SB right EB Left EB Through	EB Right WB Left WB Through	WBRight	NB Left NB Through	NB Kignt SB Left SB Through	SB Right EB Left	EB Right WB Left	WB Through WB Right	NB Left NB Through	NB Right SB Left	SB Through SB Right EB Left	EB Through EB Right	WB Left WB Through WB Right	NB Left NB Through	NB Right SB Left	SB Through SB Right EB Left	FR Through
lay Approach L	ω		٥	Q		Δ	٥		В				۷	c	<u> </u>				U	8		٥	Q	∢	c	Δ	∢	4	-	Ą		8	8			Ą	A	⋖	=	4		<	∢	A	∢		U	ш	Q	<	c		٥
h Approach Del	18.3		42.7	44.5		49.2	41.7		14.8				4.5	45.7					15.7	13.8		49.4	43.0	-2.0	,	11.8	7.4	6.2		3.1		11.3	13.4			7.8	3.3	0.3		2.3		0	8.7	2.2	8.5	16.2	16.2	35.5	34.1	1.7	ì		10
ersection Approach	NB		SB	T EB	!	WB	82		SB	EB	WB W		NB	æ	e	EB	WB		BZ Z	SB	4	EB	WB	WP.		28	EB	WB		NB	SB	e EB	WB		NB		7 EB	WB		NB	SB	∞	2	WB	NB ————————————————————————————————————	9	88	В	WB	NB NB	2	SB 10	EB

Table A.15: AM Peak - Existing - Alternative Intersection Delay and Level of Service

	Intersection	Approach	Approach Delay	Approach LOS	Movement	Volume 11- MD 121 at I-27	70 SB on and off rar	Ave. Queue	Max Quene	LUS	Intersection Delay	Intersection LOS
19 19 19 19 19 19 19 19		NB			NB Left NB Through NB Right	0 0 0	0 0 0	0 0 0	0 0 0	4 4 4		
Column		SB	7.8	Ą	SB Through	123	10	9 0	135	Y B Y		
The control of the	11	EB	0.6	4	SB Right EB Left EB Through	47 25 0	2 0	0 0	38	4 4 4	6.9	۷
No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		9			EB Right WB Left	840	6 0	22 0	632	4 4 4		
10 10 10 10 10 10 10 10		9M	1.0	∢	wB Inrougn WB Right	0 0 12- MD 27 at	0 Observation Dr	0 0	0	4 4		
The control of the		S S	48.2	٥	NB U-Turn NB Through	34	0	0 10	0 64	ЕВ		
1971 1971		g	010	c	NB Right SB Left	75	52	23	142	A D		
No. No.	12	95	0.1.4	2	SB Right EB Left	43 158 156	31	52 32	263	J O O	19.6	В
1971 1971		EB	13.7	В	EB Through EB Right	1247	11	33	278 317	B B		
10 10 10 10 10 10 10 10		WB	20.3	U	WB Left WB Through WB Right	83 2047 94	15 21 11	135 135 135	790 790 790 790	В С		
10 10 10 10 10 10 10 10					NB Left	13- MD 27 at	1-270 NB off ramp 30	13	102	U		
19 19 19 19 19 19 19 19		NB	30.2	U	NB Through NB Right	0 0	0 0 0	0 0	0 0	4 4 4		
1971 1971	,	SB			SB Through		000	0 0		€ 4 4	2	<
Mathematical Colored Mathematical Colored	13	EB	0.1	A	EB Left EB Through	942	0 0 0	0 0 0	0 0 0	44.	7.6	∢
1.		W.	137	α	WB Left	0 0	0 0	0 0	0 0	A A R		
100 100			1		WBRight	0 14- MD 27 at	0 I-270 SB off ramp	0	0) A		
14 14 15 15 15 15 15 15		NB			NB Left NB Through	0	0	0	0	4 4		
10 10 10 10 10 10 10 10		ä	7.87	6	NB Right SB Left	427	49	73	278	Α Q 4		
14 14 15 15 15 15 15 15	14	as s	10.0		SB Right FR I off	000		000	000	τ	15.7	ω
14.00 1.5 1.		EB	9.5	٨	EB	929	10	13	205	(4 4		
1.1 1.2		WB	7.9	۷	× ×	1267	0 8 0	25	427	4 4 4		
14.5 14.5						15- MD 27 at	t Crystal Rock Dr	33	387	ς υ		
1979 1970		NB	18.5	В	NB Through	820 72	18	59 62	387	B B B		
10 1 1 1 1 1 1 1 1 1		SB	36.4	Q	SB Left SB Through	430	61 29	232	1244 1244	C		
Mail	15	EB	44.3	Q	SB Right EB Left EB Through	42 177 73	15 49 50	193 47 43	1237 169 164	B Q Q	32.9	O
Mail	•				EB Right WB Left	09	25	44	196 273	C		
15.0 1.5		WB	56.2	ш	WB Through WB Right	21 104 16-MD 118 at Se	302 6 neca Meadows Pkw	85	273	чΑ		
Fig. 1879 A		8Z	3.2	4	NB Left NB Through	123 749	10	1 4	70	A A		
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					NB Right SB Left		1 5	8 2	187	4 4		
Fig. 1859 B CHINGRON C C C C C C C C C	16	SB	œ. œ.	⋖	SB Through SB Right FB Left		2 64	10	171 203 69	Ф Ф	5.4	∢
No. 64 145 December No. 1944 150 151		EB	16.9	В	EB Through EB Right		59	∞ ∞	69	У		
No. No.		WB	43.6	Q	WB Left WB Through WB Right		69	12 8 11	94 93 113	A E		
No. 1970 No. 1970		:			NB Left	D 118 at	1-270 NB on ramp	0 (0	A ·		
Fig. State Stringth Color Co		S N			NB Through NB Right SB Left		0 0 0	000	0 0	4 4 4		
Fig. 22,4 C EREPT 22,2 3,2 4,3 266 10 10 10 10 10 10 10	į	SB			SB Through		0 0	0 0	0 0	(Ç	ć
NB 5.8 A We lifted 1.5 1	, i	EB	32.4	U	EB Left EB Through		32	43	286	O A	10.9	x
No. No.		WB	ω,	4	EB Right WB Left WB Through		0 0 -	0 0 0	0 0 4	ব ব ব		
Fig. 19					WBRight	D 118 at	7 I-270 SB off ramp	15	273	A		
Fig. 60		NB NB			NB Through	0	0.0	0	0 0	4 4 4		
Fig. 18		SB	40.9	0	SB Left SB Through	219	40.9	37	159	A O A		
We	18				SB Right EB Left	0	0.0	0	0	4 4	8.3	∢
WB 4.3 A WB Through WB Right 10.3 1037 4.3 8 182 NB 45.1 D NB Left 10.3 7 0		EB	3.5	⋖	EB Right	0	3.5	200	0	4 4 4		
19- MD 118 at Alterriat Dr 19- MD 118 at Alterriat Dr 15 15 15 15 15 15 15 1		WB	4.3	۷	WB Through WB Right	1037	4.3	8 0	182	€ 4 4		
NB 15.1 10.4 10.2 10.4 10.5 10		Ç.	7		NB Left	19- MD 11	8 at Aircraft Dr 70	∞ 0	75	ıı ı		
EB GO.7 E B Right 41 66 98 368 368 FB Right 81 67 98 368 368 WB 11.1 B EB Right 237 10 28 313 133 WB 11.1 B WB Light 27 9 28 313 27 NB A WB Right 283 3 30 237 237 NB A WB Right 283 3 30 237 237 NB A NB Right 283 3 30 237 237 NB A A 0		g N	45.1		NB Right SB Left	14 241	2 58	86	7.5 2.2 36.8	чΑш		
EB Total Left FB Left FB Left FB Left FB Left 102 13 28 313 31 31 31 31	Ó	SB	60.7	Е	SB Through SB Right	41	99	86	368	п	17.8	α
WB 11.1 B WB Flight 27 3 20 3.13 NB WB Through 924 13 30 237 237 NB WB Right 20-Middlebrook Rd at Observation Dr 0 0 0 0 NB NB Through 0 0 0 0 0 0 NB Right 25 35 4 43 27 276 27 EB 16.2 B SB Right 25 35 4 43 276 WB 16.2 B EB Right 0	O.T.	EB	10.4	В	EB Left EB Through	102 932	13	28	313	8 8 ×	0.	.
NB Right 223 3 3 2 2 2 2 2 2		WW.		æ	WB Left	74	19	30	237	A 8 a		
NB					WBRight	283 20- Middlebrook	3 Rd at Observation	30 Dr	237	2 A		
SB SB Left 22 35 4 43 43 FB SB Though 0 0 0 0 0 0 FB SB Right 25 4 4 4 43 276 FB EB Through 863 15 35 276 276 FB Right 0 0 0 0 0 0 WB Through WB Through 1072 19 69 380 WB Right 215 14 93 429		NB			NB Left NB Through NB Right	0 0	0 0	0 0	0 0	4 4 4		
EB L6.2 B EB LFR 2.2 3.5 2.76 WB 18.0 B EB Through 863 15 3.5 2.76 WB Left 0 0 0 0 0 0 WB Through WB Through 1072 19 69 380 WB Right 215 14 93 429		SB	18.8	В	SB Left SB Through	22 0	35	4 0 0	43	O A «		
18.0 B WB Right 215 14 93 429	20	EB	16.2	В	EB Left EB Through	238	22	35	276 276 276	c O B	17.2	B
18.U B WB Right 215 14 93 429	•	9	ç	c	EB Right WB Left	0 0	0 0 0	0 0	0	4 4 C		
		WB	18.0	В	WB Through WB Right	1072 215	19	69	380	B B		

Table A.15: AM Peak - Existing - Alternative Intersection Delay and Level of Service

	Intersection	Approach	Approach Delay	Approach LOS	Movement	Volume 21- Middlebrook	Delay Rd at I-270 SB on re	Ave. Queue	Max Queue	SOT	Intersection Delay	Intersection LOS
19 19 19 19 19 19 19 19		8 N			NB Left NB Through NB Right	0 0 0	0 0 0	0 0 0	0 0 0	4 4 4		
No. 1985 No. 1985		SB			SB Left SB Through SB Right	0 0 0	0 0 0	0 0 0	0 0 0	4 4 4	;	,
1	21	EB	13.7	В	EB Right	804	0 14 0	0 0	189	X 8 8 A	24.2	U
19 19 19 19 19 19 19 19		WB	35.7	Q	WB Left WB Through WB Right	743	36	153 0 0	1132 0 0	D A A		
No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		8Z	87.6	u.	NB Left NB Through	22- Middlebrook 146 6	Rd at Waring Static 72 78	n Rd 199 199	462	шш		
No. 14.14 1.14	I				1-1 1	337	95	199	462	F O		
No. No.	22	SB	21.6	O	S	3 3	0 7 %	1 2 7	29 67	4 4 a	31.1	U
19 19 19 19 19 19 19 19		EB	20.9	O	8 -	28 1490 76	12 22 11	144 144 144	823 823 823	B C		
No. 1,14		WB	16.8	В		77 681 35	22 17 3	29	199	C B A		
10 10 10 10 10 10 10 10						23- MD 2	124 at MD 355 71	73	204	ш		
10 10 10 11 11 11 11 11	l	NB	51.4	٥	NB Through NB Right	306	42	71 0	202	D A		
1	ć	SB	33.2	U	SB Through	965 619	50	120	415	r O A	;	ı
Mathematical Colored Mathematical Colored	23	EB	103.3	Ŀ	EB Left EB Through	616	263	1064	1205	: ш О «	84.9	ш
No. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	<u>I</u>	WB	122.0	L	EB Right WB Left WB Through	591 0 1885	6 0 123	1047 0 724	1187 0 1116	A A H		
19 10 10 10 10 10 10 10					WB Right	43 24- MD 124 at	71 t I-270 SB on and of	0	0	ш		
13 13 13 15 15 15 15 15		NB	65.2	LL.	NB Through	29	99	15	78	шш «		
1970 1970	1	SB	28.3	U	SB Left SB Through	339	72	86	367	Ұ ш т		
19 1675 19 10 10 10 10 10 10 10	24	1			SB Right EB Left	643	0	17	324	A A	21.6	U
Mail	L_	B	16.6	В	EB Through EB Right	904 67	17	44 53 80	424 448 692	8 8 0		
14 14 15 15 15 15 15 15		WB	18.7	В	WB Right	5	19	80	692	9 B Q		
1, 19, 19, 19, 19, 19, 19, 19, 19, 19,					NB Left	25- MD	117 at MD 124 61	87	553	E		
18 19 19 19 19 19 19 19	1	8 N	34.4	U	NB Through NB Right SB Left		53 14 45	87 19 125	553 463 573	Q 8 Q		
10 10 10 10 10 10 10 10	25	SB	37.2	Q	SB Through SB Right		39	125	573 0	D A	39.5	۵
We		EB	46.6	۵	EB Left EB Through FB Right		106 44 40	169	676	4 O C		
No. No.	1	WB	35.3	Q	WB Left WB Through		63 24	94	300	ш V «		
Mail					WB Ngitt	- MD 1	17 at Bureau Dr	14	63	ξ		
100 101	1	NB NB	44.2	0	NB Through NB Right	18	61	14	93	E B		
Fig. 1845 C	,	SB	61.2	ш	SB Left SB Through SB Right	196 44 28	66 71 12	08	312 312 312	ы н в	· ·	(
Mail	2	EB	34.5	U	EB Left EB Through	27 1915	35	211 212 205	940	٥٧٧)
No.	1	WB	23.9	U	WB Through	301	66 66 14	133	477 478	В п		
Fig. 19 Fig.					WB Right	314 27- MD 117 a	9 at I-270 SB off ramp	111	526	٨		
Signation Sign		8 Z			NB Left NB Through NB Right	0 0	0 0 0	0 0 0	0 0	4 4 4		
Fig.		SB			SB Left SB Through SB Direkt	0 0	0 0 0	0 0 0	0 0	4 4 ¢		
We have 32.3 D We light 317 312 65 423 423 We light 20 0 0 0 0 0 0 We light 20 0 0 0 0 0 0 0 0	27	EB	3.5	۷	EB Left EB Through	008	0 4	0 2	0 148	(A A	11.7	Ф
No. No.		WB	32.3	Q	WB Through	317	32	0 0	423	A D A		
NB NB NB NB NB NB NB NB					WB Right	28- MD 117 ar	t I-270 NB off ramp	0	0	∢		
SB SSEGE EB SRIGHT SERIGHT SERIGHT SERIGHT 307 61 263 1012 1012 WB 21.0 C EB RIPOLOGIA SERIGHT 723 264 267 1014 9 WB 13.6 EB RIPOLOGIA 723 267 267 1014 9 WB 13.6 EB RIPOLOGIA 723 20 9 9 9 WB 13.6 B WB RIPOL WB TRIPOLOGIA 0	I	8N N			NB Through NB Right	00	00	000	00	4 4 4		
Fig. 1, 10 C Fig. Left 3 114 93 958 95		SB	55.6	ш	SB Left SB Through SB Right	307 0	61 0 54	263	1012 0	A D		
WB 13.6 B WB Right (MB Through) (MB Right) (MB	78	EB	21.0	U	EB Left EB Through	9 793	114 20	93	958	т 8 <	33.4	U
NB 43.1 D NB Left 35 MOD 17 at Penry Rhwy 55 MOD 17 at Penry Rhwy 5 MOD 17 at Penry Rhwy 5 MOD 17 at Penry Rhwy 5 MOD 18 mod	1	WB	13.6	В	WB Through	0 098	0 0 14	0 0 49	351	τ α ω ·		
NB 43.1 D NB Through 6 58 14 94					WB right	29- MD 11	5 17 at Perry Pkwy 69	53	382	А п		
SB 33.9 C SB Through SB Right 134 69 37 160 FB 10.1 B EB Left 120 69 37 160 FB 10.1 B EB Hight 120 69 37 160 WB 10.1 B EB Right 95 3 42 307 WB 9.7 WB Left 5 97 20 264 20 WB 27.3 A WB Right 104 5 20 264 NB Right 104 5 97 20 264 264 NB Right 104 5 97 20 264 264 NB Right 104 5 97 20 264 264 NB Right 104 5 20 264 264 264 NB Right 104 5 20 264 264 264 NB Right 0 0	L_	SB B	43.1	0	NB Through NB Right SB I eff	31	58 11 73	14 24 37	94	н В		
EB 10.1 B EB Leff EB Through TOS 120 69 42 307 307 WB 9.7 A WB Through WB Left TOS 79 20 294 297 291 291 A WB Left WB Right 709 10 20 264	29	SB	33.9	U	SB Through SB Right	13	69	37	160	A E	, c	æ
WB 9.7 A WB Left (MB right) 50 97 20 264 <t< td=""><th>1</th><td>EB</td><td>10.1</td><td>В</td><td>EB Left EB Through FB Right</td><td>120 965 9</td><td>69</td><td>42 42 29</td><td>307</td><td>A A</td><td></td><td>1</td></t<>	1	EB	10.1	В	EB Left EB Through FB Right	120 965 9	69	42 42 29	307	A A		1
NB Left 315 76 100 490 100 490 100 490 100 490 100 490 100 490 100 490 100 490 100 490 100 490 100 490 100 490 100 100 490 100 1		WB	5.6	Ą	WB Left WB Through WB Right	5 709 104	97 10 5	20 20 20	264 264 264	A A		
SB 24.5 C SB Left (a) 0		NB	27.3	U	NB Left NB Through	30- Shady Grove 315 974	Rd at I-270 NB off r 76 11	amp 100 100	490	В Е		
SB 14.5 C SB Through 1286 24 81 557 S ST SB Through 1286 24 81 557 S ST SB Through 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1		,	NB Right SB Left	0	0	0	0	A A		
EB Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30	SB	24.5	U	SB Through SB Right EB Left	1286 0 0	24 0	81 0 0	557 0 0	D A A	34.7	U
57.1 E WBThrough 0 0 0 0 0 WBRight 0 0 0 0 0	L	EB			EB Through	0 0 0	0 0	0 0 %	0 0 5	4 4 1		
		WB	57.1	Е	WB Through WB Right	0	0	0	0	A A		

Table A.15: AM Peak - Existing - Alternative Intersection Delay and Level of Service

						, ,					
	NB	18.7	В	NB Through NB Right	921	0	50	340	8 V ·		
1971 1971	SB	15.2	В	SB Through SB Right	0 1700 0	0 15 0	67	0 611 0	A A	976	C
1975 1975	EB	43.5	Q	EB Left EB Through EB Right	370 0 773	40 0 45	94 0 119	511 0 500	O A O	Q.	J.
100 100	WB			WB Left WB Through WB Right	0 0	0	0 0 0	0 0 0	4 4 4		
	82				32-MD 28 at 0	t I-270 SB off ramp 0	0	0 0	∢ ∢		
	8	0	۵		511	43	0 78	334	A 0 <		
14.00 1.00	25	35.6	a	"	0 119 0	3	0 0	0 43 0	A A A	15.3	В
13.1 1. 1. 1. 1. 1. 1. 1	EB	14.4	В	-11	1381 879	18	159	684	8 × ×		
13 13 13 13 13 13 13 13	WB	9.6	∢	-	1877	10	34	392	4 4 4		
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	NB	36.6	٥	Z	0 211	0 52	56	300	A O		
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	SB	21.0	U	S	137 25 0	13 63 0	64 19 0	309 150 0	B E A		
11 1 1 1 1 1 1 1 1	g	310	·	"	260	39	19 87	150 518	B 0	20.3	υ
11 1 1 1 1 1 1 1 1	8	0.17	ر	□	1027 0 22	1/ 0 11	9,	307	B A D		
13 19 19 18 18 18 18 18 18	WB	11.8	В	>	888 0	12 0 0	27	270	В		
1,100 1,10	WB.	40.8	٥	NB Left NB Through	62	45 42	16	111	a a		
134 10 10 10 10 10 10 10 1	!	;		NB Right SB Left	99	8 46	15	121	A Q		
1134 18 18 18 18 18 18 18 1	SB	5.4	⋖	SB Through SB Right	601	40 1	20	186 71	O A a	10.7	Ф
13.4 10.0	EB	11.0	В	EB Left EB Through EB Right	332 938 14	16 9 7	14 19 28	238 274	8 4 4		
15.00 10.0	WB	13.4	8	WB Through	3 3 316	, 19 13	19	214	B B		
1,10 1,10				WB Right	10 35- MD 18	9 9 at I-270 Ramps	30	247	А		
510 510	NB NB	47.8	۵	NB Left NB Through	133	. 48	25	118	0 V <		
State	SB	51.0	Q	SB Left SB Through	207	51 0	63	344	4 Q 4		
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	E		· ·	SB Right EB Left	384	23	0 89	453	4 O C	44.5	۵
430 F Withington 200 141 100	EB	25.3	ט	EB Through EB Right	526	0	0 0	0 700	υ Α α		
150 100	WB	63.4	ш	WB Left WB Through WB Right	288 0	80 0	148 148 0	700	O T A		
1,000, 10, 10, 10, 10, 10, 10, 10, 10,	NB NB	43.0	Q	NB Left NB Through	36- MD 189 129 101	at Wooton Pkwy 52 79	52	183	D		
1959 F St Principal 521 655 77	!			NB Right SB Left	151	11	52	183	B F		
1,000 1,00	SB	95.9	ш	SB Through SB Right	521	85	242 0	775	A A	29.0	ш
1824 1	EB	49.3	Q	EB Left EB Through EB Right	132 962 96	76 48 24	214 214 214	845 845 845	D		
No. 1974 F SSP Hrough 1.0 0 0 0 0 0 0 0 0 0	WB	42.1	۵	WB Left WB Through WB Right	451 420 63	63 26 6	115 115 115	389	A C		
1624 F Salerit 126 48 511 1190 1190 191	:			NB Left	37- Montrose R	td at Tower Oaks Bl	0	0 (∀ .		
1524 F SS Ricouph 1641 190 190 1200 1210	NB			NB Through NB Right SB Left	0 0 126	0 0	0 0	0 0 1190	A A D		
The control of the	SB	162.4	ш	SB Through SB Right	0 531	0 190	0 620	0 1210	A F	2,96	c
10	EB	7.6	Þ	EB Left EB Through EB Right	28 1441 0	15 7 0	24	367 367 0	A A B	į	1
16.6 B	WB	9.5	∢	WB Left WB Through WB Right	0 1443 62	0 10 4	0 26 26	284	4 4 4		
Signeth 26 90 26 168 188 189	NB	16.6	8	NB Left NB Through	38- Tower Oaks 473	Blvd at I-270 off rm 17 15.7	ap 26 20	168	8 B		
State	SB	0.1	Þ	NB Right SB Left SB Through	26 2 0	0.0	26 0	168 13 13	4 4 4		
10.9 E Filtrough 622 244 655 286 E E E E E E E E E				SB Right EB Left	2 7	0.2	0	0 286	В	20.2	U
10.9 B WB Right 7 5.0 0 0 0	EB	24.1	U	EB Through EB Right	622 91	24.4	65	286	o o		
39-Montrose Rd at Tower Oaks Blvd 22 135	WB	10.9	В	WB Lent WB Through WB Right	84	0.0 11.4 5.0	4 4 0	58	A 8 A		
36.7 D SB Left 297 66 118 478 733 67 145.5 EB Left 297 66 118 478 733 745.5 F EB Through 6604 25 117 478 733 744.5 D SB Through 809 147 556 734 733 745.5 F EB Right 46 139 577 758 734 735 73	<u> </u>	7.0	4	NB Left	39- Montrose R 26	td at Tower Oaks Bl 43 30	7d 22	135	Q		
36.7 D SB Through 604 25 117 478	NR	7.6	∢	NB Ihrough NB Right SB Left	188 507 297	99 0 0	22 0 118	135 0 478	C E		
145.5 F EB Lett 3,7 124 554 733 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SB	36.7	Q	SB Through SB Right	604	25 16	117	478 518	C	61.7	ш
41.5 D WB Right 363 50 82 294 WB Right 135 7 95 82 294 WB Right 135 7 95 325 AD Red Holey 135 7 95 325 AD Red Holey 195 34 30 148 NB Right 195 34 30 148 NB Right 0 0 0 0 0 0 SB Left 0 0 0 0 0 SB Right 0 0 0 SB Right 0 0 0 0	EB	145.5	щ	EB Left EB Through FR Right	57 809 46	124 147 139	554 556 577	734	- L		
MB Kight 135 WE Kight 150 M B on and off ramp 148	WB	41.5	Q	WB Left WB Through	363	50	82	294	0 0		
NB Through 86 34 30 148 NB Through 185 34 30 148 NB Right 195 34 30 148 NB Right 0 0 0 0 0 0 0 NB Through 185 4 54 64 156 601 NB Right 629 2 0 0 0 0 0 NB Right 629 2 0 0 0 0 NB Right 629 2 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 0 0 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 0 0 0 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 NB Right 629 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	:			WB KIBITL 40	135 - Rockledge Blvd a	/ rt I-270 NB on and o	cv framp	0	₹		
2.4 A SB Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	NB			NB Through NB Right	86 195	34	30	148	υυ		
30.1 C EB Through 564 61 166 601 EB Through 564 61 166 601 601 EB Right 629 2 0 0 0 WR Through 0 0 0 0 0	SB	2.4	Þ	SB Left SB Through SB Right	982	2 0	9 9 0	99	4 4 4	!	,
EB Right 629 2 0 0 WB Left 0 0 0 0 WR Through 0 0 0 0	EB	30.1	v	SB right EB Left EB Through	5 564	59 61	166 166	601 601	E E	19.5	ш
	2			EB Right WB Left	629	2 0	0	0	A		

Table A.15: AM Peak - Existing - Alternative Intersection Delay and Level of Service

Intersection LOS				v							ц							c	1						ı	<u>.</u>						(υ							'n						4							ω							Φ		
Intersection Delay				21.6							199.6							48.0								90.1						6	33.2							14.0						, ,							13.9							12.5		
FOS	∢ <	A A	4 4	Α «	A A	A C	υ 4	Ŧ	ш ш	4	F	ш.	7 4 4	. 4	F	E	: 4 (A	A A	Αu	A E L		A F	A E	4 4	4 A	ч «	∢ ∢ ⋅	A	F D	υ	υĄ	ш	B B	S A	A	C	A A	4 4	A B	4 4	8 8 V	4	4 4 <	₹ ₹	A A	A A	A O	∢ ∢	4	∢ ∢	D A	4 4	A A	A A	: 4	ш	J 4 4	. 4 4	. 4 A	A	
Max Queue	34	0 0	0	0	0 0	722	0	1561	1561 1561	2704	2704	925	2152	2152	423	423	0	0	0 0	0 404	404		983	308	308	1163	1151	0 0	0	629 629	663	705	177	177	19	0	139	0 0	0 0	0 496	0 0	176 0		000	0	0	269	188	168	0	0	261 0	0	0	139	108	111	111	152	999	689	
Ave. Queue	11 0	0	0	0	0 0	107	0	1213	1213	2542	2542	217	1949	1949	nps 264	264	0 8	0	0	0	8 6 0	sdu S	0 536	99	99	512	567	0 0	0	209	232	103	46	46 46		dμ						21	du	000						du	0							12	28	99	56	
Delay Delay	2	0 0	0	0	0 0	24	0	at Tuckerman Ln 181	265 867	140	191	75	240	100	0 NB on and off ran	77	0 6	0	0 0	0 65	07 0	0 NB on and off ran	189	58	2 0	120	168	0 0	0 at Rock Spring Dr	82 45	31	22	76	16	6	2 d at I-270 NB off ra	31	0	0 0	0 14	0 0	10	d at I-270 SB on ra	000	0	0	0	37	1 0	rd at I-270 SB off ra	0 0	50	0	0	3	2 at Burdette Rd	69	95			4 87	
Volume Bockledge Blvd at						981		MD 187							7 at I-2						10	44- MD 187 at I-27	0 1155	197	1652 0	207	402	0 0	0 45- MD 187 a	185 1158	6	1867	159	196	- 8	4 47-Democracy Blw	211	0	0 0	0	0 0	736	48- Democracy Blv	000	0	0	0 1744	211	0	49- Democracy Blv	0 0	386	205	0	0	324 50- MD 190	19	8 8 41	13	52	16	
Movement	NB Left	NB Inrougn NB Right	SB	S	EB	EB Right WB Left	§ ^		NB Through NB Right	SB	SB Right FB I off	8	WB Left	WB Right		N Z	SB Left	8 0,	EB	ш/	WB Through WB Right			NB Right SB Left	SB Through SB Right	EB Left EB Through	EB Right	_	WB Right	۔	NB Right SB Left	SB Through SB Right	ء ا		£				SB Through SB Right	EB Left EB Through		WB Through	the laft	ے	SB Left	SB Through SB Right	EB Left EB Through	EB Right WB Left	wb Inrougn WB Right	NB Left	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Left WB Through	WB Right	NB Left	50	SB Through	EB Left	EB Right WB Left	
Approach LOS		∢		ı	<u> </u>		٠		<u> </u>	L.		ш				ш		,			ш		L.		⋖	L		1 1		۵		U	۵	<u> </u>	∢		J		<u> </u>	8	ı	æ				1	∢		∢			U		_	∢				U	В		
Approach Delay	23	5.3					8.77		312.4	170.5		66.5	0.000	0.502		77.9	0 6 6	9:57			65.7		189.1		8.0	151.4				50.1		20.4	70 0	45.5	5.8		30.6			13.6		10.2					5.3		8.b			33.3			3.0	}	991	0.07	33.6	10.8		
Approach	a N	n N	SB		EB		MW WB		a N	SB		EB	g/W			NB	a	ñ	EB		WB	_	NB		SB	EB		WB		NB		SB	8	112	WB		NB		SB	EB		WB		NB		SB	EB		WB		NB	SB		EB	WB		q.	92	SB	EB		-
Intersection				41							42		1					43	?						;	4						:	45						!	4/					1	48							49							20		_

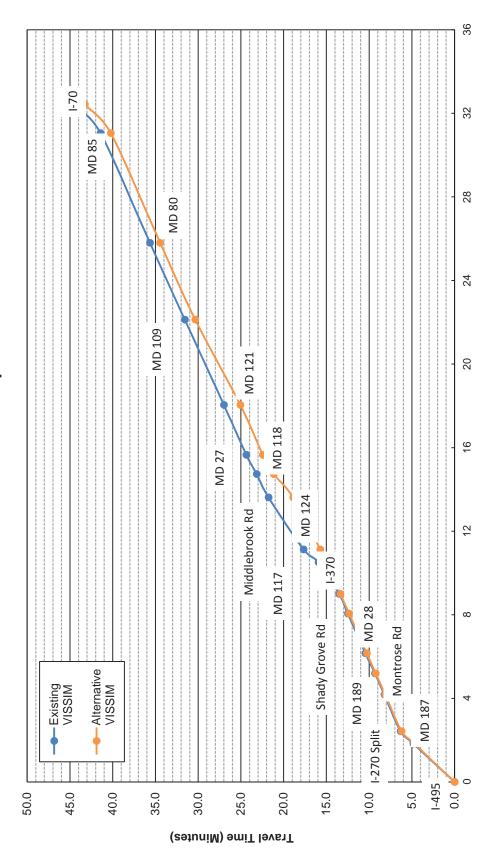
Table A.15: AM Peak - Existing - Alternative Intersection Delay and Level of Service

						(man			200		
				NRIeft	51- MD 190 a	51- MD 190 at I-270 NB on ramp		U	٥		
	NB			NB Through	0	0	0	0	. A		
				NB Right	0	0	0	0	٨		
				SB Left	0	0	0	0	A		
_	SB			SB Through	0	0	0	0	٧		
				SR Right) (0	0	, c	∵ ∀		
	l			FBloff	767	62	229	530	. 4	35.8	Q
	E.	79.1	ш	FR Through	C	2 0	i c	Ĉ.	4		
)	1	ı	FR Right	0	0	0	0	¥		
	Ì			WBleff	0	Ō	0	0	: ∀		
	WB	13.8	89	WB Through	974	14	29	603	: B		
	1		1	WBRight	0	0		0	٥ ٨		
				i i	52- MD 190	52- MD 190 at 1-270 SB off ramp		•			
				the I div	OCT CINI -3C	00	1725	4200	2		
	2	0		ND THEFT	007	8	6277	4730	_ <		
	NB	80.4	_	NB Ihrough	0	0	0	0	Α.		
				NB Right	0	0	0	0	A		
				SB Left	0	0	0	0	A		
	SB			SB Through	0	0	0	0	A		
				SB Right	0	0	0	0	Α	15.2	<u>a</u>
				EB Left	0	0	0	0	٧	7.07	2
	EB	3.0	∢	EB Through	864	3	7	158	A		
				EB Right	0	0	0	0	٨		
				WBleft	0	0	0	0	< <		
_	WB	O. P.	۵	W.B.Through	675	0 14	2	176	. Α		
		2	ζ	W.B. Hillodgii	S	n c		Ĉi c	< <		
	1			W D NIBIL	07			Þ	Į.		
-				3 . 4 . 4	53-MD 190	53-MD 190 at seven Locks Rd		207	ı		
	!	9		NB Left	17	67	16	123	3		
	NB	66.4	ш	NB Through	44	99		123	3		
				NB Right	0	0	0	0	A		
				SB Left	581	29	199	969	Е		
	SB	9.29	ш	SB Through	145	89	199	969	3		
				SB Right	13	73	198	969	3		ſ
				EB Left	18	25	93	480	O	43.5	a
	EB	29.4	U	EB Through	781	59	93	480	O		
				FR Right	32	30	93	480	ر		
	1			WP 164	171	5	115	480) L		
				WB Left	121	122	115	356	⊥ (
	MB	35.6	<u> </u>	WB Through	655	78		359	٠ ر		
				WB Right	164	164 1	1	64	∢		
_		_			54-MD 124	at I-270 NB off ram					
				NB Left	0	0	0	0	A		
	NB	92.6	ш	NB Through	0	0	0	0	A		
				NB Right	899	96	428	1243	F		
				SB Left	0	0	0	0	Α		
	SB			SB Through	0	0	0	0	Α		
				SB Right	0	0	0	0	Y	104.2	ш
				EB Left	0	0	0	0	A	7.101	-
	EB	113.4	ш	EB Through	840	113	509	1068	F		
				EB Right	0	0	0	0	٧		
				WB Left	0	0	0	0	٧		
	WB			WB Through	0	0	0	0	Α		
				WB Right	0	0		0	Α		
_		-			55- Democracy B	55- Democracy Blvd at I-270 NB off ramp				-	
				NB Left	0	0	0	0	A		
	NB	37.2	۵	NB Through	0	0	0	0	A		
				NB Right	926	37	114	514	Q		
				SB Left	0	0	0	0	A		
	SB			SB Through	0	0	0	0	A		
				SB Right	0	0	0	0	A	7.6.7	α.
				EB Left	0	0	0	0	Α		n
	EB	4.8	A	EB Through	1639	2	19	96	A		
				EB Right	0	0	0	0	A		
				WB Left	0	0	0	0	Α		
-	WB			WB Through	0	0	0	0	A		
				WB Right	0	0	0	0	A	_	

Table A.16: AM Peak - Existing - I-270 Vehicle Network Performance

	Existing (Delay Total)	Alternative (Total Total)	% Change
Total Delay	21,906,753	12,776,149	-42%
Average Delay per Vehicle	227	133	-41%
Total Travel Time	51,252,838	43,578,158	-15%
Vehicles (Arrived)	81,275	83,801	3%
Latent Demand	4,969	3,878	-22%
Latent Delay	13,122,672	11,064,927	-16%
Total Distance	467,210	488,881	5%
Average Speed	33	40	23%

PM Peak


Table B.1: PM Peak - Existing - I-270 Vehicle Travel Time

I-270 Northbound	Segment Length (miles)	Existing VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change	I-270 Southbound	Segment Length (miles)	Existing VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change
From I-495 interchange					From I-70				
to MD 187	1.8	290.1	282.7	-2.4%	to MD 85	1.7	92.4	92.4	0.0%
to I-270 Split	0.6	89.3	89.9	1.1%	to MD 80	5.4	301.4	301.2	0.0%
to Montrose Rd	1.8	113.6	114.1	0.0%	to MD 109	3.7	207.9	207.8	0.0%
to MD 189	1.0	66.0	66.9	1.5%	to MD 121	3.6	201.4	202.4	0.5%
to MD 28	1.0	67.1	63.2	-6.0%	to MD 27	2.5	133.7	133.8	0.0%
to Shady Grove Rd	1.9	123.3	124.1	0.8%	to MD 118	1.1	57.6	57.7	0.0%
to I-370	0.9	61.3	60.7	0.0%	to Middlebrook Rd	1.1	60.4	60.4	0.0%
to MD 117	1.5	145.0	101.9	-29.7%	to MD 124	2.2	120.9	121.5	0.8%
to MD 124	0.6	104.3	39.6	-61.5%	to MD 117	0.9	66.4	48.1	-27.3%
to Middlebrook Rd	2.5	246.0	190.1	-22.8%	to I-370	1.0	55.8	65.4	16.1%
to MD 118	1.1	83.6	136.2	61.9%	to Shady Grove Rd	1.5	79.7	80.1	0.0%
to MD 27	0.9	72.2	76.4	5.6%	to MD 28	1.9	109.5	109.7	0.9%
to MD 121	2.4	157.6	157.9	0.0%	to MD 189	1.0	60.1	60.1	0.0%
to MD 109	4.1	274.2	316.3	15.3%	to Montrose Rd	1.0	62.9	62.9	0.0%
to MD 80	3.7	244.9	246.6	0.8%	to I-270 Split	1.9	111.5	111.1	-0.9%
to MD 85	5.3	346.9	346.5	0.0%	to MD 187	0.4	22.8	23.1	0.0%
to I-70	1.4	180.2	181.3	0.6%	to I-495 interchange	1.9	154.8	155.4	0.0%
I-270 Total (miles/minutes)	32.4	44.4	43.2	-2.3%	I-270 Total (miles/minutes)	32.6	31.7	31.6	0.0%
I-270 Spur Northbound					I-270 Spur Southbound				
From Cabin John Pkwy					From I-70				
to MD 190	0.5	105.6	91.1	-14.2%	to I-270 Split	30.3	1,721.6	1,714.6	-0.4%
to I-495	1.1	259.8	234.2	-10.0%	to Democracy Blvd	0.7	135.0	38.9	-71.1%
to Democracy Blvd	1.4	222.8	120.5	-46.2%	to I-495	1.3	466.2	108.5	-76.6%
to I-270 Split	0.9	76.3	56.5	-26.3%	to MD 190	1.3	196.3	199.5	1.5%
to I-70	30.0	2,286.1	2,222.0	-2.8%	to Cabin John Pkwy	0.6	158.2	157.3	-0.6%
I-270 Spur Total (miles/minutes)	34.0	49.2	45.4	-8.2%	I-270 Spur Total (miles/minutes)	34.2	44.6	37.0	-17.8%

Table B.2: PM Peak - Existing - I-270 Local Vehicle Travel Time

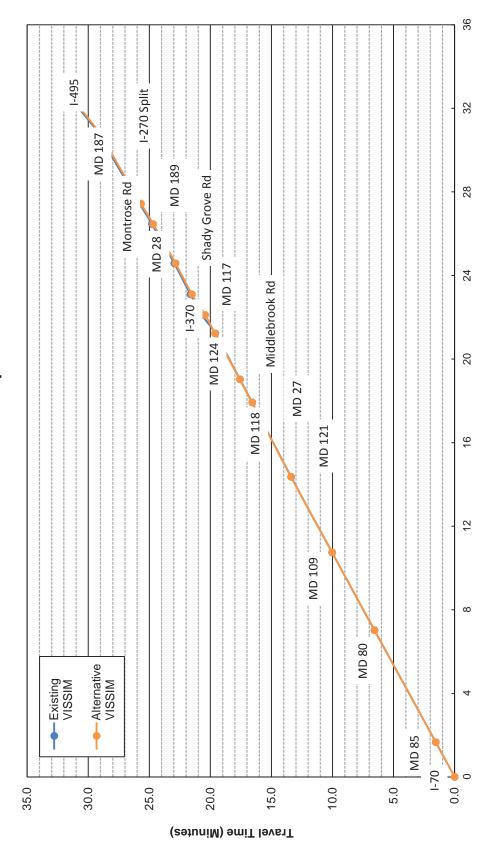

I-270 Northbound	Segment Length (miles)	Existing VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change	I-270 Southbound	Segment Length (miles)	Existing VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change
From C-D start					From C-D start				
to Montrose Rd	0.8	59.3	56.7	-3.4%	to Shady Grove	1.3	81.2	81.9	1.2%
to MD 189	1.3	159.8	105.0	-34.4%	to MD 28	1.8	119.8	119.4	-0.8%
to MD 28	1.0	87.2	74.9	-13.8%	to MD 189	1.1	77.1	72.6	-5.2%
to Shady Grove	2.0	388.8	125.1	-67.9%	to Montrose	1.2	86.4	84.0	-2.3%
to I-370	1.0	92.6	64.0	-31.2%	to I-270 mainline	0.9	59.4	59.5	1.7%
to MD 117	1.2	88.2	110.1	25.0%					
to MD 124	0.8	232.8	77.8	-66.5%					
to I-270 mainline	0.4	91.1	28.3	-69.2%					
I-270 Local Total (miles/minutes)	8.5	20.0	10.7	-45.0%	I-270 Local Total (miles/minutes)	6.3	7.1	7.0	0.0%

Figure B.1: PM Peak - Existing I-270 Travel Time Graph - Northbound

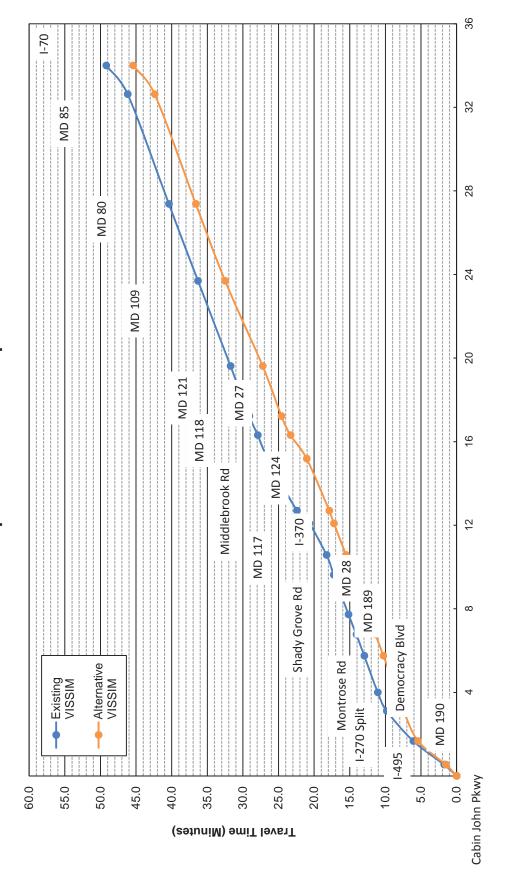

Miles Along Corridor / Direction of Traffic Flow

Figure B.2: PM Peak - Existing I-270 Travel Time Graph - Southbound

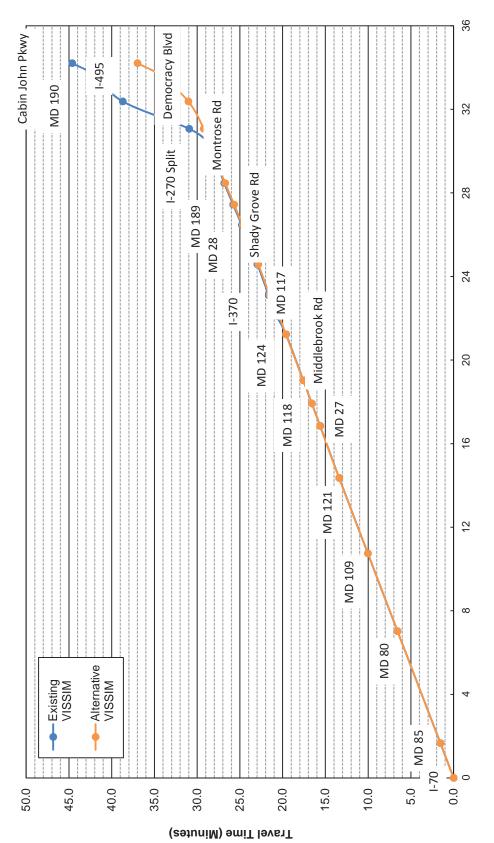

Miles Along Corridor / Direction of Traffic Flow ↓

Figure B.3: PM Peak - Existing I-270 Spur Travel Time Graph - Northbound

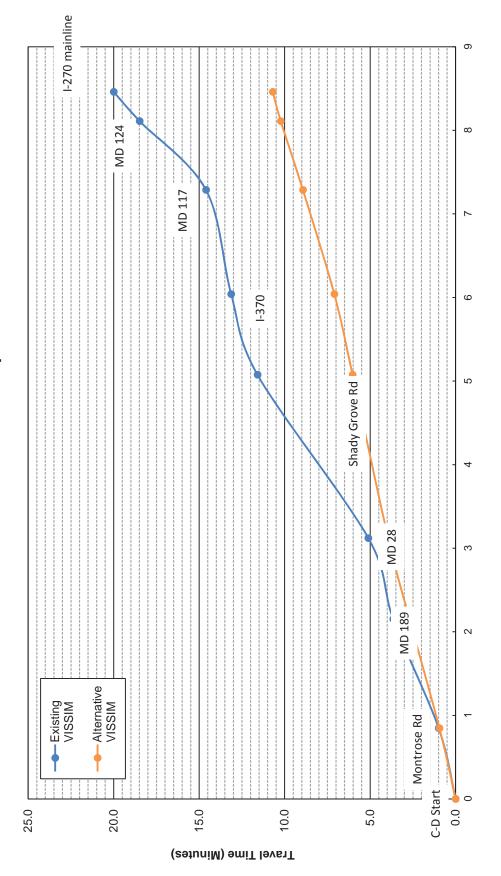

Miles Along Corridor / Direction of Traffic Flow

Figure B.4: PM Peak - Existing I-270 Spur Travel Time Graph - Southbound

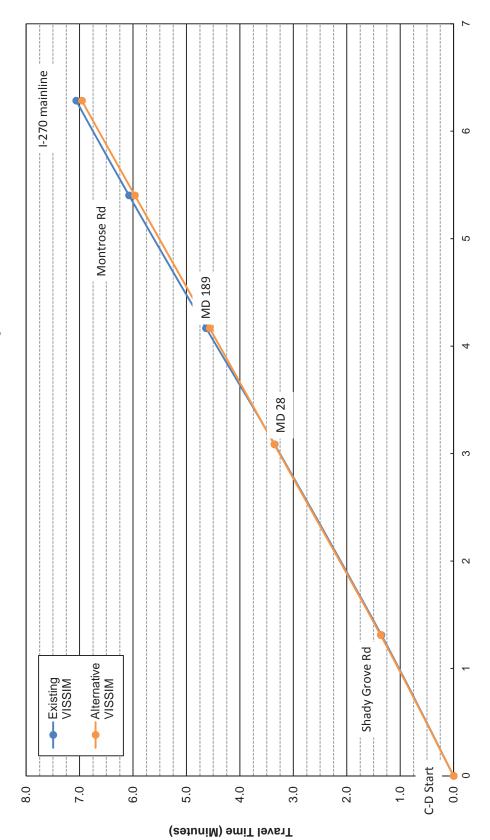

Miles Along Corridor / Direction of Traffic Flow

Figure B.5: PM Peak - Existing I-270 Local Travel Time Graph - Northbound

Miles Along Corridor / Direction of Traffic Flow

Figure B.6: PM Peak - Existing I-270 Local Travel Time Graph - Southbound

Miles Along Corridor / Direction of Traffic Flow

Table B.3: PM Peak - Existing - I-270 Vehicle Speed

1-270 Northbound	Existing VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change	1-270 Southbound	Existing VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change
From I-495 interchange				From I-70			
to MD 187	22.8	23.3	0.0%	to MD 85	64.8	64.8	0.0%
to I-270 Split	23.8	23.6	0.0%	to MD 80	64.0	64.0	0.0%
to Montrose Rd	55.6	55.3	-1.8%	to MD 109	64.4	64.5	0.0%
to MD 189	55.3	54.5	0.0%	to MD 121	64.7	64.4	-1.5%
to MD 28	51.8	54.9	5.8%	to MD 27	66.9	66.8	0.0%
to Shady Grove Rd	55.4	55.1	0.0%	to MD 118	67.0	66.9	0.0%
to I-370	55.5	56.0	1.8%	to Middlebrook Rd	66.2	66.3	0.0%
to MD 117	37.6	53.5	39.5%	to MD 124	65.4	65.1	0.0%
to MD 124	21.1	55.7	166.7%	to MD 117	48.1	66.3	37.5%
to Middlebrook Rd	36.4	47.1	30.6%	to I-370	63.6	54.2	-15.6%
to MD 118	48.3	29.6	-37.5%	to Shady Grove Rd	67.2	66.9	0.0%
to MD 27	45.7	43.1	-6.5%	to MD 28	61.6	61.5	-1.6%
to MD 121	54.7	54.6	0.0%	to MD 189	58.6	58.5	0.0%
to MD 109	53.5	46.4	-14.8%	to Montrose Rd	59.1	59.1	0.0%
to MD 80	54.1	53.7	0.0%	to I-270 Split	60.4	60.7	1.7%
to MD 85	54.5	54.6	0.0%	to MD 187	66.4	65.6	0.0%
to I-70	27.4	27.2	0.0%	to I-495 interchange	44.0	43.8	0.0%
I-270 Spur Northbound				I-270 Spur Southbound			
From Cabin John Pkwy				From I-70			
to MD 190	18.4	21.3	16.7%	to I-270 Split	63.4	63.7	1.6%
to I-495	15.7	17.4	6.3%	to Democracy Blvd	19.5	67.7	257.9%
to Democracy Blvd	23.2	42.8	87.0%	to I-495	10.1	43.4	330.0%
to I-270 Split	42.1	56.9	35.7%	to MD 190	23.0	22.6	0.0%
to I-70	47.2	48.6	4.3%	to Cabin John Pkwy	13.0	13.0	0.0%

Table B.4: PM Peak - Existing - I-270 Local Vehicle Speed

I-270 Northbound	Existing VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change	I-270 Southbound	Existing VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change
From C-D start				From C-D start			
to Montrose Rd	51.3	53.7	5.9%	to Shady Grove	58.1	57.6	0.0%
to MD 189	29.4	44.8	55.2%	to MD 28	53.3	53.5	0.0%
to MD 28	40.0	46.5	15.0%	to MD 189	50.5	53.7	5.9%
to Shady Grove	18.1	56.3	211.1%	to Montrose	51.4	52.9	3.9%
to I-370	37.5	54.3	42.1%	to I-270 mainline	53.5	53.4	0.0%
to MD 117	50.9	40.8	-19.6%				
to MD 124	12.7	38.0	192.3%				
to I-270 mainline	13.8	44.6	221.4%				

Figure B.7: HCM 2010 Density Level of Service Criteria (pc/mi/ln)

HCM 2010 Freeway l	LOS
<11	A
> 11 - 18	В
> 18 - 26	С
> 26 - 35	D
> 35 - 45	Е
> 45	F
HCM 2010 Freeway Merge and Div	erge Segment LOS
< 10	A
> 10 - 20	В
> 20 - 28	С
> 28 - 35	D
> 35 - 40	E
> 40	F
HCM 2010 Freeway Weaving S	Segment LOS
< 10	A
> 10 - 20	В
> 20 - 28	С
> 28 - 35	D
> 35 - 40	Е
> 40	F
HCM 2010 C-D Weaving Se	gment LOS
< 12	A
> 12 - 24	В
> 24 - 32	C
> 32 - 36	D
> 36 - 40	Е
> 40	F

Table B.5: PM Peak - Existing - I-270 Vehicle Density

		Existing		Alternative				Existing	50	Alternative	
I-270 Northbound	Type	Density L	ros	Density LOS	S Change	I-270 Southbound	Type	Density 1	$\frac{1}{1}$ so $\frac{1}{1}$	Density LOS	S Change
022-1	Freeway	47	<u></u>	45 F	-4%	02.21	Freeway	16	Z Z	16 R	%U
1 270 Discount of 197	Dirogga	07	4 [2	27	/07	07 1 GW 25 5 10 1 10 1 10 1 10 10 10 10 10 10 10 10	Mound	13	a a		0/0
1-2/0 Divelge to IND 18/	Diverge	60	4 1	CO	0/0-	I-2/0 Ivierge monn w.b. I-7/0	agiaivi	13	D	d CI	070
I-270	Freeway	73	í,	72 F	-1%	1-270	Freeway	61	C	19 C	%0
I-270 Diverge to Rockledge Rd	Diverge	69	上	65 F	%9-	I-270 Merge from EB I-70	Merge	14	В	14 B	%0
I-270	Freeway	82	F	81 F	-1%	I-270	Freeway	18	C	18 C	%0
I-270 Weave from MD 187 to I-270 HOV	Weave	99	H	56 F	%0	I-270 Diverge to SB MD 85	Diverge	61	В	19 B	%0
I-270 Lane Drop	Merge	65	上	65 F	%0	1-270	Freeway	20	C	20 C	%0
I-270	Freeway	51	ഥ	51 F	%0	I-270 Diverge to NB MD 85	Diverge	12	В	12 B	%0
I-270 Merge from I-270 Spur	Merge	37	E	32 D	-14%	I-270	Freeway	16	В	16 B	%0
I-270 Weave from I-270 HOV to I-270 C-D	Weave	33	D	31 D	%9-	I-270 Merge from MD 85	Merge	14	В	14 B	%0
I-270	Freeway	32	D	27 D	-16%	I-270	Freeway	21	C		%0
I-270 Diverge to C-D (MD 189)	Diverge	37	E	32 D	-14%	I-270 Diverge to MD 80	Diverge	13	В	13 B	%0
I-270	Freeway	32	D		3%	I-270	Freeway		В		%0
I-270 Diverge to C-D (MD 28)	Diverge	38	E	40 E	2%	I-270 Merge from MD 80	Merge	11	В	A 6	-18%
I-270	Freeway	30	D	30 D	%0	I-270	Freeway	20	C	20 C	%0
I-270 Merge from C-D (MD 189)	Merge	41	ഥ	28 C	-32%	I-270 Diverge to MD 109	Diverge	10	В	10 A	%0
I-270 Diverge to C-D (Shady Grove Rd)	Diverge	42	[I	28 D	-33%	I-270	Freeway	19	C	19 C	%0
I-270	Freeway	30	D	30 D	%0	I-270 Merge from MD 109	Merge	11	В	10 B	%6-
I-270 Weave from C-D (MD 28) to C-D (Shady Grove Rd)	Weave	32	D	33 D	3%	1-270	Freeway	20	C	20 C	%0
I-270	Freeway	26	D	27 D	4%	I-270 Diverge to SB Weigh Station	Diverge	10	В	11 B	10%
I-270 Merge from C-D (Shady Grove Rd)	Merge	21	C	19 B	-10%	1-270	Freeway	20	C	20 C	%0
I-270	Freeway	33	D	29 D	-12%	I-270 Merge from SB Weigh Station	Merge	10	В	10 B	%0
I-270 Merge from C-D (I-370)	Merge	32	D	30 D	%9-	I-270	Freeway	19	C	19 C	%0
I-270 Diverge to C-D (MD 117)	Diverge	53	日	38 E	-28%	I-270 Diverge to MD 121	Diverge	7	А	7 A	%0
I-270	Freeway	74	F	30 D	%65-	I-270	Freeway	12	В	12 B	%0
I-270 Merge from C-D (MD 124)	Merge	101	F	30 D	%02-	I-270 Merge from MD 121	Merge	6	А	A 6	%0
I-270	Freeway	36	E	35 E	-3%	I-270	Freeway	14	В	14 B	%0
I-270 Diverge to EB Middlebrook Rd	Diverge	28	D	43 F	54%	I-270 Diverge to MD 27	Diverge	10	А	10 A	%0
I-270	Freeway	34	D	62 F	82%	I-270	Freeway	12	В	12 B	%0
I-270 Diverge to WB Middlebrook Rd	Diverge	30	D	78 F	160%	I-270 Merge from WB MD 27	Merge	11	В	11 B	%0
I-270	Freeway	27	D	54 F	100%	I-270	Freeway	15	В	15 B	%0
I-270 Diverge to EB MD 118	Diverge	24	C	60 F	150%	I-270 Weave from EB MD 27 to MD 118	Weave	12	В	12 B	%0
I-270 Diverge to WB MD 118	Diverge	42	工	82 F	95%	I-270	Freeway	14	В	14 B	%0
I-270	Freeway	33	D	39 E	18%	I-270 Merge from WB MD 118	Merge	12	В	12 B	%0
I-270 Weave from MD 118 to MD 27	Weave	46	F	55 F	20%	I-270	Freeway	17	В	16 B	%9-
I-270	Freeway	26	D	28 D	%8	I-270 Merge from EB MD 118	Merge	15	В	14 B	-7%
I-270 Merge from EB MD 27	Merge	46	F	55 F	20%	I-270	Freeway	20	C	20 C	%0
I-270	Freeway	26	C	26 D	%0	I-270 Merge from Middlebrook Rd	Merge	21	C	20 B	-5%
I-270 Merge from WB MD 27	Merge	20	C	21 C	2%	I-270	Freeway	21	C	20 C	-5%
I-270	Freeway	27	D	28 D	4%	I-270 Diverge to MD 124	Diverge	18	В	16 B	-11%
I-270 Diverge to MD 121	Diverge	21	C	22 C	2%	I-270	Freeway	22	C	14 B	-36%

%99--10% -25% -55% %8-52% 35% %8--5% 0% 2% %0 %0 %9-%0 %0 %0 %0 %0 %0 %0 %0 %0 % %0 %0 Density (pc/mi/ln) 16 35 19 32 16 17 20 18 13 16 12 13 17 8 15 14 21 21 Ω М В Density (pc/mi/ln) 35 44 25 19 16 13 18 22 17 16 22 17 23 20 18 24 33 13 16 1 21 Diverge Freeway Freeway Diverge Freeway Merge Diverge Diverge Diverge Merge Merge Merge -270 Diverge to I-270 C-D (Shady Grove Rd) Diverge Merge Merge Diverge Merge Freeway Freeway Merge Freeway Freeway Freeway Freeway Freeway Freeway Freeway Merge 1-270 Merge from I-270 C-D (Shady Grove 1-270 Merge from I-270 C-D (Shady Grove I-270 Merge from Rockledge Dr / MD 187 1-270 Diverge to Rockledge Dr / MD 187 I-270 Merge from I-270 C-D (MD 189) -270 Diverge to I-270 C-D (MD 189) 1-270 Diverge to I-270 HOV Lane I-270 Merge from Rockledge Dr 1-270 Merge from WB MD 124 I-270 Merge from I-270 (I-370) I-270 Merge from I-270 C-D I-270 Diverge to I-270 C-D I-270 Diverge to I-270 Spur I-270 Merge from MD 117 I-270 Diverge to I-370 I-270 Southbound Rd Northern) Rd Southern) I-270 1-2701-2701-2701-270%88 %9 %5-2% %0 %0 %0 %0 3% %0 3% %0 %0 2% %0 %0 **%9** %9 3% %0 %0 %0 %0 LOS Q О (pc/mi/ln) Density 23 25 75 35 17 36 19 33 18 35 25 29 34 34 34 19 32 28 9 ros Ω О О Q Q Existing (pc/mi/ln) Density 16 36 91 28 40 35 20 33 17 34 24 29 33 19 59 Table B.5: PM Peak - Existing - I-270 Vehicle Density Diverge Merge Diverge Diverge Freeway Merge Freeway Diverge Diverge Merge Freeway Diverge Freeway Merge Freeway Freeway Merge Freeway Freeway Freeway Weave Freeway Freeway Freeway Merge I-270 Merge from NB Weight Station I-270 Diverge to NB Weigh Station I-270 Weave from MD 85 to I-70 I-270 Merge from Scenic View I-270 Merge from EB MD 121 I-270 Diverge to Scenic View I-270 Diverge to NB MD 85 I-270 Diverge to SB MD 85 I-270 Merge from MD 109 1-270 Diverge to MD 109 I-270 Merge from MD 80 I-270 Diverge to MD 80 1-270 Northbound I-270 Lane Drop I-270 I-270 I-270 1-2701-270I-270

Change -84% %88--83% -82% %/9-%9 2% %0 %5 %0 4% %0 %0 %0 % %0 %0 Density (pc/mi/ln) 16 40 49 9 12 13 49 69 94 83 72 24 93 (pc/mi/ln) Density 134 123 124 53 9/ 95 48 49 99 93 94 9 83 72 Diverge Weave Merge Freeway Freeway Diverge Freeway Merge Freeway Diverge Merge Freeway Freeway Freeway Merge Merge 1-270 Diverge to WB Clara Barton Pkwy 1-270 Spur Diverve to Cabin John Pkwy 1-270 Spur Weave from I-270 HOV to I-270 Merge from Clara Barton Pkwy I-270 Merge from Democracy Blvd I-270 Spur Diverve to EB MD 190 I-270 Spur Merge from I-495 I-270 Merge from MD 190 I-270 Spur Lane Drop F-270 Southbound Democracy Blvd I-270 Spur I-270 Spur I-270 Spur I-270 Spur I-270 Spur I-270 Spur Change -27% -26% -20% -10% -12% -51% -50% -78% %09--36% %6-%9-%9--5% -3% % **FOS** Alternative (pc/mi/ln) Density 36 46 59 38 8 78 62 24 26 22 26 25 24 91 ros Q (pc/mi/ln) Density 45 43 78 95 94 83 65 49 28 86 28 39 35 51 65 Table B.6: PM Peak - Existing - I-270 Spur Vehicle Density Freeway Merge Freeway Diverge Merge Freeway Merge Freeway Merge Freeway Freeway Diverge Freeway Merge Freeway Merge Freeway Merge Type -270 Spur Merge from Clara Barton Parkway I-270 Spur Merge from WB Democracy Blvd 1-270 Spur Merge from Cabin John Parkway 1-270 Spur Merge from EB Democracy Blvd 1-270 Spur Merge from Westlake Terrace I-270 Spur Diverge to Democracy Blvd I-270 Spur Merge from MD 190 I-270 Spur Diverge to I-495 I-270 Diverge to MD 190 **I-270 Spur Northbound** I-270 Spur I-270 Spur I-270 Spur -270 Spur I-270 Spur I-270 Spur I-270 Spur

Table B.7: PM Peak - Existing - 1-270 Local Vehicle Density

		Existing	50	Alternative	ve				Existing	gu	Alternative	ve	
I-270 Northbound	Type	Density (nc/mi/ln)	SO	Density I	SOT	% Change	I-270 Souhbound	Type	Density (nc/mi/ln)	SOT	Density Dec/mi/ln)	LOS Ch	% Change
I-270 C-D	Freeway	29	D	30	D	3%	I-270 C-D	Freeway		A	∞	0	%0
3 Montrose Rd	Diverge	20	В	21	C	%5	I-270 C-D Weave from I-370 EB to I-270	Weave	15	В	15	B 0	%0
I-270 C-D		17	В	17	В	%0	I-270 C-D Diverge to Shady Grove Rd	Diverge	10	A	11	B 1(10%
I-270 C-D Weave between Montrose Rd Loop Ramps	Weave	12	A	12	В	%0	I-270 C-D	Freeway	7	А	7	0 V	%0
I-270 C-D	Freeway	20	C	19	C	-2%	I-270 C-D Merge from WB Shady Grove Rd	Merge	6	А	6	0 V	%0
I-270 C-D Merge from WB Montrose Rd	Merge	52	F	34	D	-35%	I-270 C-D	Freeway	15	В	14	-7 B	-7%
I-270 C-D	Freeway	51	F	42	E	-18%	I-270 C-D Merge from EB Shady Grove Rd	Merge	11	В	11	B 0	%0
I-270 C-D Merge from I-270	Merge	99	Ъ	51	F	-23%	I-270 C-D	Freeway		С	21	C 0	%0
I-270 C-D	Freeway	51	F	43	E	-16%	I-270 C-D Merge from I-270	Merge	25	C	17	В -3	-32%
I-270 C-D Diverge to MD 189	Diverge	31	D	21	C	-32%	I-270 C-D Diverge to I-270	Diverge		C	17	В -3	-35%
I-270 C-D	Freeway	29	F	27	D	%09-	I-270 C-D Diverge to I-270	Diverge	18	В	17	В -(%9-
I-270 C-D Merge from MD 189	Merge	94	F	21	C	-78%	I-270 C-D	Freeway	16	В	16	B 0	%0
I-270 C-D	Freeway	49	F	20	C	-29%	I-270 C-D Diverge to MD 28	Diverge	12	В	11	B -8	-8%
I-270 C-D Weave between I-270 (to MD 28 from MD 189)	Weave	57	ГL	30	C	-47%	I-270 C-D	Freeway	111	А	10	Q-	%6-
I-270 C-D	Freeway	48	F	37	E	-23%	I-270 C-D Merge from WB MD 28	Merge	13	В	12	B -8	-8%
I-270 C-D Diverge to MD 28	Diverge	20	В	48	上	140%	I-270 C-D	Freeway	13	В	13	B 0	%0
I-270 C-D	Freeway	31	D	38	E	23%	I-270 C-D Merge from EB MD 28	Merge		C	22	C -1.	-12%
I-270 C-D Weave between MD 28 Ramps	Weave	28	C	30	C	2%	I-270 C-D	Freeway	29	D	18	В -3	-38%
I-270 C-D	Freeway	18	C	19	C	%9	I-270 C-D Merge from I-270	Merge	35	E	19	В -4	-46%
I-270 C-D Merge from MD 28 WB	Merge	13	В	14	В	%8	I-270 C-D	Freeway	40	E	22	C -4	-45%
I-270 C-D Merge from I-270 and Drop Lane	Merge	18	В	17	В	%9-	I-270 C-D Diverge to MD 189	Diverge	24	C	23	C -4	-4%
to I-270	Diverge	25	C	25	C	%0	I-270 C-D	Freeway	25	C	25	C 0	%0
I-270 C-D	Freeway	39	E	20	C	-46%	I-270 C-D Merge from MD 189	Merge	23	C	20	C -1	-13%
I-270 C-D Diverge to Shady Grove Rd	Diverge	14	В	13	В	-7%	I-270 C-D Diverge to I-270	Diverge	32	D	20	C -3	-38%
I-270 C-D	Freeway	111	F	14	В	-87%	I-270 C-D	Freeway	22	C	22	C 0	%0
I-270 C- D Merge from I-270 and EB Shady Grove Rd	Merge	116	F	12	В	%06-	I-270 C-D Diverge to WB Montrose Rd	Diverge	16	В	15	В -(%9-
I-270 C-D	Freeway	112	F	17	В	-85%	I-270 C-D	Freeway	20	C	20	C 0	%0
I-270 C-D Merge from WB Shady Grove Rd	_	108	F	56	C	-24%	I-270 Weave between Montrose Rd Loops	Weave	35	D	31	C -1	-11%
I-270 C-D Diverge to I-270	Diverge	06	노	30	D	%29-	I-270 C-D	Freeway	15	В	15	0 B	%0
I-270 C-D	Freeway	09	ഥ	32	D	-47%	I-270 C-D Merge from EB Montrose Rd	Merge	6	А	6	0 V	%0
I-270 C-D Diverge to I-370	Diverge	28	C	33	D	18%	I-270 C-D	Freeway	18	В	17	-(В	%9-
I-270 C-D	Freeway	10	A	14	В	40%							
I-270 Merge from I-370 EB	Merge	11	В	13	В	18%							
I-270 C-D	Freeway	19	C	23	C	21%							
I-270 C-D Weave from I-370 to I-270	Weave	27	C	29	C	7%							
I-270 C-D	Freeway	22	C	30	D	36%							
I-270 C-D Weave from I-270 to MD 117	Weave	33	Q	50	ı,	52%							
I-270 C-D Diverge to MD 124	Diverge	39	田	41	Ľ,	2%							
I-270 C-D	Freeway	55	H	10	A	-82%							
1-270 C-D Merge from EB MD 124	Merge	96	TT T	12	m m	-88% 75%							
	26.22.	5		Q1	1								1

Table B.8: PM Peak - Existing - I-270 Vehicle Throughput

Table B.8: PM Peak - Existing - I-270 Vehicle								
	Existing	Alternative	%	Data		Existing VISSIM	Alternative	%
I-270 Northbound	VISSIM	VISSIM	Change	Collection	I-270 Southbound	Throughput	VISSIM	Change
	Throughput	Throughput	_	Measurement		0.1	Throughput	Ü
Between I-495 and MD 187	4350	4346	0%	100	North of I-70	1975	1976	0%
Between MD 187 on and off ramps	3888	3879	0%	102	Between I-70 on ramps	2287	2288	0%
Between Rockledge Blvd on and off ramps	3666	3652	0%	105	From I-70 interchange to MD-85	3429	3428	0%
Between Rockledge Dr and I-270 Spur	3880	3866	0%	108	Between MD-85 on and off ramps	2006	2006	0%
Between I-270 Spur and Montrose Rd	8718	8917	2%	110	Between MD-85 and MD-80	2633	2632	0%
Between Montrose Rd on and off ramps	5750	5870	2%	112	Between MD-80 on and off ramps	2093	2094	0%
Between Montrose Rd and MD 189	5477	5595	2%	114	Between MD-80 and Md-109	2457	2457	0%
Between MD 189 and MD 28	5905	6021	2%	116	Between MD-109 on and off ramps	2395	2396	0%
Between MD 28 on and off ramps	6240	6360	2%	118	Between MD-109 and MD-121	2521	2519	0%
Between MD 28 and Shady Grove Rd	5494	5605	2%	120	Between MD-121 on and off ramps	2351	2348	0%
Between Shady Grove Rd and I-370	4789	4882	2%	123	Between MD-121 and MD-27	2723	2727	0%
Between I-370 on and off ramps	4814	4564	-5%	126	Between MD-27 on and off ramps	2890	2897	0%
Between I-370 and MD 117	6142	6408	4%	129	Between MD-27 and MD-118	3164	3164	0%
Between MD 117 and MD 124	4713	5147	9%	133	Between MD-118 on and off ramps	3197	3196	0%
Between MD-124 on and off ramps	4706	5238	11%	136	Between MD-118 and Middlebrook Rd	3798	3792	0%
Between Watkins Mill Rd and Middlebrook Rd	6115	6749	10%	139	Between Middlebrook Rd on and off ramps	3796	3796	0%
Between Middlebrook Rd on and off ramps	5713	6204	9%	142	Between Middlebrook Rd and MD-124	4826	4792	-1%
Between Middlebrook Rd and MD 118	4798	5166	8%	146	Between MD-124 on and off ramps	3765	3739	-1%
Between MD-118 on and off ramps	4409	4696	7%	150	Between MD-124 and MD-117	4938	4939	0%
Between MD 118 and MD 27	4456	4703	6%	154	Between MD-117 and I-370	6461	6452	0%
Between MD-27 on and off ramps	2842	3003	6%	159	Between I-370 on and off ramps	3327	3326	0%
Between MD 27 and MD 121	3330	3493	5%	163	Between I-370 on ramp to Shady Grove Rd	4663	4659	0%
Between MD-121 on and off ramps	2574	2704	5%	167	Between Shady Grove Rd and MD 28	4984	4964	0%
Between MD 121 and MD 109	3787	3827	1%	171	Between MD 28 on and off ramps	5158	5136	0%
Between MD-109 on and off ramps	3547	3569	1%	175	Between MD 28 and MD 189	4536	4514	0%
Between MD 109 and MD 80	3657	3681	1%	179	Between MD 189 and Montrose Rd	4527	4505	0%
Between MD-80 on and off ramps	3096	3134	1%	183	Between Montrose Rd on and off ramps	5414	5383	-1%
Between MD 80 and MD 85	3596	3614	1%	187	Between Montose Rd and I-270 Spur	7201	7213	0%
Between MD-85 on and off ramps	3046	3069	1%	193	Between I-270 Spur and Rockledge Blvd	3293	3281	0%
Between MD 85 and I-70	4867	4881	0%	197	Between Rockledge Blvd on and off ramps	2549	2541	0%
North of I-70	2562	2583	1%	200	Between MD 187 on and off ramps	3017	2991	-1%
				203	Between MD 187 and I-495	3372	3348	-1%
I-270 Spur Northbound					I-270 Spur Southbound			
Between I-495 and Democracy Blvd	4608	4885	6%	600	Between I-270 Split and HOV on ramp	3113	3355	8%
Between Democracy Blvd on and off ramps	4128	4393	6%	603	Between HOV on ramp and Democracy Blvd	2461	3334	35%
Between Democracy Blvd and I-270 Split	4849	5114	5%	607	Between Democracy Blvd on and off ramps	1970	3009	53%
				610	Between Democracy Blvd and I-495	2297	3621	58%

Table B.9: PM Peak - Existing - 1-270 Local I-270 Local Northbound	l Vehicle Throu Existing VISSIM Throughput	ghput Alternative VISSIM Throughput	% Change	Data Collection Measurement	I-270 Local Southbound	Existing VISSIM Throughput	Alternative VISSIM Throughput	% Change
Between Montrose Rd EB off ramp and and EB on ramp	1881	1921	2%	800	Between I-370 on ramp and I-270 off ramp	2740	2736	0%
Between Montrose Rd EB on ramp and WB off ramp	2172	2212	2%	804	Between I-270 off ramp and Shady Grove off ramp	1420	1414	0%
Between Montrose Rd WB off ramp and on ramp	1921	1950	2%	807	Between Shady Grove off ramp and Shady Grove WB on ramp	764	762	0%
Between Montrose Rd WB on ramp and I- 270 on ramp	3366	3427	2%	809	Between Shady Grove WB and EB on ramps	1543	1507	-2%
Between I-270 on ramp and MD 189 off ramp	3611	3712	3%	811	Between Shady Grove on ramp and I-270 on ramp	2168	2133	-2%
Between MD 189 ramps	2908	2999	3%	813	Between I-270 on ramp and I-270 off ramp1	2660	2620	-2%
Between MD 189 off ramp and I-270 on ramp	3782	3885	3%	815	Between I-270 off ramp1 and I-270 off ramp2	1854	1829	-1%
Between I-270 on ramp and I-270 off ramp	4472	4591	3%	817	Between I-270 off ramp2 and MD 28 off ramp	1681	1658	-1%
Between I-270 off ramp and MD 28 EB off ramp	3481	3588	3%	819	Between MD 28 off ramp and MD 28 WB on ramp	1149	1132	-1%
Between MD 28 EB off ramp to MD 28 EB on ramp	3133	3224	3%	821	Between MD 28 WB on ramp and MD 28 EB on ramp	1401	1386	-1%
Between MD 28 EB on ramp and MD 28 WB off ramp	3262	3354	3%	823	Between MD 28 EB on ramp and I-270 on ramp	2908	2874	-1%
Between MD 28 WB off ramp and MD 28 WB on ramp	2023	2073	2%	825	Between I-270 on ramp and MD 189 off ramp	3530	3504	-1%
Between MD 28 WB on ramp and I-270 on ramp	2725	2774	2%	827	Between MD 189 on and off ramps	2601	2583	-1%
Between I-270 on ramp and I-270 off ramp	3565	3634	2%	829	Between MD 189 on ramp and I-270 off ramp	3166	3141	-1%
Between I-270 off ramp and Shady Grove off ramp	2136	2222	4%	831	Between I-270 off ramp and Montrose Rd off ramp	2280	2264	-1%
Between Shady Grove off ramp and I-270 on ramp	673	791	18%	833	Between Montrose Rd off ramp and Montrose Rd WB on ramp	2039	2026	-1%
Between I-270 on ramp and Shady Grove WB on ramp	3348	2926	-13%	835	Between Montrose Rd WB on ramp and EB off ramp	2605	2587	-1%
Between Shady Grove WB on ramp and I- 270 off ramp	4148	4366	5%	838	Between Montrose Rd EB off and on ramps	1525	1510	-1%
Between I-270 off ramp and I-370 off ramp	3663	4254	16%	840	Between Montrose Rd EB off ramp and I-270	1846	1833	-1%
Between I-370 off ramp and I-370 EB on ramp	1138	1592	40%					
Between I-370 EB and WB on ramps	2096	2549	22%					
Between I-370 WB on ramp and I-270 off ramp	3687	4140	12%					
Between I-270 off ramp and I-270 on ramp	2254	2292	2%					
Between I-270 on ramp and MD 117 off ramp	3661	3721	2%					
Between MD 117 off ramp and MD 124 off ramp	2448	2487	2%					
Between MD 124 off ramp and MD 124 EB on ramp	479	500	4%					
Between MD 124 EB and WB on ramps	943	1014	8%					
Between MD 124 on ramp I-270	1427	1513	6%					

Table B.10: PM Peak - Existing - I-270 On Ramp Queue Length - Northbound

Table B.10: PM Peak - Existing - I-270			I	T	A 34 4*	
	Existing	Alternative		Existing	Alternative	
I-270 Northbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
	Average Queue		Change	Maximum	Maximum	Change
D 11 1 D	(feet)	(feet)	00/	Queue (feet)	Queue (feet)	10/
Rockledge Dr on ramp	1	1	0%	181	183	1%
MD 189 C-D on ramp	0	0	0%	33	0	-100%
MD 28 C-D on ramp	0	0	0%	0	0	0%
Shady Grove Rd C-D on ramp	0	0	0%	0	0	0%
I-370 C-D on ramp	2	16	700%	233	162	-30%
MD 124 C-D on ramp	2459	0	-100%	3978	0	-100%
MD 118 on ramp	0	1	0%	37	130	251%
MD 27 EB on ramp	0	0	0%	0	0	0%
MD 27 WB on ramp	0	0	0%	0	0	0%
MD 121 on ramp	0	0	0%	0	0	0%
MD 109 on ramp	0	0	0%	0	0	0%
MD 80 on ramp	0	0	0%	0	0	0%
MD 85 on ramp	0	0	0%	0	0	0%
	Existing	Alternative		Existing	Alternative	
I-270 Spur Northbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
1 270 Spar Hormsound	Average Queue	Average Queue	Change	Maximum	Maximum	Change
	(feet)	(feet)		Queue (feet)	Queue (feet)	
Democracy Blvd EB on ramp	0	0	0%	0	0	0%
Democracy Blvd WB on ramp	0	0	0%	0	0	0%
	Existing	Alternative		Existing	Alternative	
I-495 Northbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
1 100 1 (01 0110 0 0110	Average Queue	Average Queue	Change	Maximum	Maximum	Change
	(feet)	(feet)		Queue (feet)	Queue (feet)	
Cabin John Pkwy on ramp	16	4	-75%	661	373	-44%
MD 190 on ramp	0	0	0%	0	0	0%
	Existing	Alternative		Existing	Alternative	
I-270 C-D Northbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
1 270 O D NOT CHISOURU	Average Queue	Average Queue	Change	Maximum	Maximum	Change
	(feet)	(feet)	221	Queue (feet)	Queue (feet)	201
Montrose Rd EB on ramp	0	0	0%	0	0	0%
Montrose Rd WB on ramp	265	112	-58%	1386	650	-53%
I-270 on ramp	0	0	0%	0	0	0%
MD 189 on ramp	15	0	-100%	555	0	-100%
I-270 on ramp	0	0	0%	23	0	-100%
MD 28 EB on ramp	0	0	0%	0	3	0%
MD 28 WB on ramp	0	0	0%	0	0	0%
Shady Grove Rd EB on ramp	78	0	-100%	836	0	-100%
I-270 on ramp	178	0	-100%	1103	0	-100%
Shady Grove Rd WB on ramp	12	0	-100%	340	36	-89%
I-370 EB on ramp	0	0	0%	0	0	0%
I-370 WB on ramp	0	0	0%	0	0	0%
I-270 on ramp	12	433	3508%	658	1507	129%
MD 124 EB on ramp	257	0	-100%	1230	0	-100%
THE 12 I EB OII Tump			-100%	63		-100%

Table B.11: PM Peak - Existing - I-270 Off Ramp Queue Length - Northbound

Table B.11: PM Peak - Existing - 1-270 Of			u	Ewistins	A 14 cum a 4 ivra	
	Existing	Alternative	0./	Existing	Alternative	0/
I-270 Northbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
	Average Queue	Average Queue	Change	Maximum	Maximum	Change
MD 107 CC ND	(feet) 42	(feet) 38	-10%	Queue (feet) 278	Queue (feet)	-13%
MD 187 off ramp NB			0%			
MD 187 off ramp SB	0	0	0%	73	0	-3%
Rockledge Dr off ramp	32	34			71	1%
Tower Oaks Blvd off ramp			6%	235	237	
Montrose Rd off ramp EB	0	0	0%	0	0	0%
Montrose Rd off ramp WB	0	0	0%	0	0	0%
MD 189 off ramp WB	29	32	10%	168	189	13%
MD 189 off ramp EB	1	1	0%	122	138	13%
MD 28 off ramp EB	37	46	24%	231	243	5%
MD 28 off ramp WB	0	0	0%	0	0	0%
Shady Grove Rd off ramp - Redland Blvd	0	0	0%	0	0	0%
Shady Grove Rd off ramp WB	49	50	2%	248	248	0%
Shady Grove Rd off ramp EB	0	0	0%	0	0	0%
I-370 off ramp WB	0	0	0%	0	0	0%
I-370 off ramp EB	0	0	0%	0	0	0%
MD 117 off ramp	205	975	376%	859	2343	173%
MD 124 off ramp	799	1012	27%	2471	3371	36%
Watkins Mill Rd off ramp*			221			
Middlebrook Rd EB off ramp	0	0	0%	0	0	0%
Middlebrook Rd WB off ramp	0	0	0%	0	0	0%
MD 118 WB off ramp - Seneca Meadows	0	0	0%	20	0	-100%
MD 118 WB off ramp	0	0	0%	0	0	0%
MD 118 EB off ramp	0	0	0%	0	0	0%
MD 27 off ramp WB	56	59	5%	290	276	-5%
MD 27 off ramp EB	0	0	0%	0	0	0%
MD 121 off ramp WB	0	0	0%	0	8	0%
MD 121 off ramp EB	0	0	0%	0	0	0%
MD 109 off ramp EB	9	8	-11%	158	123	-22%
MD 109 off ramp WB	0	0	0%	0	0	0%
MD 80 off ramp EB	15	16	7%	140	160	14%
MD 80 off ramp WB	0	0	0%	11	9	-18%
MD 85 NB off ramp	0	0	0%	0	0	0%
MD 85 SB off ramp	0	0	0%	72	45	-38%
	Existing	Alternative		Existing	Alternative	
I-270 Spur Northbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
1 270 Spar Northbound	Average Queue	Average Queue	Change	Maximum	Maximum	Change
	(feet)	(feet)		Queue (feet)	Queue (feet)	
Clara Barton Pkwy off ramp EB	0	0	0%	0	0	0%
Clara Barton Pkwy off ramp WB	0	0	0%	0	0	0%
MD 190 off ramp EB	0	0	0%	0	0	0%
MD 190 off ramp WB	2	4	100%	287	317	10%
Democracy Blvd off ramp WB	42	44	5%	188	196	4%
Democracy Blvd off ramp EB	18	18	0%	143	123	-14%

^{*} Ramp in Future Scenario

Table B.12: PM Peak - Existing - I-270 On Ramp Queue Length - Southbound

	ID • 4•	A 14 4*		ID • 4•	A 14 4*	
	Existing	Alternative		Existing	Alternative	
I-270 Southbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
	Average Queue	Average Queue	Change	Maximum	Maximum	Change
	(feet)	(feet)	221	Queue (feet)	Queue (feet)	221
MD 85 on ramp	0	0	0%	0	0	0%
MD 80 on ramp	0	0	0%	0	0	0%
MD 109 on ramp	0	0	0%	0	0	0%
MD 121 WB on ramp	0	0	0%	0	0	0%
MD 121 EB on ramp*						
MD 27 WB on ramp	0	0	0%	0	0	0%
MD 27 EB on ramp	0	0	0%	0	0	0%
MD 118 WB on ramp	0	0	0%	0	0	0%
MD 118 EB on ramp	0	0	0%	0	0	0%
Middlebrook Rd on ramp	0	0	0%	0	0	0%
MD 124 WB on ramp	5	0	-100%	332	0	-100%
MD 117 on ramp	0	0	0%	0	0	0%
I-370 C-D on ramp	0	0	0%	0	0	0%
Shady Grove Rd C-D on ramp North	0	0	0%	0	0	0%
Shady Grove Rd C-D on ramp South	0	0	0%	0	0	0%
MD 189 C-D on ramp	0	0	0%	0	0	0%
Montrose Rd C-D on ramp	0	0	0%	0	0	0%
Rockledge Dr on ramp	0	0	0%	0	0	0%
MD 187 on ramp	0	0	0%	0	0	0%
	Existing	Alternative		Existing	Alternative	
1.050 C C (1)	VISSIM	VISSIM	%	VISSIM	VISSIM	%
I-270 Spur Southbound	Average Queue	Average Queue	Change	Maximum	Maximum	Change
1-270 Spur Southbound	Average Queue (feet)	Average Queue (feet)	Change			Change
Democracy Blvd on ramp	Average Queue (feet) 335	Average Queue (feet)	Change	Maximum Queue (feet) 1366	Maximum Queue (feet) 214	Change -84%
	(feet)	(feet)		Queue (feet)	Queue (feet)	
Democracy Blvd on ramp	(feet) 335	(feet)		Queue (feet) 1366	Queue (feet) 214	
	(feet) 335 Existing VISSIM	(feet) 3 Alternative VISSIM	-99% %	Queue (feet) 1366 Existing	Queue (feet) 214 Alternative	-84% %
Democracy Blvd on ramp	(feet) 335 Existing VISSIM Average Queue	(feet) 3 Alternative VISSIM Average Queue	-99%	Queue (feet) 1366 Existing VISSIM Maximum	Queue (feet) 214 Alternative VISSIM Maximum	-84%
Democracy Blvd on ramp I-495 Southbound	(feet) 335 Existing VISSIM	(feet) 3 Alternative VISSIM	-99% %	Queue (feet) 1366 Existing VISSIM	Queue (feet) 214 Alternative VISSIM	-84% %
Democracy Blvd on ramp	(feet) 335 Existing VISSIM Average Queue (feet)	(feet) 3 Alternative VISSIM Average Queue (feet)	-99% % Change	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet)	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet)	-84% % Change
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp	(feet) 335 Existing VISSIM Average Queue (feet)	(feet) 3 Alternative VISSIM Average Queue (feet) 318	-99% % Change	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354	-84% % Change
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp MD 190 on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212	(feet) 3 Alternative VISSIM Average Queue (feet) 318 13	-99% % Change	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381	-84% % Change
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM	Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM	-99% % Change -92% 1200%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative	-84% % Change -53% 256%
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp MD 190 on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue	Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue	-99% % Change -92% 1200%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum	-84% % Change -53% 256%
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM	Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM	-99% % Change -92% 1200%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM	-84% % Change -53% 256%
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp MD 190 on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue (feet)	-99% % Change -92% 1200% % Change	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum Queue (feet)	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum Queue (feet)	-84% % Change -53% 256% % Change
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue (feet) 0	(feet) 3 Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue (feet) 0	-99% % Change -92% 1200% % Change	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum Queue (feet) 0	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum Queue (feet) 0	-84% % Change -53% 256% % Change
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue (feet) 0 0	(feet) 3 Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue (feet) 0 0	-99% Change -92% 1200% Change 0% 0%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum Queue (feet) 0 0	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum Queue (feet) 0 0	-84% % Change -53% 256% % Change 0% 0% 0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue (feet) 0 0 0	Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue (feet) 0 0 0	-99% Change -92% 1200% Change 0% 0% 0%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum Queue (feet) 0 0 0	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum Queue (feet) 0 0 0	-84% % Change -53% 256% % Change 0% 0% 0% 0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue (feet) 0 0 0	Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue (feet) 0 0 0 0	-99% Change -92% 1200% Change 0% 0% 0% 0%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum Queue (feet) 0 0 0 0	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum Queue (feet) 0 0 0 0	-84% % Change -53% 256% % Change 0% 0% 0% 0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue (feet) 0 0 0 0 0 0	Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue (feet) 0 0 0 0	-99% % Change -92% 1200% % Change 0% 0% 0% 0% 0% 0%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum Queue (feet) 0 0 0 0 14	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum Queue (feet) 0 0 0 0 0	-84% % Change -53% 256% % Change 0% 0% 0% 0% 0% 0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue (feet) 0 0 0 0	Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue (feet) 0 0 0 0 0 0	-99% Change -92% 1200% Change 0% 0% 0% 0% 0% -100%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum Queue (feet) 0 0 0 0	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum Queue (feet) 0 0 0 0 0 0	-84% % Change -53% 256% % Change 0% 0% 0% 0% -100% -100%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp I-270 on ramp I-270 on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue (feet) 0 0 0 0 0 2	(feet) 3 Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue (feet) 0 0 0 0 0 0 0 0 0 0	-99% Change -92% 1200% Change 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum Queue (feet) 0 0 0 14 219	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum Queue (feet) 0 0 0 0 0 0 0 0 0	-84% % Change -53% 256% % Change 0% 0% 0% 0% -100% -100% 0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 WB on ramp MD 28 EB on ramp I-270 on ramp MD 28 EB on ramp MD 28 EB on ramp I-270 on ramp MD 28 EB on ramp I-270 on ramp MD 28 EB on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue (feet) 0 0 0 0 2 0	Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue (feet) 0 0 0 0 0 0 0 0	-99% Change -92% 1200% Change 0% 0% 0% 0% 0% -100% 0% 0% 0%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum Queue (feet) 0 0 0 14 219 0 0	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum Queue (feet) 0 0 0 0 0 0 0 0 0 0 0	-84% % Change -53% 256% % Change 0% 0% 0% -100% -100% 0% 0% 0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp I-270 on ramp I-270 on ramp	(feet) 335 Existing VISSIM Average Queue (feet) 4212 1 Existing VISSIM Average Queue (feet) 0 0 0 0 2 0	Alternative VISSIM Average Queue (feet) 318 13 Alternative VISSIM Average Queue (feet) 0 0 0 0 0 0 0 0 0 0 0 0 0	-99% Change -92% 1200% Change 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Queue (feet) 1366 Existing VISSIM Maximum Queue (feet) 5058 107 Existing VISSIM Maximum Queue (feet) 0 0 0 14 219 0	Queue (feet) 214 Alternative VISSIM Maximum Queue (feet) 2354 381 Alternative VISSIM Maximum Queue (feet) 0 0 0 0 0 0 0 0 0	-84% % Change -53% 256% % Change 0% 0% 0% 0% -100% -100% 0%

^{*} Ramp in Future Scenario

Table B.13: PM Peak - Existing - I-270 Off Ramp Queue Length - Southbound

	Existing	Alternative	0./	Existing	Alternative	0/
I-270 Southbound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
	Average Queue	Average Queue	Change	Maximum	Maximum	Change
MD 85 SB off ramp	(feet)	(feet)	0%	Queue (feet)	Queue (feet)	0%
MD 85 NB off ramp	0	0	0%	114	96	-16%
MD 80 off ramp	1	0	-100%	154	91	-41%
MD 109 off ramp WB	0	0	0%	58	41	-29%
MD 109 off ramp EB	0	0	0%	0	0	0%
MD 121 off ramp EB	2	2	0%	98	102	4%
	0	0	0%	0	0	0%
MD 121 off ramp WB	23	23	0%	149	167	12%
MD 27 off ramp EB	0	0	0%	0	0	0%
MD 27 off ramp WB	19					
MD 118 off ramp EB		20	5%	110	138	25%
MD 118 off ramp WB	0	0	0%	0	0	0%
Watkins Mill Rd off ramp*	210	520	710/	1650	2500	5.60/
MD 124 off ramp EB	310	530	71%	1658	2588	56%
MD 124 off ramp WB	147	144	-2%	1129	1695	50%
I-370 off ramp WB	0	0	0%	0	0	0%
I-370 off ramp EB	0	0	0%	0	0	0%
Shady Grove Rd off ramp - Omega Drive	1	3	200%	42	130	210%
Shady Grove Rd off ramp	0	0	0%	0	0	0%
MD 28 off ramp	3	3	0%	127	150	18%
MD 189 off ramp EB	123	115	-7%	849	495	-42%
MD 189 off ramp WB	0	0	0%	0	0	0%
Montrose Rd off ramp WB	0	0	0%	0	0	0%
Montrose Rd off ramp EB	0	1	0%	0	247	0%
Rockledge Dr off ramp	51	50	-2%	295	348	18%
	Existing	Alternative		Existing	Alternative	
I 270 Snuy Southhound	VISSIM	VISSIM	%	VISSIM	VISSIM	%
I-270 Spur Southbound	Average Queue	Average Queue	Change	Maximum	Maximum	Change
	(feet)	(feet)		Queue (feet)	Queue (feet)	
Democracy Blvd off ramp EB	24	28	17%	157	153	-3%
Democracy Blvd off ramp WB	0	0	0%	0	0	0%
MD 190 off ramp WB	85	69	-19%	826	509	-38%
MD 190 off ramp EB	0	0	0%	0	0	0%
Clara Barton Pkwy WB off ramp	0	0	0%	0	0	0%

^{*} Ramp in Future Scenario

Table B.14: PM Peak - Existing - Intersection Delay and Level of Service

ay Intersection LOS			0)				,	J					∢						U						۷						∢						ď						4					c	Ω					4		
Intersection Dela			53.2	7.				6	32.7					9.4						33.5						8.6						4.2						5.3						1.6					7	17.0					0.6		
SOT	С	B	т т	т т 8	шш	٥	4 4 4	(V 4	4 4	4 4 4	: ∢	A A	4 O 4	: 4 4	:	A	А	ш О,	∀ ш С	В п	D A	шш	α .	4 4 4	8 8	4 4	A A	8 8	: 4	ξ 4 4	: < <	€ 4 4	A A	4 4 4	: 4	েব ব	Y B ;	4 4 4	4 4	েব ব	τ «	(4 4	A A	4 4 4	4 4 4	4 4 4	8	4 4 4	> B C	D	B O	0 8	4 4	4 4 4	€ 4 4	44,	₹ ₹
e Max Queue	611	634 1055	1055 1055	115 115 115	989	806	000	634	0 0	0 0 0	0	829	320	0 0	0 0	0	0	653	208	436	610	162	162	000	145	0 171	202	281	190	0 190	0 0	000	61	0 88			175	37	000	0 0	2 5	0 0	0	0 0	0 0	19	242	242 268	143 163 184	93	202	219	67	0 0 0	0	0 0 6	48
Ave. Queue	116	55 401	401	26 26 26	221	ff ramp 187	0 0 0	100	0 0	0 0 0	ramp 0	0 41	46	0 0	0	0	pv				133		ramp	0 0		0 13	24	788	framp 1	4 0 4	0 0	000	2 1	0 11 0	off ramp	0 0	14 0	0 0 0	000	0 0	framp	4 0 0	0	0 0 0	0 0	000	ar Dr 31	31	14 13	3 11	21 57	57 71 off ramp	1 0	0 0 0	0	, 0 0	10
e Delay	79	18	84 87	83 91	77 67	at I-270 NB on and o	000	28	0 0	0 0 0	0 at I-270 SB on and of	9	0 44 0	00	0 0	0	0 D 85 at Crestwood Bl	32	80	12	0	75 65	0 at I-270 NB on and	0 %	15	9	0 2 ?	12	at I-270 SB on and of	0 3	0 0	000	3	0 7 0	at I-270 NB on and c		11 0	1 1	D (m) C	000	at I-270 SB on and of	. 0 0	0	000	0 4 6	0 11	121 at Gateway Cent	10	13 19 4	50	12 46	41 16 1 at I-270 NB on and	6 0	1 0 0	000	0 0	n 0
ent Volume	: 115 gh 503		-	gh 20 t 144	ų,	5	۵	ے	ے	t 0 triangle of the triangle of the triangle of the triangle of tr	m	gh 1699	170 170 0	t 0 0	gh 0 t 0	t ugh 0	nt 0 4-MI	: 60 gh 1255	. 91	t 796	gh 31 t 22	t 36	5- MD8(gh 2	385 gh 17	t 122	gh 0 t 6	1 16 1gh 510	6- MD 80	gh 0	0 0	t 0 0	gh 271 t 53	t 0 ugh 316	7- MD 109	igh 0	224 gh 0	t 17	t 59	160 160 160 1	8-MD 80	gh 0	. 0 gh 0	t 0 0	gh 114 t 24 + 08	ugh 78	9-MD 1	it 54	gh 169 t 8	2 gh 19	t 142 t 214	10- MD 121	t 25 gh 0	t 718 0	t 0	gh 447 t 58	t 1000 Ligh 423
OS Movem	NB Lef NB Throu	SB	SB Th	EB Left EB Throug EB Right	WBT	NBL	NB Thr NB R	SB TF	EB EB Th	EB WB	WB Right	NB Lef	SB Left	SB Righ EB Lef	EB Righ	WB Let WB Throu	WBRigl	NB Lef	SB Left	SB Righ	EB Righ	WB Let WB Throu	WBKIgi	NB LET NB Throu NB Righ	SB Left SB Throu	SB Righ EB Left	EB Throu EB Righ	WB Throu	NB Lef	NB Throu	SB Left	SB Righ EB Left	EB Throu EB Righ	WB Let WB Throu	AN Jel	NB Throu	SB Left SB Throu	SB Righ EB Left	EB Righ	WB Thro	WD NIGH	NB Throu	SB Left SB Throu	SB Righ EB Left	EB Righ	WB Lei WB Throi WB Rigi	NB Lef	NB Throu NB Righ	SB Through	EB Left EB Throu	EB Righ WB Let	WB Thro	NB Lef	NB Righ SB Left SB Throu	SB Righ EB Left	EB Throu	WB Thro
Approach L	U		ш	J	ш		a l	U				4	c	1				Q	C	,	D	Q		∢	8		A	∢		٨			A	∢	_		В	<	1	٩		4		<	∢	∢		В	U	U		٥	<			∢	4
Approach Delay	28.2		82.9	33.5	63.9		36.0	27.9				6.0	43.8					33.3	0.20		54.8	43.4		-1.8	12.2		8.9	6.9		2.3			5.0	9.9			10.2	·	7:7	0.3		4.0		c	8:0	1.2	:	10.6	17.8	16.6	4	34.8	0.8			0.1	0.8
Approach	NB		SB	EB	WB		NB	SB	EB	WB		NB	87	3	EB	WB		NB	g	3	EB	WB		NB	SB		EB	WB		NB	g	9	EB	WB		NB	SB	Ę	9	WB		NB	SB	Ę	EB	WB		N N	SB	EB		WB	S S	SB	i	EB	WB
Intersection			1	4				ć	7					е						4						5						9						7						∞					(ກ					10		

Table B.14: PM Peak - Existing - Intersection Delay and Level of Service

			NB Through NB Right	0 0	0	0 0	0 0	4 4		
	A A.7.7		SB Left SB Through SB Right	136 0 36	10 0	88 0 0	125	4 4 4	5.2	∢
	0.3 A		EB Th	29 0 349	1 0 0 0	0000	23	4 4 4	;	:
	0.1 A	11	WB Left WB Through WB Right	0 0	0 0	0 0 0	0 0 0	∢ ∢ ∢		
	40.1 D		NB U-Turn NB Through	12- MD 27 a 0 73	at Observation D	0 19	0	A B		
			NB Right SB Left SB Through	47 114 41	13 46 62	19 31 35	86 182 244	B D B		
			SB Right EB Left EB Through	173 208 2223	30 27 16	57 68 70	281 502 503	U U B	22.2	U
			EB Right WB Left WB Through	31 1503	15 22 26	123	541 627 627	ш U U .		
			MB NE	13- MD 27 at	9: I-270 NB off ram 45	123 Ip 63	627	4 0		
	44.8 D		NB Through NB Right SB Left	0	0 0	0 0	0 0	A A A		
			SBT	0 0 0	0 0 0	0 0 0	0 0 0	∢ ∢ <	8.1	Þ
	0.1 A	1 1	EB TI	1284 0	0 0	000	000	< < <		
l	5.5 A		WBT	0 1582 0	0	0 41	089	4 4 4		
			NB Left	14-MD 27 at	t I-270 SB off ram	0	0	< 4		
			NB Through NB Right	0	0	0 0	0 0	4 4		
	52.2 D	11	SB Left SB Through	171	52 0	35	162	0 4		
			EB Left EB Through	0 1351	2 0 2	0 0 4	0 149	< < <	5.4	∢
			EB Right WB Left WB Through	0 0 1433	3 0 0	0 0 2	0 0	4 4 4		
			WB Right	0 15- MD 27	0 at Crystal Rock Di	0	0	. ∢		
	22.6 C		NB Left NB Through NB Right	58 965 43	20 23	55 68	379 379 391	U U æ		
	33.9 C		SB Left	140 1310	57	185	770	a u o		
			SB Right EB Left FR Through	196 103 37	9 54 46	164 28 25	764 120 115	4 Q C	29.8	U
			EB Right WB Left	47	17	17 70	141	B D		
	27.6 C		WB Through WB Right	102 552 6- MD 118 at S	43 22	70 70	297	O O		
	4.0		NB Left NB Through	90	12 3	1 7	82	8 ∢		
			NB Right SB Left SB Through	0 11 1091	9 7	15 14 18	207 270 270	∢ ∢ ∢		
			SB Right EB Left	9 18	3 55	21 12	302	Ап	8.5	Þ
			EB Right WR Left	1 275 93	10	12 12 37	130	п 89 п		
	53.5 D	1	WB Through WB Right	6 25	61	33 42	198	1 H 8		
			NB Left NB Through	17- MD 118 a 0	t I-270 NB on ran 0 0	0 0	0 0	∢ ∢		
			NB Right SB Left	0	0	0	0 0	4 4		
			SB Through SB Right	0	0 0 3	0 0 8	0 0	4 4 °	16.1	В
	33.9 C	1 1	EB Through EB Right	0 0	0 0	0 0	0 0)		
	10.8	1 1	WB Left WB Through	246	2 5	0 1 7	116	4 4		
	_		WB Right	1216 18- MD 118 a	13 it I-270 SB off ran	46 dt	480	æ <		
		1 1	NB Through	00	0.0	000	000	< < <		
	37.1 D	_	SB Left SB Through	129	37.1	22 0	114	0 4		
	4.8 A		EB Left EB Through	0 1182	0.0	0 10	0 322	4 4	6.1	∢
			WB Left	0 0	0.0	0 0 0	0 0 0	∢ ∢ ∢		
	4.54	+	w B Inrougn WB Right	0 19-MD 17	0.0 8 at Aircraft Dr	0	0	4 4		
	24.0 C		NB Left NB Through	42 43	69	33	176	ш		
			NB Right SB Left	196 381	90	3 221	77 577	A		
	90.2 F		SB Through SB Right	12 97	82 91	221	577	ш ш		Ç
	17.8 B		EB Left EB Through	98 1215	22 17	09	395	O B		ر
			EB Right WB Left	17	15	99	441	æ æ ¢		
	17.0 B		WB Inrough WB Right	351 36- Middlebrook	5 Rd at Observati	96 66 on Dr	441) 4		
			NB Left NB Through	0 0	0 0	0 0	0 0	4 4		
			SB Left	96	35	18	131	4 Q 4		
			SB Right EB Left	179 15	0 0 0	18	131	4 4 4	8.5	ď
	6.4 A		EB Through EB Right	1180	9	17	155	4 4		
			4			•			1	

Table B.14: PM Peak - Existing - Intersection Delay and Level of Service

Table B.14: PM Peak - Existing - Intersection Delay and Level of Service

63 100 10
Continue Continue
174 74 74 74 74 74 74 74
Off ramps Off ramps Off ramps Off ramps Off ramps Off ramps Off ramp Off ramp
100 100
Off ramps 13 175
113 113 113 114 114 115
153 53 53 53 53 53 53 53
18 Rd
18 18 18 18 18 18 18 18
139 100
0 0 0 0 0 0 0 0 0 0
mmps
139 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
106 106 106 106 106 106 106 106 107 107 113 113 113 113 113 113 113 113 113 114 114 114 114 114 114 114 114 115
106 106 106 106 100 100 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 113 114
113 113 113 113 113 113 113 113 114 110 110 110 110 110 110 110 110 110
151 154 154 167 168 169 179 179 179 179 179 179 179 179 179 17
101 101 101 101 101 101 103 123 123 123 123 123 137 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 14 14 14 14 14 14 14 14 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
123 123 123 123 123 123 0 0 0 0 0 0 0 0 0 0 105 105 105 107 107
laks Blvd 0 0 0 0 0 37 37 37 30 30 30 30 30 30 30 46 46 46 46 46 46 46 46 46 46 46 46 46
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
off rmap 105 105 105 105 105 105 107 107
30 105 105 105 105 105 39 46 46 46 46 46 14 14 14 14 14 14 14 14
off map 46 46 47 48 48 49 49 49 49 49 49 49 49 49 49 49 49 49
10 14 19 19 19 19 19 19 19 19 19 19 19 19 19
14 14 14 14 14 14 14 14 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18
14 14 14 14 14 14 14 14 14 14 14 14 14 1
Ask Blvd 62 62 62 63 61 54 54 542 110 111 111 111 111 111 111 1
61 61 61 61 61 61 61 61 61 61 61 61 61 6
59 54 517 518 518 518 542 110 111 111 130 520 520 520 520 520 520 66 86 86 86 86
518 542 110 111 130 130 130 520 520 520 520 86 86 86 86
110 111 111 130 1and off ramp 0 520 520 520 66 86 86 86 169
1 and off ramp 0 0 520 520 86 86 0 0 169
200 520 86 86 86 0 0 169
86 0 169 169
169
0
0 0

Table B.14: PM Peak - Existing - Intersection Delay and Level of Service

Table B.14: PIM Peak - Existing - Intersection Delay and Level of Service

Intersection	Approach	Approach Delay	Approach LOS	Movement	Volume	Volume Delay	Ave. Queue	Max Queue	SOT	Intersection Delay	Intersection LOS
				to I div	51- MD 190	at I-270 NB on ramp		c	<		
	a N			NB Through	0 0	0 0	o c	0	τ 4		
	2			NB Right	0	0 0	0 0	0	< ⊲		
				OB Left	0	0	0 0	0	< <		
	g			Sp Leit	0	0	0 0	0	τ <		
	3			SB Dight	0	0 0	0 0	0	< <		
51				FBloff	233	2 %	101	369	ζ μ	16.9	В
	EB	70.2	ш	FB Through	65	2 0	0	G O	a A		
	¦ 		ı	EB Right	0	0	0	0	: <		
				WB Left	0	0	0	0	×		
	WB	8.4	∢	WB Through	1464	0 80	42	713	< <		
	!			WB Right	0	0 0	0	0	A		
					52- MD 190	at I-270 SB off ramp					
				NBLeft	222	74		830	Э		
	NB	73.8	ш	NB Through			; c	Ĉ	۰ ۵		
	2		ı	NB Bight	0	0 0	0 0	0 0	<		
				NB Rigili CD Loft	0 0	0	0 0	0	τ <		
	9			SD Through	0	0	0	0	τ «		
	8			Sp Infougii	0	0	0		τ <		
52				SB RIBIL	0	0	0 0	0	τ «	12.4	В
		(EB Left	0	0	0	0	A ·		
	EB	2.9	Ø	EB Through	840	3	9	143	A ·		
				EB Right	0	0	0	0	A		
	!			WB Left	0	0	0	0	A		
	WB	9.1	∢	WB Through	1705	6	26	545	Α.		
				WB Right	0	0		0	A		
					53- MD 19(0 at Seven Locks Rd					
				NB Left	21	1		0	A		
	NB	0.3	∢	NB Through	243	243 0	0	0	Α .		
				NB Right	0	0		0	A		
				SB Left	306	26		375	ш		
	SB	55.7	ш	SB Through	180	26		375	В		
53				SB Right	17	26		375	Е	24.7	O
3				EB Left	22	33		355	O	î.)
	EB	27.1	U	EB Through	664	27		355	O		
				EB Right	34	25		355	O		
				WB Left	262	75		534	Е		
	WB	19.0	В	WB Through	935	15		534	В		
				WB Right	715	4		534	Α		
					54- MD 124	at I-270 NB off ramp					
				NB Left	0	0		0	Α		
	NB	59.5	ш	NB Through	0	0	0	0	Α		
				NB Right	1911	59	802	2475	Е		
				SB Left	0	0	0	0	Α		
	SB			SB Through	0	0	0	0	∢		
54				SB Right	0	0	0	0	A ·	64.0	Ш
		(ı	EB Left	0	0	0	0	٩		
	91	0.80	ш	EB Inrougn	10/4	60	6/6	126/	⊔ <		
				WBIeff	0	0 0	0 0	0	< ∢		
	WB			WBThrough	0	0	0	0	: A		
				WB Right	0	0	0	0	Α		
					55- Democracy B	55- Democracy Blvd at I-270 NB off ramp					
				NB Left	0	0		0	А		
	NB	47.0	٥	NB Through	0	0	0	0	А		
				NB Right	314	47	51	199	D		
				SB Left	0	0	0	0	Α		
	SB			SB Through	0	0	0	0	A		
55				SB Right	0	0	0	0	A	11.5	8
1	:		•	EB Left	0	0	0	0	∢ .		
	EB	1.5	∢	EB Through	1113	2	4	65	V «		
				WB left	0	0	0		∀		
	W/B			WB Through	0	0	0	0	τ <		
	2			WB IIIIOUgii	0	0 0	0 0	0 0	τ 4		
									:		

Table B.15: PM Peak - Existing - Alternative Intersection Delay and Level of Service

ue Max Queue LOS Intersection Delay Intersection LOS	530 E S30 C	553 B 1107 F	1107 F 53.9 D	114 F 114 B	711 E 711 C 711 C	D 0 899	(703 C 323	O A O O O O O O O O O O O O O O O O O O	< < < < <	٧ - ٧	0 A 814 A	342 D	0 0 0 0 0 0 V A A A A A A A A A A A A A	(< <	< < <	0 A	637 E C C	185 E A A A A A A A A A A A A A A A A A A	400 B 33.5 C	606 A A	162 E 162 E 162 B	V 0	V V V	165 B 165 A A	182 B 8.8 A O	213 A A 42 B	259 B 0 A 0	126 A	126 A A O O A A	0 0 A A A A A A A A A A A A A A A A A A	0 A A S2 A A S2 A A A A A A A A A A A A A	0 0 A A A 85 A A A A A A A A A A A A A A A	▼ 0	0 O V	139 B		4 4		A 0 0	0 0 A A A A A A A A A A A A A A A A A A	0 A		41 A A A A A	18 A O A	235 B 235 R	253 P 261 A 155 B	159 B 16.9 B		215 D 215 D		79 A O O A	4 4 4		4 4 0 0 0
Volume Delay Ave. Que	114 76 97 500 32 97	15 82	91	43 83 20 20 91 26 144 11 26	75 65	at I-270 NB on and off ramp	000	26	0 0		at I-270 SB on and off ramp		173 43 46				0 D 85 at Crestwood Blvd	69 32	77 26	12 57		75 65 13	5- MD 80 at 1-270 NB on and ramp		16	70 11 14 0 8	5 12	1 1	6- MD 80 at I-270 SB on and off ramp 47 2 1	0 2 0		0 0 0 271 6 2	0 0 0 0 0 0 318 7 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	226 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	at I-270 SB on and off ramp	000	0		1 4 0	0 1 1	9- MD 121 at Gateway Center Dr 486 13 34 660 11 34		19	32 32 8	210 46 58 57 44 59	18 21 at I-270 NB on and off ramp	6 0 7	/54 1 0 0 0 0 0 0 0	0	0 0
Approach LOS Movement	NB Left C NB Through	NB SB		EB Th	WB Left WB Through WR Right		NB R SB L	SB Th	EB TH	EB Right WB Left WMR Through	WB Right	NB Left A NB Through			EB Through EB Right	WB Left WB Through	WB Right	NB Left D NB Through			D EB Through EB Right	WB Left WB Through WB Right		A NB Through NB Right	SB Left SB Through SB Birth			A WB Through WB Right		NB Right SB Left	SB Through SB Right	EB Left EB Through		WBRight	NB Left NB Through			A EB Through EB Right	WB Left A WB Through		A NB Through NB Right				A WBThrough WB Right	NB Left		C SB Right	EB Left EB Through EB Right			A NB Through	NB Kight SB Left SB Through	SB Right	EB Left A EB Through
pproach Approach Delay	NB 26.0		SB 89.8	EB 33.8	WB 61.6	o y c		SB 25.8	EB	W.		NB 6.0			EB	WB		NB 33.2			EB 54.7	WB 43.6	_	NB -2.1	SB 12.8			WB 6.6	ND C		SB	EB 5.3			NB			EB 2.2	WB 0.3	_	3.8	SB	α. C		WB 1.2	NB 11.2		SB 17.9	EB 11.0	WB 35.9		NB 0.8			EB 0.1
Intersection Ap			1					,	7					8						4						2					u						7						∞					6						10	}

Table B.15: PM Peak - Existing - Alternative Intersection Delay and Level of Service

				NB Left	0	0	0	0	A		
	NB			NB Through	0 0	0	0 0	0 0	V ·		
	SB	7.1	<	NB Right SB Left SB Through	136	0 6 0	7 0	128	4 4 4		
11	3	!	τ	SB Right EB Left	36	0 0 1	0 0	0 0 28	< < <	2.0	۷
	EB	0.3	A	EB Through EB Right	349	0 0 0	0 0	0 0 0	< < ⋅		
	WB	0.1	۷	WB Left WB Through WB Right	100	0 0 0	0 0 0	0 0 0	4 4 4		
		,	c	NB U-Turn	12- MD 27	at Observation Dr	0 ;	0 8	∢ :		
	B Z	40.9	٥	NB Through NB Right	73	15	19	86	ы в с		
	SB	39.9	۵	SB Left SB Through SB Right	114 41 173	46 62 30	31 36 58	244	ОВ		
12	EB	16.8	8	SB right EB Left EB Through	214 2282	30 27 16	58 71 73	281 526 527	D B	21.9	U
				EB Right WB Left	109 31	16 23	86 119	565	В		
	WB	25.1	U	WB Through WB Right	1503	26 8	119	567	O A		
	9		c	NB Left	13- MD 27 at 410	4 I-270 NB off ramp 45	99	284	٥		
	NB	44.6	٥	NB Through NB Right	0 0	0 0	0 0	0 0	∢ ∢ <		
	SB			SB Through	000	000	000		< < <		
13	EB	0.1	4	EB Left EB Through	0 1283	000	0 0	000	< < <	9.8	∢
		<u> </u>	:	EB Right WB Left	0	00	0 0	0 0	:		
	WB	6.1	∢	WB Through	1581	9 0	45	678	< < <		
				NB Left	14- MD 27 a	t I-270 SB off ramp	0	0	:		
	NB			NB Through	0 0	000	0 0	0 0	: < <		
	SB	50.4	a	SB Left	170	20 0	34	180	4 O 4	.	
14	2		2	SB Right	000	000	000	000	< < <	5.2	Þ
	EB	2.3	∢	8	1351	0 2 0	0 4 0	122	< < <		
<u> </u>	WB	2.7	∢	WB Left WB Through	0 1452	9 0 8	0 8	0 259	: ∢ ∢		
				>	0 15- MD 27	0 at Crystal Rock Dr	0	0	∢		
	NB	22.5	υ	NB Left NB Through	58 966	20	55	385	o o		
				NB Right SB Left	43	20	72	397	B		
7	SB	34.9	O	SB Through SB Right	1328	36	192	823	O A	, c	,
	EB	42.9	Q	EB Left EB Through	103 37	54 46	28	120 115	Q	7.00	ر
				EB Right WB Left	47	17	17 70	141	B D		
	WB	27.6	O	WB Through WB Right	102 552	43	70	297	O		
				NB Left	16- MD 118 at S	eneca Meadows Pl	cwy 1	65	8		
	NB	4.0	A	NB Through NB Right	1194 0	3	7	161	A A		
	SB	6.4	∢	SB Left SB Through	11 1091	7 6	13	275 275	4 4		
16				SB Right EB Left	9 18	3 55	20	308	E A	8.0	۷
	EB	13.1	В	EB Through EB Right	1 275	76 10	11	127	E B		
	WB	53.6	۵	WB Left WB Through	93	61	33	199	шша		
				WB NIGHT	17- MD 118 a	at I-270 NB on ramp	77	017	۰ <		
	NB			NB Through		000	0 0		< < <		
	g			SBLeft			000		< < <		
	a,			SB Right	0 0 0	0 0 5	0 8	0 0 5	< < <	16.0	В
	EB	33.5	O	EB Through	0	0 0	0	0	، _۸		
	G/A7	000	c	WB Left	0 0	0 0	0 0	0 0	4 4 4		
-	9	0.01	0	WB Right	1215	13	45	477	τ ω		
	9			NB Left	0	0	0	0	∢ •		
	92			NB Inrough NB Right	0 0	0.0	0 0	0 0 77	4 4 0		
	SB	38.4	۵	SB Through	0 0	0.0	0	0 0	0 < 4		
18	EB	4.9	A	EB Left EB Through	0 1182	0.0	0 11	329	X	6.5	۷
				EB Right WB Left	0 0	0:0	0	0	4 4		
	WB	5.1	٨	WB Through	1505	5.1	6	217	:		
				NB Left	19- MD 1	18 at Aircraft Dr 68	33	176	ш		
	NB	24.2	U	NB Through NB Right	43	71 5	33	176	ВΕ		
	SB	94.0	ш	SB Left SB Through	382	93	226	583	шш		
19				SB Right EB Left	97	100	226	583	Ŧ O	28.2	U
	EB	17.7	В	EB Through EB Right	1215 16	17	09	391	8 8		
	WB	18.2	В	WB Left WB Through	13	17	73	613	В		
				WB Right	360 20- Middlebroo	6 k Rd at Observatio	73 1 Dr	613	A		
	NB			NB Left NB Through	0 0 0	0 0 0	0 0 0	0 0 0	< < <		
	SB	18.3	80	SB Left SB Through	96	35	18	129	: O 4		
	2		2	SB Right FB Left	179	5 5 5	18	129	< < <	8. 12.	4
	EB	9.9	∢	EB Through	1222 0	6 7 0	17	168	< < <		
	W/B			WB Left						_	
	MW	8.3	∢	WB Through	1238	> «	24	242	∢ ∢		

Table B.15: PIM Peak - Existing - Alternative Intersection Delay and Level of Service

Intersection	Approach	Approach Delay	Approach LOS	Movement	Volume Volume	Delay	Ave. Queue	Max Queue	FOS	Intersection Delay	Intersection LOS
	NB			NB Left NB Through	0 0 0	0 0 0	0 0 0	0 0 0	4 4 4		
	SB			NB Right SB Left SB Through	0 0	0 0	0 0	0 0 0	4 4 4		
21	EB	2.8	∢	SB Right EB Left EB Through	0 0	0 0 8	0 0 4	0 0 100	4 4 4 .	4.4	⋖
	WB	7.1	ď	WB Left WB Through	429	0 0	0 4 0 0	183	4 4 4 4		
	:			NB Left	22- Middlebrook I	Rd at Waring Station	75	316	۵ .		
L	Q N	to:04	2	≥ -	219	51 45	75	316 66	4 0 0		
22	SB	31.0	J	SE	2 19	37	7 19	104	D A	12.8	۵
	EB	7.4	∢	8 -	3 1035 160	14 7 7	22 22 22	249 249 249	B A A		
	WB	88.	∢	WB Left WB Through WB Right	253 1722 4	22 7	36	390	U 4 4		
					23- MD 1	124 at MD 355 63	185	517	E		
	NB	51.2	٥	z	944	45 10 73	183	515 0	D A		
ć	SB	31.0	U	S	559	53	99	373 294	ΔA	(ı
23	EB	44.6	Q	EB Left EB Through		93	397	1196	L O <	63.9	ш
	WB	152.5	L	>	571 0 1489	8 0 155	170 0 710	1162 0 943	A A T		
					66 24- MD 124 at	99 I-270 SB on and of	0	0	£		
	NB	0.99	LL.	NB Left NB Through		99	24	105	шш<		
ı	SB	82.9	L	SB Left SB Through	541	135 157	535	2593 2593	4 L L		
24				SB Right EB Left		17	135	1624 0	В	48.6	۵
1	EB	47.2	۵	EB Through EB Right		35	341	1090	0 0 1		
	WB	17.5	В	WB Left WB Through	1052	56 17 0	72	909	В В		
				WEINGH.	25- MD 1	117 at MD 124	104	614	(L		
	NB	33.4	U	NB Through NB Right	43 542 446	50	104	614	л О В		
ı	SB	32.7	J	SB Left SB Through	119 763	43	66	460	Q		
25	£	7.00	٥	SB Right EB Left	119	85	142	497	∀	39.9	۵
L		1.04	2	EB Right	42	42 41	150	525 1032			
	WB	43.3	Q	WB Through WB Right	1332 130	39	276	1032	J O A		
	9	i i	4	NB Left	26-MD 17	17 at Bureau Dr 73	54	238	ш		
l	NB	35.5	Q	NB Through NB Right	27 259 272	74 20	54	238	шО		
90	SB	77.0	Е	SB Through SB Right	27.3 17 66	86 26	116	372 372 372	r F O	38.7	c
ì	EB	29.7	U	EB Left EB Through	42 1608	28	132	742	T O		1
1	WB	8,68	Q	WB Left WB Through	3 19 1710	41	356	1072	۵ ۵		
			.	WBRight	292 27- MD 117 a	28 It I-270 SB off ramp	388	1121	ı 0		
	NB			NB Left NB Through	0 0	0 0 0	0 0 0	0 0 0	4 4		
ı	SB			SB Left SB Through	000	000	000	000	4 4 4		
27				SB Right EB Left	0	0	0	0	4 4	14.8	В
l	EB	5.8	A	EB Through EB Right	0	0	13	523 0	A A		
	WB	43.1	ш	WB Left WB Through WB Right	289	43 0 0	156 0 0	1035 0 0	ВΑΑ		
	:			NB Left	28- MD 117 a	t I-270 NB off ramp	0 (0	Α.		
1	NB			NB Through NB Right SB Left	0 0	0 0	0 0	0 0	4 4 H		
ç	SB	72.5	ш	SB Through SB Right	0 964	0 75	0 1054	0 2354	A B		ć
0	EB	28.3	U	EB Left EB Through	896	127	162	987	⊥ U <		1
	WB	14.5	В	WB Through	0 1345	0 14	95 0	383	. A 8		
				WB Right	29- MD 11	0 17 at Perry Pkwy	95	383	Α u		
	NB	43.3	Q	NB Lett NB Through NB Right	21 24	55 15	13 22	111	л О 8		
	SB	51.4	Q	SB Left SB Through	197	77	79 79 79	324	ш ш «		
29	EB	21.0	U	EB Left EB Through	241 241 866	70	88	358 358	ВΕ	41.0	۵
1	dW	7 2 3	c	EB Right WB Left	31 36	7 115	73 293	342	A 4 0		
	WB	55.4		WB Right	296 30- Shady Grove	33 40 Rd at I-270 NB off ra	293 mp	747	0 0		
	NB	38.6	۵	NB Left NB Through NB Right	668 1026 0	9 0	327 327 0	938	4 4 A		
	SB	111.6	ш	SB Left SB Through	0 1216	0 112	0 842	0 1111	A		
30	89			SB Right EB Left FB Through	0 0 0	0 0 0	0 0 0	0 0 0	4 4 4	67.3	ш
<u> </u>	3			EB Right WB Left	329	0 51	0 59	0 260	(4 Q		
	WB	51.3	۵	WB Through WB Right	0	0	0 0	0	4 4		

Table B.15: PM Peak - Existing - Alternative Intersection Delay and Level of Service

	ersection	100000000000000000000000000000000000000	Approach Delay	Apploacii EO3	MOVELLICITE	31-Shady Grove	Rd at I-270 SB off ra	am		FOS	וווופו שביווחיו הביים	mel section FOO
1		NB	8.6	4	NB Left NB Through	0 1463	10	0 44	460	4 4 4		
No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	•	SB	7.3	4	SB Left SB Through	0 806	0 7	0 11	0 0 195	A A A		
The control of the	31	g	0.0	u	SB Right EB Left	229	09	0 85	397	A E	18.2	8
19 19 19 19 19 19 19 19	1	93	98.4	ш	EB Right WB Left	294	57	62	241	A H A		
No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		WB			WB Through WB Right	0	0	0	00	4 4		
No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		E Z				32-MD28ai 0	t I-270 SB off ramp 0	0 0	0 0	4 4		
19 19 19 19 19 19 19 19	ı					0	0 47	0 77	322	A O		
1	32	SB	38.9	Q	- /	97	0	0	0 21	4 4	m od	∢
March Marc	1	EB	2.3	∢	1-1	0 1505 830	0	0 0	0 0	4 4 4	3	
No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	•	WB	7.0	Ą		1734	0 2	21	252	:		
10 10 10 10 10 10 10 10						33-MD 28 at I-	270 on and off ram	28 53	753	4		
19 19 19 19 19 19 19 19		NB N	39.1	a	2	220	52 18	09	262	(O 8		
10 11 11 11 11 11 11 11	•	SB	36.5	Q	S	11	101	177	314	A F		
The color of the	33	£	ć	c		250	32 40	177	314 276	υ <u></u> Δ	24.1	U
10 10 10 10 10 10 10 10		EB EB	13.0	æ	ш	879 0 35	5 0 25	0 0 111	276 0 387	4 4 C		
No. No.		WB	28.1	O	3	35 1241 0	28 0	91	345 0	O A		
The control of the		i i				34- MD 189 45	at Great Falls Rd	11	98	٥		
13 13 14 15 15 15 15 15 15 15		SB N	38.1	٥	NB Through NB Right	11 12	48 10 51	8 8 7	94	0 4 0		
The color of the	į	SB	3.3	∢	SB Through SB Right	11 401	51 51 0	, , ,	73	۵ ۵ ۷		,
10.00 10.0	34	EB	12.0	8	EB Left EB Through	431 675	<u>-</u> 24 5	40	449 182	C	13.6	œ
10.00 10.01 10.00 10.0	ı	!			EB Right WB Left	58	19	10	218	A 8 6		
18 18 18 18 18 18 18 18		WB	19.0	8	WB Through WB Right	827 14 35-MD18	19 17 14-270 Banne	65	374	8 8		
The control of the		œ Z	45.5	c	NB Left	35- MD 18 260	9 at I-270 Ramps 46	47	211	۵۹		
19 14.0 1.0	1	2		3	NB Right SB Left	0 346	95	0 131	0 515	E A		
149 149	35	SB	56.3	ш	SB Through SB Right	0 0	0	0 0 8	0 0	4 4 ¢	41.8	۵
Mail		EB	26.9	U	EB Through	367	30 23 0	68	350) U 4		
No. Color Color		WB	49.6	Q	WB Through	439	54 45	108	260	. 0 0		
198					WB Right	0 36-MD189	0 at Wooton Pkwy	0	0	Α		
The color of the		B Z	44.7	٥	NB Left NB Through NB Right	187 535 174	56 52 10	112	406 406 406	D E		
Fig. 1945 C. C. C. C. C. C. C. C	•	SB	62.0	ш	SB Left SB Through	247	78 57	153	673	шш		
Mail	36	ä	34.5	ر	EB Left	118	71	101	437	₹ ш С	43.5	۵
Well-mail Well				,	EB Right WB Left	160	10	101	437	э в ш		
Fig. 19		WB	34.3	U	WB Through WB Right	784 316	35 16	123	612	O B		
Signature Sign		NB NB	0.4	A	NB Left NB Through	3 /- Montrose k 0 0	id at Iower Oaks Bi	0	0 0	A A		
Fig. 65	1				NB Right SB Left	503 67	0 48	0 18	0	A O		
EB 65 A EEF PROME 150 0 0 0 0 0 0 0	37	SB	51.8	Q	SB Through SB Right	272	53	99	224	4 Q 4	14.5	ω
We		EB	6.5	۷	EB Through	0 1670 0	7 0	32	391	4 4 4		
No. 14.3 1	•	WB	17.2	В	WB Left WB Through	69 2569 245	36	32 92	391 658 658	O 8 a		
MB 233 C MB Figure 0 0.00 41 250 250 143 250 143 250 143 250 143 250 143 250 143 250 143 250 143 250 143 250 143 250 143 250 143 250					NB Left	38- Tower Oaks 664	Blvd at I-270 off rm	ap 47	258	a U		
SB SB SB SB SB SB SB SB		NB	23.3	U	NB Through NB Right	0 23	0.0	41	250 258	4 4		
Fig. 11		SB	14.3	В	SB Left SB Through SB Right	0 7	23.9	1 1 0	38	O 4 4		
NB 12.6 B WB Right 132 16.7 9 148 14		EB	11.1	В	EB Left EB Through	1 310	14.5 11.5	14	158 157	B B	17.6	œ
NB 174 B NB Right 138 12 138 12 138 13 13 13 13 13 13 1		W.	17.6	æ	WB Left	33 122 192	16.3	14	148	A B R		
NB Left 76 33 63 273 10 17.4 B NB Left 752 1 6.66 31 6.3 2.73 1.2 1.					WBRight	1 39- Montrose R	3.8 d at Tower Oaks Bl	2 7	83	a A		
SB 29.6 C SB Rhough 394 20 59 155 EB 231.3 F SB Rhough 394 20 57 194 WB 231.3 F EB Hrough 454 237 557 733 WB 34.8 C WB Right 30 252 581 756 WB 34.8 C WB Right 474 40 109 383 NB 129.2 F WB Right 30 13 129 756 NB 129.2 F NB Right 344 40 109 383 NB 129.2 F NB Right 331 117 533 842 SB 84.7 F SB Right 0 0 0 0 0 BB 60.0 E EB Right 343 85 83 215 115 BB 60.0 E EB Right 0		NB	17.4	В	NB Left NB Through	76 606 572	33	63	273	U U 4		
EB 231.3 F EB Heleft 81 192 550 230 WB 231.3 F EB Right 364 237 557 733 WB 34.8 C WB Left 571 43 109 383 NB 129.2 522 581 756 732 736 WB Left 571 43 109 383 756 756 NB Left 343 13 129 413 756 756 NB Right 331 117 533 842 75 842 SB 84.7 F NB Right 0 0 0 0 0 WB 60.0 E EB Left 56 2 60 0 0 WB 60.0 E EB Right 0 0 0 0 0 0 WB F B Right 0 0 0 0 0	•	SB	29.6	U	SB Left SB Through	192 394	£ 60	59	195 194	E E		
129.2 F WB Left 571 43 109 383 109 1	39	ä	2313	ш	SB Right EB Left FB Through	105 81 454	11 192 237	50 556 557	230	8 4 4	56.9	ш
34.8 C WB Through 474 40 109 383				-	EB Right WB Left	30	252	581	756	- 4 0		
129.2 F NBThrough 33.1 117 533 842 NB Right 84.1 134 533 842 84.7 F SB Through 343 85 83 215 56.0 E EB Left 5 114 162 511 EB Right 296 2 0 0 WB Through 0 0 0 0 WB Through 0 0 0 0 WB Right 0 0 0 0 WB Through 0 0 0 0 WB Right 0 0 0 0 WB Through 0 0 0 0 WB Right 0 0 0 0 WB Through 0 0 0 0 0 WB Right 0 0 0 0 0		WB	34.8	U	WB Right 40	474 330 - Bockledge Blvd a	40 13	109 129	383	D 8		
Second		NB	129.2	ш	NB Left NB Through	331	0 117	533	842	ΑHI		
SB Right 0 0 0 0 0 0 0 0 0		SB	84.7	ட	SB Left SB Through	0 343	0 0 85	83 83	215	- 4 H		
60.0 E EBThrough 432 99 162 511 EBThrough 296 2 0 0 0 0 WB Left 0 0 0 0 0 WB NB Right 0 0 0 0 0 0 WB Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40				SB Right EB Left	0 5	0 114	0	0 511	A F	6.66	ш
WB Right 0 0 0 WB Right 0 0 0	I	EB	60.0	ш	EB Through EB Right WR I eft	432 296 0	99 2	162 0 0	511	4 4		
		WB			WB Left WB Through WB Right	0 0	0 0	000	000	4 4 4		

Table B.15: PM Peak - Existing - Alternative Intersection Delay and Level of Service

Intersection LUS			Ω						ш						В						U	,						U							∢						۷							Ф						U			
Intersection Delay			49.0						121.2						17.8						33.1							24.0							3.1						6.2							7.8						29.5			
SO 0	∢ ∢	4 4 ·	4 4 4	A	D A	8	O J	<u>.</u> .	T 0 0	0 0		. ()	A O	A A	4 4	B E E	: <	V C	A B	A A	E A	A E	: 4 4	: (ه a د	3 0 0) 4 L	ш ш (æ U (ν	Q	A A	A A	A A	∢ ∢ ⋅	4 4 4	€ 4	(∢ ∢	:	: < <	(< <	: ∪ ⊲	τ 4	∢ .	4 4	О	4 4	4 4	A A	A	3 4 1	E	В В	т 8 4	₹ 4 (ں ر
Max Gueue	0 0	0 0	0 0	0 772	772	1203	1203	2699	407	432	2135	2002	393	0 236	0	0	253 253 0		432	320	320 0	569	498	0 0	5 2 2	614	438	433	361	361	29	139	0	0	0	43 0	62		0 0	0 0	0 0	228	282	0	0	0	160	.00	0	0 274	23	100	100 125	125	546 546 573	1102	1102
ff ramps	0	0	0	0 192	192	309	309	2575	2575 94	113	1909	mps 2002	97	0 57	0	0	47 47 0	sdw	101	0 76	76 0	139 139	0 0	0 0	5 8	90	84	54	86	3 8	1	amp 29	0	0	0	0 0	2 0	amb	0 0	0 0	0 0	18	38		0 0	0	36	.0	0	0 19	0	15	15 19	19	89 89 75	306	306
t I-270 SB on and of	0	0	0	0	52 0	at Tuckerman Ln 19	72	207	234 52	24 43 209	233	70 NB on and off ra	9	0 23	0	0	57 59 0	70 NB on and off ra	32	62	15 0	59	55	0	at Rock Spring Dr	14	53	31	63	30	4	VG at 1-2 / U INB OIT IS 45			0	1 0	1 0	lvd at I-270 SB on ra	0 0	0 0	0 0	2 2	23	0	lvd at I-2/0 sB оп г 0	0	51	2 0	0	0 4	1 O at Burdette Rd	74 84	56 76	56	94 11	121	35
I- Rockledge Blvd a	0	0	0 0	0 340	980	D 187						at I-2					65	at I-2	0 2214	147	1156 0	626	180	0 0	45-MD 187	2003	20	170	396	3/5	32	47-Democracy bi 161	0	0 0	0	1135 0	2129	48- Democracy B	0 0	0 0	0 0	1355	534	0	49- Democracy B	0	180	0	0		MD 19	26 4		118	121 1153 27	27	2160
A 4	ž	SS	SB Night EB Left EB Through		> -		NB Through NB Right	SB	SB Right EB Left	EB Right	WB Through	WD Ngill	NB Through	SB	0,	EB Through EB Right	WB Left WB Through WB Right		NB Left NB Through	SB Left	SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Right	#01 dly	NB Through	2 3	S	EB	WB Left	>	NB	NB Through NB Right	SB TF	SB Right EB Left	EB Through EB Right	WB Left WB Through WR Right	WB Night	- NB	- 2	3 "	EB Through				_	٠,		EB Through EB Right	>		NB Left NB Through	NB Right SB Left	SB Through SB Right	EB Lett EB Through	WB Left	WB Ihrougn
:	U				٥		٥	LL.	٥	2	ш		В	U			Е		۵		ن د	ш				В	,	J	۵	٥	۵		Q			A	۷					۷	4	τ			۵			A		ш		O	В	(U
	32.2				53.6		43.0	208.3		7.1.6	214.5		13.5	23.2			58.2		31.6		20.3	58.0				16.9		4.77	40.0		6:11		44.8		:	1.3	6:0					5.1	8	0.00			37.7			3.9		72.7		31.3	19.0	()	34.8
:	NB	SB	EB		WB		NB	SB	6	9	WB		NB	SB		EB	WB	_	NB	;	SS	EB		WB		NB	8	9	EB		900		NB	SB		EB	WB		NB	SB	}	EB	WB			NB	SB		EB	WB		NB		SB	EB		WB
		•	41				<u> </u>		42					•	43					ı	44		1					45					l		47						48							49		•			1	20			

Table B.15: PM Peak - Existing - Alternative Intersection Delay and Level of Service

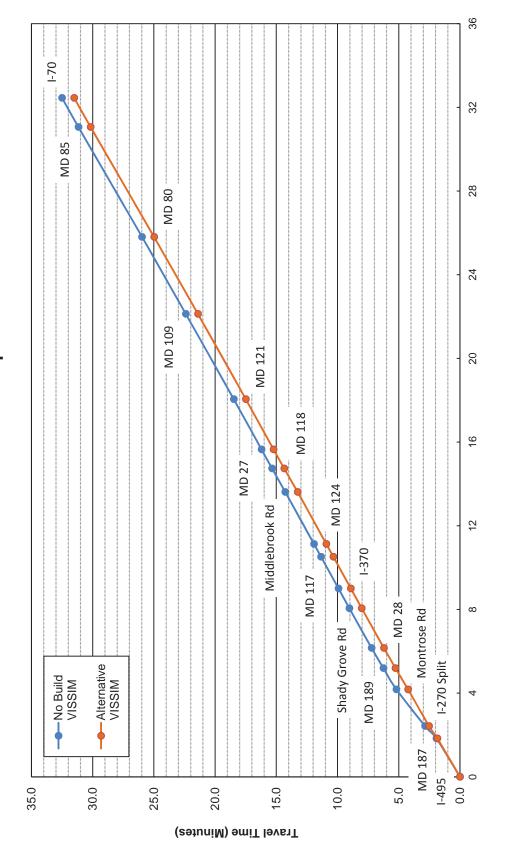
Intersection LOS							В												a	n												O												ш												œ	1				
Intersection Delay							17.3												23.0	12.9						_						25.1												71.4												11.8					
SOT		V	V ·	V	A	A	Αı	ш «	∢ <	۲ ۵	(<	۲ ۵		В	٨	: A	٨	A	А	Α	Α	V ·	۷ u	8 <	1	•	Α .	∢ <	∢ ∟	ы и		u C) U) U) ц	В	A		A	A	Е	A	A	A	۸ı	ш,	V ·	₹ 4	< ∢		А	Α	D	А	A	A	V ·	Α,	Α «	∢ <	4 4
Max Queue		0	0	0	0	0	0 0	328	0 0	0	717	† C	>	512	0	0	0	0	0	0	136	0	0	624	>	ć	0	0 0	0 25	375	37.0	366	366	366	465	465	465		0	0	3475	0	0	0	0 0	1279	0	0	0		0	0	207	0	0	0	0	99	0 0	5 C	0
Ave. Queue		0	0	0	0	0	0	100	0 0			ţ c			C	0	0	0	0	0	9	0	0	Q, 0					104	104	104	104	99	99	132	132	132			0	1020	0	0	0	0	907	0	0 0				0	53	0	0	0	0	4 0	0 0	5 0	0
Delay	51- MD 190 at I-270 NB on ramp	0	0	0	0	0	0 %	2 0	0	0	0 0	0 0	at I-270 SR off ramp	71	0	0	0	0	0	0	3	0	0 %	10	0	at Seven Locks Rd	21 1	0	0 2	90	200	30	27	25	62	15	4	54- MD 124 at I-270 NB off ramp	0	0	29	0	0	0	0 =	۷۹	0	0 0	0	55- Democracy Blvd at I-270 NB off ramp	0	0	47	0	0	0	0	2	0	5 C	0
Volume	51- MD 190	0	0	0	0	0	0	233	0	0 0	1475	C/41	52- MD 190	226	0	0	0	0	0	0	840	0	0	1/28	0	53- MD 190	21	243	0	300	130	22	664	34	268	947	730	54- MD 124 8	0	0	1945	0	0	0	0	1835	0	0 0	0	55- Democracy B	0	0	330	0	0	0	0	1135	0 0	5 C	0
Movement		NB Left	NB Through	NB Right	SB Left	SB Through	SB Right	EB Lett	EB Ihrough	WR Inft	WD Through	WB IIIIOUBII	311911	NB Left	NB Through	NB Right	SB Left	SB Through	SB Right	EB Left	EB Through	EB Right	WB Left	WB Ihrough	WBRIGHT	3	NB Left	NB IIIrougn	NB Right	Sp Leit	SP Diah	SB RIBITL FR I off	EB Through	FB Right	WRIeff	WB Through	WB Right		NB Left	NB Through	NB Right	SB Left	SB Through	SB Right	EB Left	EB Inrougn	EB Right	WB Left	WB Right		NB Left	NB Through	NB Right	SB Left	SB Through	SB Right	EB Left	EB Through	EB Right	WB Lett	WB Right
Approach LOS								L	ш		<	ť.			ш	ı					A			9			•	۲		ц	_		U			В				П					ı	ш						Q						A			
Approach Delay								0	69.6		0	1.0			70.7						2.9			10.3			ć	c:0		0 77	0.00		27,4			19.7				67.2					C	75.8						46.7					,	1.6			
Approach			NB			SB		£	EB		d/vi	2			NB	!		SB			EB			WB			2	Q.		g	3		EB			WB				NB			SB		ć	EB		W/B	1			NB			SB		1	EB		g/W)
Intersection				•			51			•							•		2	76		•							•			53			•									54			•									55					

Table B.16: PM Peak - Existing - I-270 Vehicle Network Performance

	Existing (Delay Total)	Alternative (Total Total)	% Change
Total Delay	21,792,153	18,725,155	-14%
Average Delay per Vehicle	206	179	-13%
Total Travel Time	53,628,278	51,038,133	-5%
Vehicles (Arrived)	88,401	89,277	1%
Latent Demand	1,544	2,344	52%
Latent Delay	2,650,217	3,580,739	35%
Total Distance	484,473	492,403	2%
Average Speed	33	35	5%

2040 Conditions

AM Peak


Table C.1: AM Peak - No Build - I-270 Vehicle Travel Time

I-270 Northbound	RITIS Segment Number	Segment Length (miles)	Cumulative Length (miles)	No Build VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change	I-270 Southbound	Segment Length (miles)	Cumulative Length (miles)	No Build VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change
From I-495 interchange			0.0				From I-70		0.0			
to MD 187	6001+6002	1.8	1.8	115.4	110.9	-3.5%	to MD 85	1.7	1.7	268.0	99.9	-62.7%
to I-270 Split	6003+6004	0.6	2.4	55.7	40.7	-26.8%	to MD 80	5.4	7.0	1392.5	938.5	-32.6%
to Montrose Rd	6005+6006	1.8	4.2	140.4	102.9	-26.4%	to MD 109	3.7	10.7	591.1	473.5	-19.8%
to MD 189	6007+6008	1.0	5.2	63.7	61.7	-3.1%	to MD 121	3.6	14.4	283.8	289.1	1.8%
to MD 28	6009+6010	1.0	6.2	57.8	56.4	-3.4%	to MD 27	2.5	16.8	275.0	179.6	-34.5%
to Shady Grove Rd	6011+6012	1.9	8.1	109.1	109.0	0.0%	to MD 118	1.1	17.9	248.9	82.1	-67.1%
to I-370	6013+6014	0.9	9.0	53.1	53.0	0.0%	to Middlebrook Rd	1.1	19.0	211.7	111.4	-47.6%
to MD 117	6015+6016	1.5	10.5	85.6	85.7	0.0%	to MD 124	2.2	21.2	532.9	154.5	-70.9%
to MD 124	6017+6018	0.6	11.1	34.5	34.5	2.9%	to MD 117	0.9	22.1	182.7	81.5	-55.7%
to Middlebrook Rd	6019+6020	2.5	13.6	140.9	140.8	0.0%	to I-370	1.0	23.1	92.3	110.5	19.6%
to MD 118	6021+6022	1.1	14.7	64.6	65.7	1.5%	to Shady Grove Rd	1.5	24.6	118.5	119.2	0.0%
to MD 27	6023+6024	0.9	15.7	51.9	52.6	1.9%	to MD 28	1.9	26.5	144.5	149.7	3.4%
to MD 121	6025+6026	2.4	18.0	135.7	135.4	-0.7%	to MD 189	1.0	27.4	155.0	70.6	-54.2%
to MD 109	6027+6028	4.1	22.1	235.2	234.8	0.0%	to Montrose Rd	1.0	28.5	233.5	74.4	-68.4%
to MD 80	6029+6030	3.7	25.8	214.2	214.8	0.5%	to I-270 Split	1.9	30.3	264.0	154.5	-41.7%
to MD 85	6031+6032	5.3	31.1	311.8	310.8	-0.3%	to MD 187	0.4	30.8	30.9	31.2	0.0%
to I-70	6033+6034	1.4	32.4	80.3	80.5	1.3%	to I-495 interchange	1.9	32.7	133.9	135.9	1.5%
I-270 Total (miles/minutes)		32.4		32.5	31.5	0.0%	I-270 Total (miles/minutes)	32.7		86.0	54.3	-37.2%
I-270 Spur Northbound							I-270 Spur Southbound					
From Cabin John Pkwy			0.0				From I-70		0.0			
to MD 190	6045	0.5	0.5	32.4	32.4	0.0%	to I-270 Split	30.3	30.3	4994.6	3,089.1	-38.2%
to I-495	6044	1.1	1.7	67.1	66.9	0.0%	to Democracy Blvd	0.7	31.1	164.6	141.0	-14.5%
to Democracy Blvd	6042+6043	1.4	3.1	98.7	93.7	-5.1%	to I-495	1.3	32.4	204.1	205.6	1.0%
to I-270 Split	6040+6041	0.9	4.0	72.5	51.4	-29.2%	to MD 190	1.3	33.6	87.9	112.4	27.3%
to I-70	6005 - 6034	30.0	34.0	1778.7	1,738.6	-2.2%	to Cabin John Pkwy	0.6	34.2	34.9	35.4	0.0%
I-270 Spur Total (miles/minutes)		34.0		34.2	33.1	-2.9%	I-270 Spur Total (miles/minutes)	34.2		91.4	59.7	-34.1%

Table C.2: AM Peak - No Build - I-270 Local Vehicle Travel Time

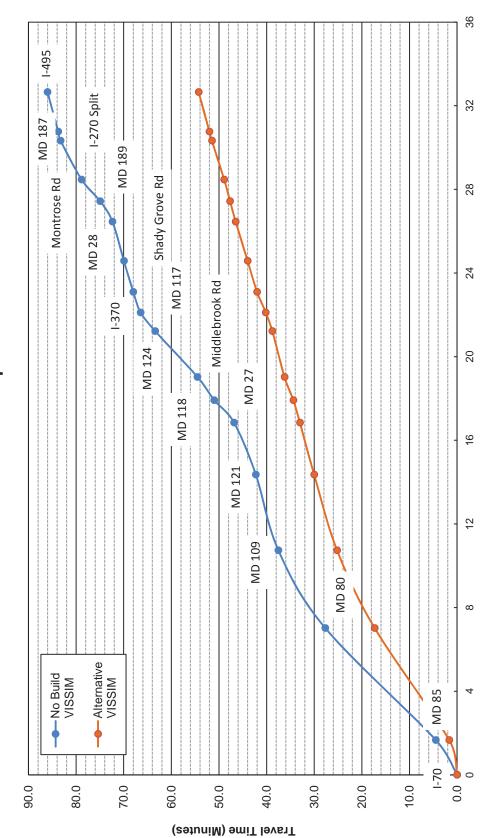

I-270 Northbound	Segment Length (miles)	No Build VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change	I-270 Southbound	Segment Length (miles)	No Build VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change
From C-D start					From C-D start				
to Montrose Rd	0.8	185.1	67.2	-63.8%	to Shady Grove	1.3	445.2	289.2	-35.1%
to MD 189	1.3	338.8	124.6	-63.1%	to MD 28	1.8	435.5	506.6	16.3%
to MD 28	1.0	220.2	145.4	-34.1%	to MD 189	1.1	460.3	580.7	26.3%
to Shady Grove	2.0	117.2	120.2	2.6%	to Montrose	1.2	341.0	384.7	12.9%
to I-370	1.0	56.4	56.1	0.0%	to I-270 mainline	0.9	190.0	196.9	3.7%
to MD 117	1.2	72.6	73.7	1.4%					
to MD 124	0.8	49.0	49.4	0.0%					
to I-270 mainline	0.8	49.5	49.9	0.0%					
I-270 Local Total (miles/minutes)	8.9	18.1	11.4	-38.9%	I-270 Local Total (miles/minutes)	6.3	31.2	32.6	6.5%

Figure C.1: AM Peak - No Build I-270 Travel Time Graph - Northbound

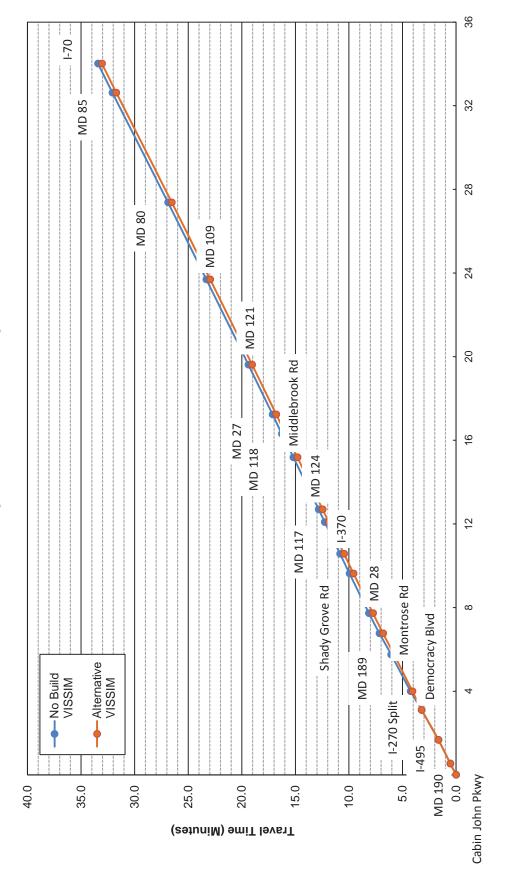

Miles Along Corridor / Direction of Traffic Flow

Figure C.2: AM Peak - No Build I-270 Travel Time Graph - Southbound

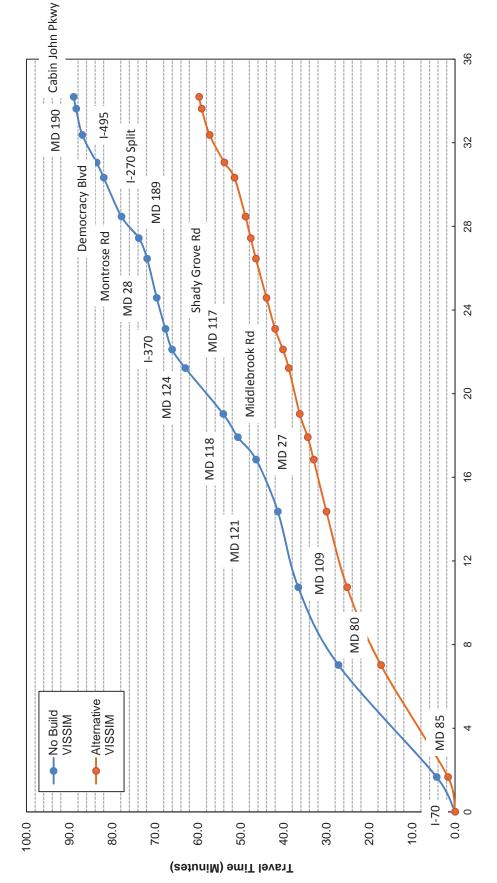

Miles Along Corridor / Direction of Traffic Flow

Figure C.3: AM Peak - No Build I-270 Spur Travel Time Graph - Northbound

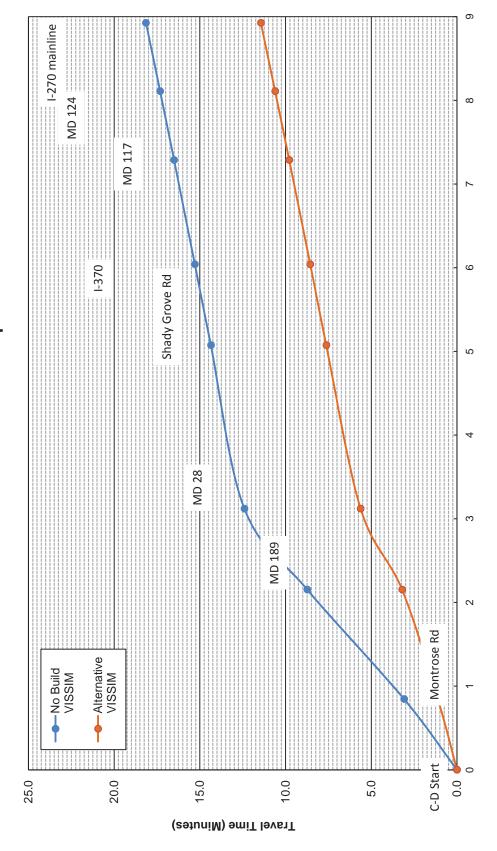

Miles Along Corridor / Direction of Traffic Flow

Figure C.4: AM Peak - No Build I-270 Spur Travel Time Graph - Southbound

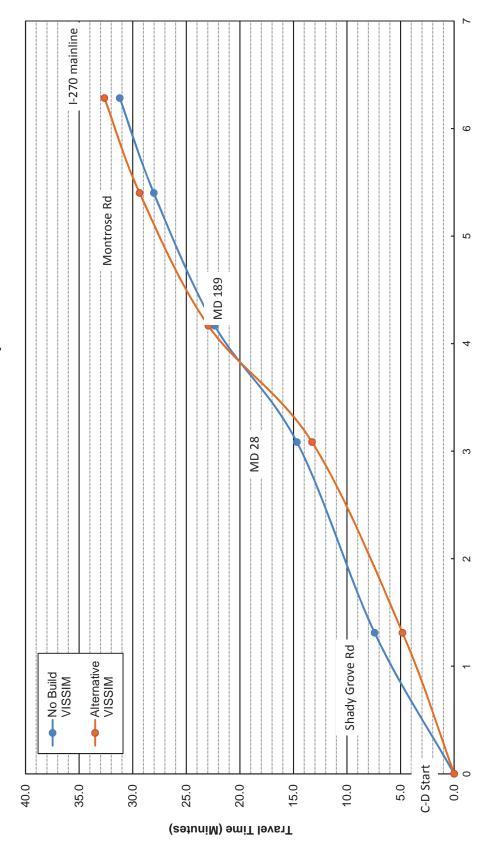

Miles Along Corridor / Direction of Traffic Flow

Figure C.5: AM Peak - No Build I-270 Local Travel Time Graph - Northbound

Miles Along Corridor / Direction of Traffic Flow

Figure C.6: AM Peak - No Build I-270 Local Travel Time Graph - Southbound

Miles Along Corridor / Direction of Traffic Flow

Table C.3: AM Peak - No Build - I-270 Vehicle Speed

I-270 Northbound	No Build VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change	I-270 Southbound	No Build VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change
From I-495 interchange				From I-70			
to MD 187	57.2	59.5	5.3%	to MD 85	22.3	59.9	172.7%
to I-270 Split	38.2	52.2	36.8%	to MD 80	13.8	20.5	50.0%
to Montrose Rd	45.0	61.3	35.6%	to MD 109	22.7	28.3	21.7%
to MD 189	57.2	59.2	3.5%	to MD 121	45.9	45.1	-2.2%
to MD 28	60.1	61.5	3.3%	to MD 27	32.5	49.8	51.5%
to Shady Grove Rd	62.6	62.7	0.0%	to MD 118	15.5	47.0	193.8%
to I-370	64.1	64.1	0.0%	to Middlebrook Rd	18.9	35.8	89.5%
to MD 117	63.7	63.7	0.0%	to MD 124	14.8	51.3	240.0%
to MD 124	64.0	63.9	0.0%	to MD 117	17.4	39.1	129.4%
to Middlebrook Rd	63.5	63.6	0.0%	to I-370	38.4	32.1	-15.8%
to MD 118	62.5	61.4	-1.6%	to Shady Grove Rd	45.2	44.9	0.0%
to MD 27	63.6	63.3	-1.6%	to MD 28	46.7	45.1	-4.3%
to MD 121	63.5	63.4	-1.6%	to MD 189	22.7	49.9	117.4%
to MD 109	62.4	62.5	1.6%	to Montrose Rd	15.9	49.9	212.5%
to MD 80	61.8	61.6	0.0%	to I-270 Split	25.3	43.3	72.0%
to MD 85	60.7	60.9	0.0%	to MD 187	50.7	50.2	-2.0%
to I-70	62.4	62.2	0.0%	to I-495 interchange	50.8	50.1	-2.0%
I-270 Total (miles/minutes)	59.9	61.8	3.3%	I-270 Total (miles/minutes)	22.8	36.1	56.5%
I-270 Spur Northbound				I-270 Spur Southbound			
From Cabin John Pkwy				From I-70			
to MD 190	59.9	59.9	0.0%	to I-270 Split	21.9	35.3	59.1%
to I-495	60.8	61.0	0.0%	to Democracy Blvd	16.0	18.6	18.8%
to Democracy Blvd	52.3	55.0	5.8%	to I-495	23.1	22.9	0.0%
to I-270 Split	44.3	62.5	40.9%	to MD 190	51.3	40.2	-21.6%
to I-70	60.8	62.2	1.6%	to Cabin John Pkwy	58.7	58.0	-1.7%

Table C.4: AM Peak - No Build - I-270 Local Vehicle Speed

I-270 Northbound	No Build VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change	I-270 Southbound	No Build VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change
From C-D start				From C-D start			
to Montrose Rd	16.4	45.3	181.3%	to Shady Grove	10.6	16.3	45.5%
to MD 189	13.9	37.8	171.4%	to MD 28	14.7	12.6	-13.3%
to MD 28	15.8	24.0	50.0%	to MD 189	8.5	6.7	-12.5%
to Shady Grove	60.1	58.5	-1.7%	to Montrose	13.0	11.6	-7.7%
to I-370	61.7	62.0	0.0%	to I-270 mainline	16.7	16.1	-5.9%
to MD 117	61.8	60.9	-1.6%				
to MD 124	60.5	59.9	0.0%				·
to I-270 mainline	59.3	59.0	0.0%				
I-270 Local Total (miles/minutes)	29.5	46.8	0.6	I-270 Local Total (miles/minutes)	12.1	11.6	0.0

Figure C.7: HCM 2010 Density Level of Service Criteria (pc/mi/ln)

HCM 2010 Freeway I	LOS
<11	A
> 11 - 18	В
> 18 - 26	С
> 26 - 35	D
> 35 - 45	E
> 45	F
HCM 2010 Freeway Merge and Dive	erge Segment LOS
< 10	A
> 10 - 20	В
> 20 - 28	С
> 28 - 35	D
> 35 - 40	Е
> 40	F
HCM 2010 Freeway Weaving S	Segment LOS
< 10	A
> 10 - 20	В
> 20 - 28	C
> 28 - 35	D
> 35 - 40	E
> 40	F
HCM 2010 C-D Weaving Seg	gment LOS
< 12	A
> 12 - 24	В
> 24 - 32	C
> 32 - 36	D
> 36 - 40	Е
> 40	F

Table C.5: AM Peak - No Build - I-270 Vehicle Density

		No Build	7	Alternative	ve				No Build	ld	Alternative	
bo.M. 02C 1	Tymo		100		301	%	1 270 Southbound	T	Density	1 00 1	Density Los	%
I-Z/O INOLUIDOUIIA	1 y be	(pc/mi/ln)	_	(pc/mi/ln)	_	Change	I-Z/O SOUCHDOUNG	Type	(pc/mi/ln)		(pc/mi/ln) LOS	Change
I-270	Freeway	35	E	27	D	-23%	1-270	Freeway	51	F	22 C	-57%
I-270 Diverge to MD 187	Diverge	31	D	21	С	-32%	I-270 Merge from WB I-70	Merge	29	F	14 B	%6L-
I-270	Freeway	40	E	24	С	-40%	I-270	Freeway	89	F	26 D	-62%
I-270 Diverge to Rockledge Rd	Diverge	31	D	21	С	-32%	I-270 Merge from EB I-70	Merge	09	F	22 C	-63%
I-270	Freeway	40	E	22	С	-45%	I-270	Freeway	29	F	32 D	-52%
I-270 Weave from MD 187 to I-270 HOV	Weave	25	С	14	В	-44%	I-270 Diverge to SB MD 85	Diverge	70	F	37 E	-47%
I-270 Lane Drop	Merge	40	ഥ	20	В	-20%	I-270	Freeway	96	F	29 D	%02-
I-270	Freeway	55	ഥ	34	D	-38%	I-270 Diverge to NB MD 85	Diverge	28	F	17 B	-71%
I-270 Merge from I-270 Spur	Merge	54	H	27	C	-20%	I-270	Freeway	117	H	25 C	%62-
I-270 Weave from I-270 HOV to I-270 C-D	Weave	61	ഥ	34	D	-44%	I-270 Merge from MD 85	Merge	95	F	19 B	%08-
I-270	Freeway	35	E	26	D	-26%	I-270	Freeway	114	H	92 F	-19%
I-270 Diverge to C-D (MD 189)	Diverge	25	C	21	C	-16%	I-270 Diverge to MD 80	Diverge	61	H	51 F	-16%
I-270	Freeway	20	С	21	C	2%	I-270	Freeway	108	H	98 F	%6-
I-270 Diverge to C-D (MD 28)	Diverge	38	E	31	D	-18%	I-270 Merge from MD 80	Merge	106	H	52 F	-51%
I-270	Freeway	14	В	16	В	14%	I-270	Freeway	92	H	64 F	-16%
I-270 Merge from C-D (MD 189)	Merge	15	В	18	В	20%	I-270 Diverge to MD 109	Diverge	40	Е	32 D	-20%
I-270 Diverge to C-D (Shady Grove Rd)	Diverge	19	В	15	В	-21%	I-270	Freeway	80	F	66 F	-18%
I-270	Freeway	13	В	15	В	15%	I-270 Merge from MD 109	Merge	69	F	38 E	-45%
I-270 Weave from C-D (MD 28) to C-D (Shady Grove Rd)	Weave	11	В	13	В	18%	I-270	Freeway	45	田	55 F	22%
I-270	Freeway	11	А	13	В	18%	I-270 Diverge to SB Weigh Station	Diverge	18	В	22 C	22%
I-270 Merge from C-D (Shady Grove Rd)	Merge	6	А	8	А	-11%	I-270	Freeway	38	E	41 E	%8
I-270	Freeway	12	В	13	В	%8	I-270 Merge from SB Weigh Station	Merge	20	C	22 C	10%
I-270 Merge from C-D (I-370)	Merge	11	В	12	В	%6	I-270	Freeway	41	Е	43 E	5%
I-270 Diverge to C-D (MD 117)	Diverge	17	В	19	В	12%	I-270 Diverge to MD 121	Diverge	21	С	19 B	-10%
I-270	Freeway	13	В	14	В	%8	I-270	Freeway	32	D	25 C	-22%
I-270 Merge from C-D (MD 124)	Merge	14	В	15	В	7%	I-270 Merge from WB MD 121	Merge	38	E	22 C	-42%
I-270	Freeway	17	В	14	В	-18%	I-270	Freeway	46	F	33 D	-28%
I-270 Diverge to EB Middlebrook Rd	Diverge	11	В	6	А	-18%	I-270 Merge from EB MD 121	Merge	39	E	28 D	-28%
I-270	Freeway	15	В	11	В	-27%	I-270	Freeway		F	36 E	-36%
I-270 Diverge to WB Middlebrook Rd	Diverge	10	А	12	В	70%	I-270 Diverge to MD 27	Diverge	58	F	27 C	-53%
I-270	Freeway	14	В	15	В	7%	I-270	Freeway	82	F	26 C	%89-
I-270 Diverge to EB MD 118	Diverge	11	В	13	В	18%	I-270 Merge from WB MD 27	Merge	88	F	23 C	-74%
I-270 Diverge to WB MD 118	Diverge	15	В	17	В	13%	I-270	Freeway	81	F	35 E	-57%
I-270	Freeway	13	В	15	В	15%	I-270 Weave from EB MD 27 to MD 118	Weave	79	F	33 D	-58%
I-270 Weave from MD 118 to MD 27	Weave	13	В	14	В	%8	I-270	Freeway	92	F	48 F	-48%
I-270	Freeway	12	В	14	В	17%	I-270 Merge from WB MD 118	Merge	92	F	42 F	-45%
I-270 Merge from EB MD 27	Merge	13	В	14	В	%8	I-270	Freeway	87	F	58 F	-33%
I-270	Freeway	14	В	15	В	7%	I-270 Merge from EB MD 118	Merge	75	F	46 F	-36%
I-270 Merge from WB MD 27	Merge	11	В	11	В	%0	I-270	Freeway	72	F	42 E	-42%
I-270	Freeway	15	В	16	В	7%	I-270 Merge from Middlebrook Rd	Merge		F	39 E	-65%
I-270 Diverge to MD 121	Diverge	12	В	12	В	%0	I-270	Freeway	98	Ŧ	39 E	-55%

%8/--64% -45% -77% -83% -58% %69--55% 41% 30% 36% 19% -29% 22% 14% 22% 19% -27% -73% 48% 13% 13% 19% 10% 12% %91 17% 14% %0 2% %0 Ω Q Q Ω Density (pc/mi/ln) 18 30 27 42 54 65 9 4 50 09 22 33 24 32 35 35 28 33 29 42 26 19 26 28 29 4 22 27 31 22 TOS М Ω ш No Build Density (pc/mi/ln) 132 158 83 66 131 54 20 4 42 85 20 27 48 28 66 74 53 23 19 24 26 18 21 27 21 Diverge Freeway Diverge Diverge Freeway Diverge Freeway Merge Merge Diverge Freeway Diverge Merge Freeway Merge Freeway Freeway Merge Freeway Merge Freeway Freeway Freeway Freeway Diverge Merge Freeway Merge Diverge Merge Freeway Diverge Merge Freeway 1-270 Merge from I-270 C-D (Shady Grove 1-270 Merge from I-270 C-D (Shady Grove I-270 Merge from Rockledge Dr / MD 187 1-270 Diverge to I-270 C-D (Shady Grove 1-270 Diverge to Rockledge Dr / MD 187 I-270 Merge from I-270 C-D (MD 189) I-270 Diverge to I-270 C-D (MD 189) I-270 Diverge to Watkins Mill Rd 1-270 Diverge to I-270 HOV Lane I-270 Merge from Rockledge Dr I-270 Merge from WB MD 124 (1-270 Merge from I-270 (I-370) I-270 Merge from Watkins Mill I-270 Merge from I-270 C-D I-270 Diverge to I-270 Spur I-270 Diverge to I-270 C-D I-270 Merge from MD 117 I-270 Diverge to MD 124 I-270 Diverge to I-370 1-270 Southbound Rd Southern) Rd Northern) [-270]1-2701-270I-270 1-270-21% 15% %01 %0 %0 5% 0% 2% %0 %5 5% 8% %0 %0 -5% %0 %0 %0 %0 %0 %0 %0 %0 %0 %8 %0 %0 %0 %0 pc/mi/ln) Density 15 15 19 20 10 1 | 52 22 12 20 22 7 25 13 25 13 25 15 24 14 TOS No Build Density (pc/mi/ln) 20 19 12 24 14 25 13 25 19 Table C.5: AM Peak - No Build - I-270 Vehicle Density Freeway Diverge Diverge Freeway Diverge Diverge Diverge Weave Merge Freeway Freeway Merge Freeway Freeway Freeway Freeway Freeway Merge Freeway Freeway Merge Merge Diverge Freeway Merge I-270 Merge from NB Weight Station 1-270 Diverge to NB Weigh Station I-270 Weave from MD 85 to I-70 I-270 Merge from Scenic View I-270 Merge from EB MD 121 I-270 Diverge to Scenic View I-270 Diverge to NB MD 85 I-270 Diverge to SB MD 85 I-270 Merge from MD 109 I-270 Diverge to MD 109 I-270 Merge from MD 80 I-270 Diverge to MD 80 **[-270 Northbound** 1-270 Lane Drop I-270 1-270I-270 I-270 I-270

Change 118% -35% -18% -55% 14% %08 %95 34% %95 2% 4% 4% 3% %0 4% 3% ros Q Alternative Density (pc/mi/ln) 110 46 64 35 84 50 35 72 29 28 36 24 61 51 31 31 **FOS** Q Q Q Ω Ω No Build Density (pc/mi/ln) 4 74 99 78 33 38 28 29 35 23 34 61 32 4 31 Freeway Freeway Weave Diverge Diverge Freeway Freeway Merge Freeway Merge Freeway Freeway Merge Merge Diverge Merge I-270 Diverge to WB Clara Barton Pkwy 1-270 Spur Diverve to Cabin John Pkwy 1-270 Spur Weave from I-270 HOV to 1-270 Merge from Clara Barton Pkwy 1-270 Merge from Democracy Blvd I-270 Spur Diverve to EB MD 190 I-270 Spur Merge from I-495 I-270 Merge from MD 190 I-270 Spur Lane Drop I-270 Southbound Democracy Blvd I-270 Spur Change -58% -58% -33% -27% -36% -13% -16% -3% %8-%0 %0 %0 % %0 %0 %0 **FOS** Q Q Alternative (pc/mi/ln) Density 39 34 34 28 16 16 16 17 57 25 28 24 32 33 24 TOS Table C.6: AM Peak - No Build - I-270 Spur Vehicle Density Density (pc/mi/ln) 39 35 40 44 57 25 34 25 32 Diverge Merge Freeway Merge Freeway Merge Merge Freeway Diverge Freeway Merge Merge Freeway Merge Freeway Freeway Freeway Freeway -270 Spur Merge from Clara Barton Parkway I-270 Spur Merge from WB Democracy Blvd 1-270 Spur Merge from Cabin John Parkway 1-270 Spur Merge from EB Democracy Blvd I-270 Spur Merge from Westlake Terrace I-270 Spur Diverge to Democracy Blvd I-270 Spur Merge from MD 190 I-270 Spur Diverge to I-495 I-270 Diverge to MD 190 I-270 Spur Northbound I-270 Spur I-270 Spur

Change -38% -36% -25% -10% %9-85% 34% 16% %6-%69 39% 12% 13% %69 %9 % %9 % 5% TOS Alternative (pc/mi/ln) Density 128 136 137 105 104 110 109 8 141 9/ 85 9/ 65 8 68 88 90 98 58 85 61 61 91 TOS No Build (pc/mi/ln) Density 133 103 122 123 6 124 99 4 98 52 95 98 99 Diverge Diverge Weave Freeway Merge Merge Merge reeway Merge Freeway Diverge Weave Freeway Merge Freeway reeway Diverge reeway reeway Diverge Freeway Diverge Freeway Merge 1-270 C-D Merge from WB Shady Grove Rd 1-270 C-D Merge from EB Shady Grove Rd I-270 C-D Weave from I-370 EB to I-270 I-270 Weave between Montrose Rd Loops I-270 C-D Merge from EB Montrose Rd I-270 C-D Diverge to WB Montrose Rd I-270 C-D Merge from WB MD 28 I-270 C-D Merge from EB MD 28 I-270 C-D Merge from I-270 I-270 C-D Diverge to I-270 I-270 C-D Diverge to I-270 I-270 C-D Merge from MD 189 I-270 C-D Diverge to MD 189 I-270 C-D Merge from I-270 I-270 C-D Diverge to MD 28 I-270 C-D Diverge to I-270 I-270 Southbound I-270 C-D I-270 C-D I-270 C-D I-270 C-D I-270 C-D Change -52% -49% -36% -62% -59% -48% -50% -50% %85--46% -43% 43% -25% -64% %09-25% 20% 25% 13% 19% -56% **%99-**-5% % 20% %8 14% 19% % %0 %8 %8 %8 TOS (pc/mi/ln) Density 46 29 26 34 47 44 44 35 36 4 52 28 48 24 19 9 16 20 4 4 4 9 ros No Build Density (pc/mi/ln) 103 54 107 45 89 96 96 16 83 86 61 84 ∞ Diverge Merge Diverge Weave Diverge Weave Merge Freeway Merge Freeway Merge Merge Merge reeway Weave Freeway reeway Diverge Weave reeway reeway Merge Freeway Weave reeway Diverge Freeway Freeway Merge reeway Diverge Freeway reeway reeway Diverge reeway Merge reeway Merge -270 C-D Weave between Montrose Rd Loop I-270 C-D Merge from WB Shady Grove Rd I-270 C-D Diverge to I-270 I-270 C-D Merge from I-270 and Drop Lane 28 I-270 C- D Merge from I-270 and EB Shady Grove Rd I-270 C-D Merge from WB Montrose Rd I-270 C-D 1-270 C-D Weave between MD 28 Ramps I-270 C-D Weave from I-270 to MD 117 1-270 C-D Diverge to Shady Grove Rd I-270 C-D Diverge to EB Montrose Rd I-270 C-D Weave from I-370 to I-270 I-270 C-D Weave between I-270 (to MD I-270 C-D Merge from EB MD 124 1-270 C-D Merge From WB MD 124 I-270 C-D Merge from Watkins Mill 1-270 C-D Merge from MD 28 WB I-270 C-D Merge from MD 189 1-270 C-D Diverge to MD 189 I-270 C-D Diverge to MD 28 I-270 C-D Merge from I-270 I-270 C-D Diverge to I-270 I-270 C-D Diverge to I-370 I-270 Merge from I-370 EB I-270 C-D Diverge to MD I-270 Northbound from MD 189) I-270 C-D [-270 C-D I-270 C-D I-270 C-D I-270 C-D I-270 C-D I-270 C-D Ramps

Table C.7: AM Peak - No Build - I-270 Local Vehicle Density

Table C.8: AM Peak - No Build - I-270 Vehicle	Throughput							
I-270 Northbound	No Build VISSIM Throughput	Alternative VISSIM Throughput	% Change	Data Collection Measurement	I-270 Southbound	No Build VISSIM Throughput	Alternative VISSIM Throughput	% Change
Between I-495 and MD 187	4603	4861	6%	100	North of I-70	2549	2637	3%
Between MD 187 on and off ramps	3999	4320	8%	102	Between I-70 on ramps	2877	3038	6%
Between Rockledge Blvd on and off ramps	3273	3589	10%	105	From I-70 interchange to MD-85	4925	5380	9%
Between Rockledge Dr and I-270 Spur	2868	3214	12%	108	Between MD-85 on and off ramps	2537	2903	14%
Between I-270 Spur and Montrose Rd	7806	8660	11%	110	Between MD-85 and MD-80	2945	3325	13%
Between Montrose Rd on and off ramps	4509	5007	11%	112	Between MD-80 on and off ramps	2704	3030	12%
Between Montrose Rd and MD 189	4222	4677	11%	114	Between MD-80 and Md-109	3545	3836	8%
Between MD 189 and MD 28	4178	4638	11%	116	Between MD-109 on and off ramps	3487	3782	8%
Between MD 28 on and off ramps	4324	4958	15%	118	Between MD-109 and MD-121	4138	4423	7%
Between MD 28 and Shady Grove Rd	3141	3648	16%	120	Between MD-121 on and off ramps	3559	3850	8%
Between Shady Grove Rd and I-370	2697	3134	16%	123	Between MD-121 and MD-27	4828	5307	10%
Between I-370 on and off ramps	2999	3136	5%	126	Between MD-27 on and off ramps	4179	4891	17%
Between I-370 and MD 117	4135	4561	10%	129	Between MD-27 and MD-118	4644	5471	18%
Between MD 117 and MD 124	3115	3409	9%	133	Between MD-118 on and off ramps	4466	5325	19%
Between MD-124 on and off ramps	3121	3411	9%	136	Between MD-118 and Middlebrook Rd	5121	6005	17%
Between Watkins Mill Rd and Middlebrook Rd	4072	4546	12%	139	Between Middlebrook Rd on and off ramps	5104	6007	18%
Between Middlebrook Rd on and off ramps	3786	4203	11%	142	Between Middlebrook Rd and MD-124	6729	7769	15%
Between Middlebrook Rd and MD 118	3366	3733	11%	146	Between MD-124 on and off ramps	5419	6180	14%
Between MD-118 on and off ramps	3041	3370	11%	150	Between MD-124 and MD-117	6498	7221	11%
Between MD 118 and MD 27	2870	3128	9%	154	Between MD-117 and I-370	8204	8735	6%
Between MD-27 on and off ramps	2320	2520	9%	159	Between I-370 on and off ramps	3014	3071	2%
Between MD 27 and MD 121	2735	2928	7%	163	Between I-370 on ramp to Shady Grove Rd	3952	4264	8%
Between MD-121 on and off ramps	1997	2137	7%	167	Between Shady Grove Rd and MD 28	3616	3897	8%
Between MD 121 and MD 109	2533	2645	4%	171	Between MD 28 on and off ramps	4432	4702	6%
Between MD-109 on and off ramps	2354	2454	4%	175	Between MD 28 and MD 189	4003	4210	5%
Between MD 109 and MD 80	2508	2599	4%	179	Between MD 189 and Montrose Rd	4016	4246	6%
Between MD-80 on and off ramps	2242	2316	3%	183	Between Montrose Rd on and off ramps	4980	5329	7%
Between MD 80 and MD 85	2947	2997	2%	187	Between Montose Rd and I-270 Spur	8012	8685	8%
Between MD-85 on and off ramps	2238	2276	2%	193	Between I-270 Spur and Rockledge Blvd	3804	4143	9%
Between MD 85 and I-70	3256	3296	1%	197	Between Rockledge Blvd on and off ramps	2715	2977	10%
North of I-70	2102	2122	1%	200	Between MD 187 on and off ramps	2863	3156	10%
				203	Between MD 187 and I-495	2883	3151	9%
I-270 Spur Northbound					I-270 Spur Southbound			
Between I-495 and Democracy Blvd	5379	5480	2%	600	Between I-270 Split and HOV on ramp	4167	4601	10%
Between Democracy Blvd on and off ramps	4176	4282	3%	603	Between HOV on ramp and Democracy Blvd	4137	4559	10%
Between Democracy Blvd and I-270 Split	4346	4567	5%	607	Between Democracy Blvd on and off ramps	3639	4047	11%
				610	Between Democracy Blvd and I-495	4200	4652	11%

94 Page G-94 Table C.9: AM Peak - No Build - I-270 Local Vehicle Throughput

Table C.9: AM Peak - No Build - I-270 I	ocal Vehicle Throu	ıghput						
I-270 Local Northbound	No Build VISSIM Throughput	Alternative VISSIM Throughput	% Change	Data Collection Measurement	I-270 Local Southbound	No Build VISSIM Throughput	Alternative VISSIM Throughput	% Change
Between Montrose Rd EB off ramp and and EB on ramp	1815	2217	22%	800	Between I-370 on ramp and I-270 off ramp	3840	4131	8%
Between Montrose Rd EB on ramp and WB off ramp	2007	2444	22%	804	Between I-270 off ramp and Shady Grove off ramp	2913	2880	-1%
Between Montrose Rd WB off ramp and on ramp	1649	2045	24%	807	Between Shady Grove off ramp and Shady Grove WB on ramp	1675	1584	-5%
Between Montrose Rd WB on ramp and I-	2320	3035	31%	809	Between Shady Grove WB and EB on ramps	2305	2113	-8%
270 on ramp Between I-270 on ramp and MD 189 off	2458	3311		811	Between Shady Grove on ramp and I-270 on	2682	2464	
ramp	1002	2642	35%	012	ramp	2277	2105	-8%
Between MD 189 ramps	1893	2642	40%	813	Between I-270 on ramp and I-270 off ramp1	3367	3195	-5%
Between MD 189 off ramp and I-270 on ramp	2277	2719	19%	815	Between I-270 off ramp1 and I-270 off ramp2	2823	2665	-6%
Between I-270 on ramp and I-270 off ramp	2830	3282	16%	817	Between I-270 off ramp2 and MD 28 off ramp	1971	1892	-4%
Between I-270 off ramp and MD 28 EB off ramp	2023	2793	38%	819	Between MD 28 off ramp and MD 28 WB on ramp	1440	1354	-6%
Between MD 28 EB off ramp to MD 28 EB on ramp	1762	2450	39%	821	Between MD 28 WB on ramp and MD 28 EB on ramp	1721	1612	-6%
Between MD 28 EB on ramp and MD 28 WB off ramp	1787	2510	40%	823	Between MD 28 EB on ramp and I-270 on ramp	2412	2668	11%
Between MD 28 WB off ramp and MD 28 WB on ramp	822	1144	39%	825	Between I-270 on ramp and MD 189 off ramp	2892	3190	10%
Between MD 28 WB on ramp and I-270	1332	1666	25%	827	Between MD 189 on and off ramps	2371	2611	10%
on ramp Between I-270 on ramp and I-270 off	2543	2983		829	Between MD 189 on ramp and I-270 off ramp	3526	3794	
Between I-270 off ramp and Shady Grove	2227	2563	17%	831	Between I-270 off ramp and Montrose Rd off	2472	2585	8%
off ramp Between Shady Grove off ramp and I-270	337	385	15%	833	ramp Between Montrose Rd off ramp and Montrose	2376	2470	5%
on ramp Between I-270 on ramp and Shady Grove	1497	1338	14%	835	Rd WB on ramp Between Montrose Rd WB on ramp and EB	3157	3449	4%
WB on ramp		1550	-11%	055	off ramp	5157	3117	9%
Between Shady Grove WB on ramp and I- 270 off ramp	1837	1994	9%	838	Between Montrose Rd EB off and on ramps	2446	2703	11%
Between I-270 off ramp and I-370 off ramp	1559	1997	28%	840	Between Montrose Rd EB off ramp and I-270	3250	3514	8%
Between I-370 off ramp and I-370 EB on ramp	296	610	106%					
Between I-370 EB and WB on ramps	927	1242	34%					
Between I-370 WB on ramp and I-270 off ramp	2795	3110	11%					
Between I-270 off ramp and I-270 on	1678	1691	1%					
Between I-270 on ramp and MD 117 off	2709	2847						
Between MD 117 off ramp and MD 124	1537	1604	5%					
off ramp Between MD 124 off ramp and MD 124 EB on ramp	804	838	4%					
Between MD 124 EB and WB on ramps	1196	1230	3%					\vdash
Between MD 124 eB and WB on ramps Between MD 124 on ramp I-270	567	594	5%					

Table C.10: AM Peak - No Build - I-270 On Ramn Queue Length - Northbound

Table C.10: AM Peak - No Build - I-270 C	On Ramp Queue I	ength - Northbou	ınd			
I-270 Northbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
Rockledge Dr on ramp	28	0	-100%	342	0	-100%
MD 189 C-D on ramp	0	0	0%	0	0	0%
MD 28 C-D on ramp	0	0	0%	0	0	0%
Shady Grove Rd C-D on ramp	0	0	0%	0	0	0%
I-370 C-D on ramp	0	0	0%	0	0	0%
MD 124 C-D on ramp	0	0	0%	0	0	0%
MD 118 on ramp	0	0	0%	0	0	0%
MD 27 EB on ramp	0	0	0%	0	0	0%
MD 27 WB on ramp	0	0	0%	0	0	0%
MD 121 on ramp	0	0	0%	0	0	0%
MD 109 on ramp	0	0	0%	0	0	0%
MD 80 on ramp	0	0	0%	0	0	0%
MD 85 on ramp	0	0	0%	0	0	0%
I-270 Spur Northbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
Democracy Blvd EB on ramp	2	0	-100%	32	0	-100%
Democracy Blvd WB on ramp	0	0	0%	0	0	0%
I-495 Northbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
Cabin John Pkwy on ramp	0	0	0%	0	0	0%
MD 190 on ramp	0	0	0%	0	0	0%
I-270 C-D Northbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
Montrose Rd EB on ramp	257	15	-94%	1142	56	-95%
Montrose Rd WB on ramp	1064	19	-98%	3063	132	-96%
I-270 on ramp	243	73	-70%	1305	248	-81%
MD 189 on ramp	1090	21	-98%	2900	53	-98%
I-270 on ramp	888	456	-49%	3101	1004	-68%
MD 28 EB on ramp	1	1	0%	34	29	-15%
MD 28 WB on ramp	0	0	0%	0	0	0%
Shady Grove Rd EB on ramp	0	0	0%	0	0	0%
I-270 on ramp	0	0	0%	0	0	0%
Shady Grove Rd WB on ramp	0	0	0%	0	21	0%
I-370 EB on ramp	0	0	0%	0	0	0%
I-370 WB on ramp	0	0	0%	0	0	0%
I-270 on ramp	0	0	0%	0	0	0%
MD 124 EB on ramp	0	0	0%	0	0	0%
DAD 104 MD	0	0	0%	0	0	0%
MD 124 WB on ramp Watkins Mill Rd on ramp	0	0	0%	0	0	0%

Table C.11: AM Peak - No Build - I-270 C	Off Ramp Queue I	Length - Northbou	ınd			
I-270 Northbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
MD 187 off ramp NB	32	33	3%	250	236	-6%
MD 187 off ramp SB	0	0	0%	0	0	0%
Rockledge Dr off ramp	7	9	29%	364	355	-2%
Tower Oaks Blvd off ramp	19	24	26%	178	201	13%
Montrose Rd off ramp EB	0	0	0%	0	0	0%
Montrose Rd off ramp WB	0	0	0%	0	20	0%
MD 189 off ramp WB	8	12	50%	101	118	17%
MD 189 off ramp EB	2	2	0%	227	201	-11%
MD 28 off ramp EB	37	48	30%	252	317	26%
MD 28 off ramp WB	2600	802	-69%	5049	1717	-66%
Shady Grove Rd off ramp - Redland Blvd	0	0	0%	0	0	0%
Shady Grove Rd off ramp WB	158	198	25%	607	719	18%
Shady Grove Rd off ramp EB	0	0	0%	0	0	0%
I-370 off ramp WB	0	0	0%	0	0	0%
I-370 off ramp EB	0	0	0%	0	0	0%
MD 117 off ramp	221	375	70%	755	1214	61%
MD 124 off ramp	93	97	4%	386	405	5%
Watkins Mill Rd off ramp	81	95	17%	407	419	3%
Middlebrook Rd EB off ramp	0	0	0%	0	0	0%
Middlebrook Rd WB off ramp	0	0	0%	0	0	0%
MD 118 WB off ramp - Seneca Meadows	0	0	0%	0	12	0%
MD 118 WB off ramp	0	0	0%	0	0	0%
MD 118 EB off ramp	0	0	0%	0	0	0%
MD 27 off ramp WB	8	9	13%	94	94	0%
MD 27 off ramp EB	0	0	0%	0	0	0%
MD 121 off ramp WB	62	64	3%	232	284	22%
MD 121 off ramp EB	0	0	0%	0	0	0%
MD 109 off ramp EB	7	9	29%	170	162	-5%
MD 109 off ramp WB	0	0	0%	0	0	0%
MD 80 off ramp EB	8	8	0%	118	103	-13%
MD 80 off ramp WB	1	0	-100%	41	7	-83%
MD 85 NB off ramp	0	0	0%	0	0	0%
MD 85 SB off ramp	1	1	0%	115	179	56%
I-270 Spur Northbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
Clara Barton Pkwy off ramp EB	1	1	0%	214	214	0%
Clara Barton Pkwy off ramp WB	0	0	0%	0	0	0%
MD 190 off ramp EB	0	0	0%	71	66	-7%
MD 190 off ramp WB	0	0	0%	0	0	0%
Democracy Blvd off ramp WB	110	110	0%	589	576	-2%
Democracy Blvd off ramp EB	16	16	0%	126	136	8%

Table C.12: AM Peak - No Build - I-270 On Ramp Queue Length - Southbound

	1 1 2 11 1	ength - Southbou				
I-270 Southbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
MD 85 on ramp	23	0	-100%	380	13	-97%
MD 80 on ramp	874	0	-100%	2154	0	-100%
MD 109 on ramp	122	0	-100%	1183	0	-100%
MD 121 WB on ramp	132	0	-100%	1270	0	-100%
MD 121 EB on ramp	0	0	0%	0	0	0%
MD 27 WB on ramp	578	0	-100%	2774	0	-100%
MD 27 EB on ramp	4	0	-100%	238	0	-100%
MD 118 WB on ramp	1	0	-100%	25	0	-100%
MD 118 EB on ramp	3	0	-100%	111	0	-100%
Middlebrook Rd on ramp	2811	0	-100%	4362	0	-100%
Watkins Mill Rd on ramp	3063	2	-100%	3140	76	-98%
MD 124 WB on ramp	2771	14	-99%	3926	171	-96%
MD 117 on ramp	557	46	-92%	1944	383	-80%
I-370 C-D on ramp	0	0	0%	0	0	0%
Shady Grove Rd C-D on ramp North	0	0	0%	0	0	0%
Shady Grove Rd C-D on ramp South	5	0	-100%	182	0	-100%
MD 189 C-D on ramp	357	0	-100%	2256	0	-100%
Montrose Rd C-D on ramp	361	0	-100%	1274	18	-99%
Rockledge Dr on ramp	0	0	0%	0	0	0%
MD 187 on ramp	0	0	0%	0	0	0%
I-270 Spur Southbound	No Build VISSIM Average Queue	Alternative VISSIM Average Queue	% Change		Alternative VISSIM Maximum	% Change
	(feet)	(feet)		Queue (feet)	Queue (feet)	
Democracy Blyd on ramp	` ´	` ′	0%	- , ,	_	0%
Democracy Blvd on ramp I-495 Southbound	No Build VISSIM Average Queue (feet)	0 Alternative VISSIM Average Queue (feet)	0% % Change	O No Build VISSIM Maximum Queue (feet)	89 Alternative VISSIM Maximum Queue (feet)	0% % Change
	0 No Build VISSIM Average Queue	0 Alternative VISSIM Average Queue	%	0 No Build VISSIM Maximum	89 Alternative VISSIM Maximum	%
I-495 Southbound	0 No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	0 No Build VISSIM Maximum Queue (feet)	89 Alternative VISSIM Maximum Queue (feet)	% Change
I-495 Southbound I-270 Spur on ramp	No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet)	% Change -94% 0% % Change	No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum Queue (feet)	% Change -67% 0% % Change
I-495 Southbound I-270 Spur on ramp MD 190 on ramp	No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet) 2551	O Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet) 1117	% Change -94% 0% Change	0 No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet) 4640	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum	% Change -67% 0% % Change
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound	No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet)	% Change -94% 0% Change -56% -90%	No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum Queue (feet)	% Change -67% 0% % Change
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp	No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet) 2551	O Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet) 1117	% Change -94% 0% Change	0 No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet) 4640	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum Queue (feet) 4523	% Change -67% 0% % Change
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp	No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet) 2551 2382	O Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet) 1117 230	% Change -94% 0% Change -56% -90%	0 No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet) 4640 2936	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum Queue (feet) 4523 879	% Change -67% 0% Change -3% -70%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp	0 No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet) 2551 2382 14	O Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet) 1117 230 55	% Change -94% 0% Change -56% -90% 293%	0 No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet) 4640 2936 437	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum Queue (feet) 4523 879 315	% Change -67% 0% Change -3% -70% -28%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp	0 No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet) 2551 2382 14 0	O Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet) 1117 230 55 15	% Change -94% 0% Change -56% -90% 293% 0%	0 No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet) 4640 2936 437 49	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum Queue (feet) 4523 879 315 275	% Change -67% 0% Change -3% -70% -28% 461%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp	No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet) 2551 2382 14 0 0	O Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet) 1117 230 55 15 91	% Change -94% 0% Change -56% -90% 293% 0% 0%	0 No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet) 4640 2936 437 49 14	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum Queue (feet) 4523 879 315 275 1195	% Change -67% 0% Change -3% -70% -28% 461% 8436%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp	No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet) 2551 2382 14 0 0 1311	O Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet) 1117 230 55 15 91 136	% Change -94% 0% Change -56% -90% 293% 0% 0% -90%	0 No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet) 4640 2936 437 49 14 2132	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum Queue (feet) 4523 879 315 275 1195 330	% Change -67% 0% Change -3% -70% -28% 461% 8436% -85%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp I-270 on ramp I-270 on ramp I-270 on ramp	No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet) 2551 2382 14 0 0 1311 3703	O Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet) 1117 230 555 15 91 136 286	% Change -94% 0% Change -56% -90% 293% 0% 0% -90% -92%	No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet) 4640 2936 437 49 14 2132 3878	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum Queue (feet) 4523 879 315 275 1195 330 470	% Change -67% 0% % Change -3% -70% -28% 461% 8436% -85% -88%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp	0 No Build VISSIM Average Queue (feet) 139 0 No Build VISSIM Average Queue (feet) 2551 2382 14 0 0 1311 3703 3	O Alternative VISSIM Average Queue (feet) 8 0 Alternative VISSIM Average Queue (feet) 1117 230 55 15 91 136 286 9	-94% 0% Change -96% -56% -90% 293% 0% -90% -90% -92% 200%	No Build VISSIM Maximum Queue (feet) 1094 0 No Build VISSIM Maximum Queue (feet) 4640 2936 437 49 14 2132 3878 189	Alternative VISSIM Maximum Queue (feet) 362 0 Alternative VISSIM Maximum Queue (feet) 4523 879 315 275 1195 330 470 334	-67% 0% Change -3% -70% -28% 461% 8436% -85% -88% 77%

Table C.13: AM Peak - No Build - I-270 Off Ramp Queue Length - Southbound

Table C.13: AM Peak - No Build - 1-2/0 C		9				
I-270 Southbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
MD 85 SB off ramp	0	36	0%	0	918	0%
MD 85 NB off ramp	0	0	0%	63	35	-44%
MD 80 off ramp	9	0	-100%	229	101	-56%
MD 109 off ramp WB	0	0	0%	38	27	-29%
MD 109 off ramp EB	0	0	0%	0	0	0%
MD 121 off ramp EB	339	300	-12%	1863	1072	-42%
MD 121 off ramp WB	25	16	-36%	447	719	61%
MD 27 off ramp EB	50	53	6%	244	246	1%
MD 27 off ramp WB	473	307	-35%	1573	1671	6%
MD 118 off ramp EB	33	34	3%	163	142	-13%
MD 118 off ramp WB	0	0	0%	0	0	0%
Watkins Mill Rd off ramp	2483	136	-95%	5059	847	-83%
MD 124 off ramp EB	65	75	15%	341	308	-10%
MD 124 off ramp WB	9	16	78%	302	312	3%
I-370 off ramp WB	0	0	0%	0	0	0%
I-370 off ramp EB	0	0	0%	0	0	0%
Shady Grove Rd off ramp - Omega Drive	4	9	125%	149	263	77%
Shady Grove Rd off ramp	0	0	0%	0	0	0%
MD 28 off ramp	3	5	67%	159	157	-1%
MD 189 off ramp EB	34	39	15%	221	347	57%
MD 189 off ramp WB	0	0	0%	0	0	0%
Montrose Rd off ramp WB	0	0	0%	0	0	0%
Montrose Rd off ramp EB	226	1	-100%	1344	63	-95%
Rockledge Dr off ramp	25	54	116%	279	370	33%
I-270 Spur Southbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
Democracy Blvd off ramp EB	50	54	8%	236	303	28%
Democracy Blvd off ramp WB	0	0	0%	0	0	0%
MD 190 off ramp WB	493	1358	175%	2882	3344	16%
MD 190 off ramp EB	0	0	0%	0	0	0%
Clara Barton Pkwy WB off ramp	0	0	0%	5	0	-100%

Table C.14: AM Peak - No Build - Intersection Delay and Level of Service

				1 4	20					
NB	22.9	C	NB Through NB Right	367 664	20 11	23	497 401	C B		
8S	52.1	Q	SB Left SB Through	136	61 52	178	784	E D		
EB	49.4	Q	EB Left EB Through FR Right	106 62 113	77 75 10	54 54	184	ס ש ש ע	38.8	۵
WB	51.2	Q	WB Left WB Through	233	74 68 7	88 80	363	: ш ш «		
82	49.7	۵	NB Left	2- MD 85 at I-27 681 0	70 NB on and off rar 50 0	249 0	1172			
9	α α	α	NB Right SB Left	0 0		0 0 0	0 0	A A a		
3 8		1	SB Right EB Left	0 0		0 0	000	0 4 4 4	35.0	U
83			EB Right WB Left	0 0		000	0 0	4 4 4		
WB			WB Through WB Right	0 0 3- MD 85 at I-27	10 88	0 0	0	A A		
NB	5.3	∢	NB Left NB Through	0 1066		0 19	0 515	4 4		
SB	42.7	۵	NB Right SB Left SB Through	0 174 0		45	301	4 0 4		
	i	,	SB Right EB Left	0 0		0 0	0	: 4 4	10.5	8
EB			EB Through EB Right	0 0 0		0 0 0	0 0 0	4 4 4		
WB			WB Through WB Right	0 0		000	000	4 4 4		
			NB Left	4- MD 85 at	rest	54	391	٥		
NB	19.3	U	NB U-Turn	762		54	391	a B A		
SB	18.5	В	SB Left SB Through	65 1803		27	163	E B		
EB	54.8	٥	SB Right EB Left EB Through	815 618 28		96	729 282 282	B E E	25.1	O
3		c	EB Right WB Left	42 52		96	282	B D		
WB	44.2	Q	WB Through WB Right	18		21	135 135	E A		
B B	-1.2	4	NB Left NB Through	5- MD 80 at I-270 4 2	S	0 0	0 0	4 4		
8	7007	۵	NB Right SB Left	5 206		14	124	A B		
28	13.1	æ	SB Right	61 55		0 0 11	124 6	A A	32.5	U
EB	17.3	В	EB Through EB Right	5		8 19	0 203	PAA		
WB	36.6	Q	WB Left WB Through	911		307	61 762	Q Q		
			WB Right	657 6- MD 80 at I-27	98	56 qr	365	O a		
N N	8.7	∢	NB Left NB Through NB Right	0 258		10 0 10	274 0 274	0 4 4		
SB			SB Left SB Through	0 0		0	0	:		
}			SB Right EB Left	0 0		0 0	0	: 4 4	33.2	۵
EB	36.0	Э	EB Through EB Right	369		67	346	D		
WB	52.3	ı.	WB Lert WB Through WB Right	280	0 52 0	0 175 0	543 0	A 4 A		
			NB Left	7- MD 109 at I-2.	R	0 du	0	A		
NB			NB Right	0 0		0 0 ,	0 0 0	4 4 4		
SB	13.0	В	SB Left SB Through SB Right	145 0 47	17 0 2	15	187 0 151	U 4 4	;	
EB	5.2	∢	EB Left EB Through	85		0	106	4	4.1	∢
3	,	<	WB Left	0		0 0 ,	0 0 %	4 4 4		
WB	1.2	∢	WB Through WB Right	0	g	7 0	0	4 4		
82	0.2	⋖	NB Left NB Through	18	90	2 0	104	O 4		
			NB Right SB Left	50		0 0	41	4 4		
SB			SB Through SB Right	0		0 0	0	4 4	C L	٠
EB	4.2	٨	EB Left EB Through	0	0 1	0 2	0 71	V V	ה. ה	1
5	L	•	WB Left	552		24	90	4 4 4		
		c	WB Right	0 9- MD 121 at	tew	0	0	₹ 4		
8 N	18.0	U	NB Left NB Through	153 433		41	316 316	υU		
8		٥	SB Left	57		107	503	A O (
8	5 T. Y	2	SB Right FB Left	8 6		128	524	U U III	51.1	۵
EB	118.6	ш	EB Right	103	119	414	512			
WB	22.3	C	WB Left WB Through	138		19	138	2		
			WB Right	28 10- MD 121 at I-2	NB o	16 mp	161	Α u		
NB	27.6	۵	NB Through NB Right	328 0 410		0 0	0 0	-		
SB			SB Left SB Through	0 0	0	0 0 0	0 0 0	444		
EB	11.7	8	SB Right EB Left EB Through	0 0		0 0	0 0	A A O	18.1	8
			EB Right WB Left	285	1	0	43	A	T	
0/4/				237	62	119	716	4		

Table C.14: AM Peak - No Build - Intersection Delay and Level of Service

		8					U	,					۵					ш						L						۷						Ø					ď						U					В		
		19.5					34.9						40.8					6.99						86.3						6.2						10.2					7.7						20.3					16.5		
4 4	4 T <	Α ш Α	∢ ∢	A O A	∢ !	В А Б	0 0	0 8 4		J) A A	4 4 4	4 4	4 4 1	4	4 4	В О Р	∢ ∢ ⋄	x	A	∢	D E	шшш	. E	ں م	ш ш	4 @	2 4 4	4 4	E A	± ∢ .	J O A	4	A A	4 4 4	(U 4	< < <	< <	< <	4 Q .	4 4	< < <	4 4 4	∢	A F E	шш	B B	B C	B A	∢ ∢	4 Q 4	X 4 U a	B < <	8 8
0 0	0 1869	362 0	212	0 449 338	0 8	72 72 192	269	327 328 367	842	842	0	0 0 0	0 0	0 0	0	0	257	0 0	50	0 1647	0	736	748 2395 2395	2390	202	103	75	131	256 256	288	77	101	0	0	0 0 0	196	0 0 0	268	0 0	0 166	000	175 0	243	0 32	75 24	418	418 329 329	329	317	0 0	63	63 285	285	405
0 0	351	0 21 0	12 0	0 49 17	0 ;	14	38 62	41	322	322 p 15	0 0	000	0 0	0 0 0	0 0	0 0	62	000	0 11 0	0 1119	0	310	317 1619	1613	55	33	kwy 1	4 8	8 11	14	10	11	0	0	0 0 0	30	0 0 0	15	00	36	000	0 0	0 10		5 6 0	112	37	37	45 45	0 0	0 2 0	31	31 0	73
1-270 SB on and off	102	0 49	5 0	0 18 2	7 at Observation Dr	59	52 35	39	36 45	20 at I-270 NB off ram 33	0 0	0 0 0	0 0	0 0 2	0 0 at 1-270 SB off rame	0	49	000	0 2 0	0 108	0 7 at Crystal Rock Dr	38	108	68	43	56 229	Seneca Meadows P	1 3	4 4	3 65	7 7	55	3 at I-270 NB on ram 0	0	0 0 0	30	0 0 -	6 at I-270 SB off ram	0.0	39.7	0.0	3.5	0.0	0.0 118 at Aircraft Dr	80	55 72	16	12	17 5 5	0	36	23	12 0	19
11- MD 121 at 0 0	218	908	578	0 655 1030	12- MD 2	12	54 178	154 1217 48	105 2252 115	13- MD 27 107	0	0 0 0	0	0 0	0 0 14- MD 27	0	379	0 0	834	0 1465	15- MD 2	30	531 1677	52	97	11 32	16- MD 118 at	729	31 948	41 20	115	6 6 27	17- MD 118	0	0 0 0	274	0 0 2	911 18-MD 118	0 0	212	000	631	1228	19-MD	9 13 17	267	96 132 1019	34	1057 326 20- Middlehro	0	0 26 0	27 230	816	1148
NB Left NB Through	NB Right SB Left	SB Through SB Right EB Left	EB Through EB Right	WB Left WB Through WB Right	NB U-Turn	NB T NB	SB TI	EB TI	WB Through	NB NB	NB Right	SB Left SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Right	NB Left NB Through	SB Left	SB Right	EB Through EB Right	WB Left WB Through	WB Right	NB Left NB Through	SB Left	SB Right EB Left	EB Through EB Right	WB Left WB Through	>	a S	SB Left SB Through	٠,				~	٥,	EB Left EB Through	>	>	_ B	-	δ,	EB Right	[M	>	NB Left NB Through NB Right	SB Left SB Through	SB Right EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left NB Through	NB Right SB Left SB Through	SB Right EB Left	EB Through EB Right WB Left	WB Through WB Right
	ц	ш	A	٧	á	Q	Q	В	Q		C		∢		٠		ć	۵	٩	ш		ш	L		Q	Q		Ą	A		В	Q				J	٥	τ		c	٥	A	Ą		Q	ш	8		В		U	ı	æ	В
	902	70.9	5.3	8.4	Š	48.6	43.1	17.2	43.7		33.0		0.1	C	0.00		c c	48.9	2.4	108.4		63.4	1086		43.9	47.7		3.6	4.3		18.5	44.2				29.5	بر 4	;			73.7	3.5	4.3		46.2	60.4	12.3		14.6		20.4		14.3	17.9
8Z	g	SB	EB	WB	:	B Z	SB	EB	WB		NB	SB	EB	G/A/	900	8N	Ę	38	EB	WB		8 N	ÿ	}	EB	WB		N N	SB		EB	WB		NB	SB	EB	W		NB	ξ	gc	EB	WB		NB	SB	89		WB	S S	SB	}	EB	WB
		11					12	ţ					13					14						15						16						17					18						19					20		

Table C.14: AM Peak - No Build - Intersection Delay and Level of Service

Intersection LOS			U					ш				ш						U					c)					۵					•	ί					U					ω					U		
Intersection Delay			23.2					6.69				98.7						28.7					α α						48.1					ć	T.					32.7					16.2					22.3		
SOT	4 4 4	4 4 4	B A :	A C A	Α .	. L L	0 4	СОП	A B C E	Б	7 4 T	шш	L 8 A	ΑHI		Ь	шш	4 4 a	8 D	ΟV	ш	В О Е	D A	ш ш .	л п O	V I	шш	O F F	F C	0 0	ВΑΑ	A	4 4 4	: 4 4	4 4 4	A O A	A	4 4 4	O 4 C	C	A A B	4	В В	T T 4	Y E	A T (B A	4 4 4	A B	:	У Ш У	1 4
Max Queue	0 0	0 0 0	0 211	0 1266 0	0	489	29 29 67	1261	1261 229 229 229	265	0 799	799	1078	0 1121	95	95	346	233	416 440 2415	2415	689	689 663 816	816	807	318 318	0	121	121 429 429	429 974	974	447	0	0 0 0	0 0	196	313 0	0	0 0 0	773	668	0 0	403	125 124 145	242 242 242	244	228	772	0 237 0	334	0 0	618	o 0
Ave. Queue	000	0 0 0	30	0 165 0	0 n Rd	340 340 340	1 2	642	642 35 35 35	86	0 481	363	388	0 775	19	19	71	0	50 60 1513	1513	173	173 103 213	213	261	27.5 106 106	0	20	20 314 314	314 301	305	111	0	0 0 0	0 0	0 2	0 44	0	0 0 0	233	101	0 0	71	17 17 28	62 62	43	30	21 21	21 0	34	0 0	168	0
Delay Rd at I-270 SB on ra	0 0	0 0 0	0 13	33	0 Rd at Waring Station	135 151 198	39	27	24 20 5	124 at MD 355 75 48	3 159	119 69	17	160	/8 t I-270 SB on and off 64	0	99 66	0 17	14	41	117 at MD 124 118	74 43 68	46	124 60	28 71 28	0 17 at Bureau Dr	59 76	24 256 261	226 31	42 53	9 5	at I-270 SB off ramp	0 0 0	0 0	0 2	23	0 t I-270 NB off ramp	0 0 0	53	119	0 0	9 7 at Perry Pkwy	76 63 12	99 105	£	83	11 6 Rd at I-270 NB off ra	6	10	000	55	5 0
Volume 21- Middlebrook					ebrook				79 81 724 42	- MD		1170 553 616			124 at						- MD					- MD 1						ID 117 a	0 0 0	0 0	819	329 0	0 28-MD 117 a	0 0 0	295	14 803	0	9 29- MD 11	36	114	118 969	6 8	749 136 30- Shady Grove I	0 971 0	0 1349 0	0 0	882	0
Movement	NB Through NB Right	SB Left SB Through	EB Left EB Through	EB Right WB Left WB Through	WB Right	NB Left NB Through NB Right	SB Left SB Through	EB Left EB Through	EB Right WB Left WB Through WB Right	NB Left NB Through	NB Right SB Left	SB Through SB Right	EB Through EB Right	WB Left WB Through	WB Kight NB Left	NB Through NB U-Turn	SB Left SB Through	SB Right EB Left	EB Right WB Left	WB Through WB Right	NB Left	NB Through NB Right SR I eff	SB Through SB Right	EB Left EB Through	WB Left WB Through	WB Right	NB Left NB Through	NB Right SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Lett WB Through WB Right	NB Left	NB Through NB Right SR I eff	SB Through SB Right	EB Left EB Through	WB Left WB Through	WB Right	NB Left NB Through NB Right	SB Left SB Through SB Right	EB Left EB Through	EB Right WB Left WB Through	WBRight	NB Left NB Through NB Right	SB Left SB Through	EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left NB Through NB Right	SB Left SB Through SB Right	EB Left EB Through	WB Left	WB Right
			В			ш	В	ш					Q	ıL		Ŀ	U			Q		ш	Q	ш			Q			Q	В				٧				Q	v			Q	Q			8	Ą			u	
Intersection Approach Approach Delay Approach LOS			13.2	33.0		175.2	18.5	70.3	19.2	53.7		105.0	50.2	157.4		66.8	24.5	17.0	0.71	41.4		61.6	45.5	63.6	40.2		52.7	253.6		41.5	18.3				2.3	22.7			51.4	23.7	16.7		44.6	50.5	10.4		10.9	8.9	10.4		u u	5.00
Approach	NB	SB	EB	WB		NB	SB	89	WB		2	SB	EB	WB		NB	SB	g	EB	WB		NB	SB	EB	WB		NB	SB		EB	WB		BN N	SB	EB	WB		N N	SB	EB	WB		NB	SB	EB		MB	NB	SB	EB	a y	WD
Intersection		•	21	•				- 22	•		•	23		•		1		24	1			1	7.5	1	•			•	26	1				;	/2	•				58					29					30	•	

Table C.14: AM Peak - No Build - Intersection Delay and Level of Service

	GIA										
	8 Z	13.4	В	NB Left NB Through NB Right	1004	13	38	348 0	A B A		
	SB	10.2	В	SB Left SB Through	0	0 10	0 37	0	B		
	EB	46.2	٥	SB Right EB Left FB Through	298	40	41	0 255 0	4 O 4	20.4	U
	9	40.2	2	EB Right WB Left	602	49	100	418	4 O 4		
	WB			WB Through WB Right	0 0	0	0	0	4 4		
	SE SE			NB U-Turn	32-MD 28 at 0	t I-270 SB off ramp 0 0	0 0	0 0	4 4		
	!			NB Right SB Left	0 427	0 43	0	331	A 0		
	SB	35.4	Q	SB	0 105	3	0	0	A A	61.7	ш
	EB	122.9	LL.	BB 3	0 698	186	1959	2133	A T a	\	ı
	WB	21.2	U	WB Left WB Through	422 0 1346	18 0 21	1907 0 25	0 434	O A B		
				>	0 33-MD 28 at I-3	0 270 on and off ram	0 sd	0	A		
	NB	38.0	Q	NB Left NB Through	0 144	95	41 48	262 271	A		
	SB	55.0	٥	NB Right SB Left SB Through	93 27 0	10 72 0	48 94 0	271 327 0	В ш		
	}			S	285	53	94	327 348	: 0 0	28.9	U
	EB	19.2	В	EB	607	12	52	348	a B A		
	WB	26.1	U	WB Left WB Through	25	23	86	380	; O O		
				>	0 34- MD 189	0 at Great Falls Rd	0	0	4		
	NB	40.0	۵	NB Left NB Through	8 8	45	17	111	٥٥٠		
	5	7	c	NB Right SB Left	10	51	38	121 218	A D 7		
	SB	11.3	В	SB Througn SB Right	7 524 266	5 5	38 41 14	218 212 243	ч	12.7	Ф
	EB	11.0	В	EB Leit EB Through	768	6	17	193	0		
	WB	14.1	8	WB Left WB Through	12 4 312	16	44	301	£ 8 8		
		!	1	WB Right	11 35- MD 18	8 9 at I-270 Ramps	56	334	υA		
	8N NB	54.6	٥	NB Left NB Through	95	55	18	123	O 4		
	2		1	NB Right SB Left	0	09	0 48	0 241	. A O		
	SB	50.3	D	SB Through SB Right	0	0	0	0	A	0 9	u
	EB	7.67	ш	EB Left EB Through	348	115 56	505 505	1580 1580	ш		1
		,		EB Right WB Left	489	53	131	505	A O :		
	WB	61.1	ш	WB Through WB Right	0 0 25 MD 180	0	131	505	A E		
	92	978	c	NB Left	161	53	61	245	O 4		
	2		n e	NB Right SB Left	159	22 127	61 415	245	ı O II		
	SB	101.8	F	SB Through SB Right	735	88	385	791 0	F A	7.67	ц
	EB	87.5	ш	EB Left EB Through	159 936	104	397 397	1021 1021	ц ц		1
	9	0	c	WB Left	354	70	397	307	Ош		
	WB	9.0.0	a	WB Right	49	5/ 6 a at Touror Oaks B	107	307	D 4		
	NB			NB Left NB Through	0 0	0	0 0	0	4 4		
				NB Right SB Left	0	0	0 1159	0 1410	A 0		
	SB	266.8	F	SB Through SB Right	0 424	0 332	0 1155	0 1405	A	105.2	ч
	EB	29.2	U	EB Left EB Through	30	48 29	188	1101	O O .	1	-
				EB Right WB Left	0 0	0 0	0	0	4 4 1		
\exists	MB	129.8	_	WB Through WB Right	1322	133	492	838	ш		
	8N	22.1	U	NB Left NB Through	417 9	21 14.4	30 24	199	С		
	85	0	4	NB Right SB Left SR Through	24	39.0 216.7 0.0	30	199 25 25	O 4		
	}		:	SB Right	2 4 7	1.0	0	0	: 4 4	74.7	Э
	EB	121.3	L.	EB Through EB Right	555	120.6	335	460			
	WB	9.6	۷	WB Left WB Through	0	0.0	3	85	4 4		
				WBRight	6 39- Montrose R	4.2 d at Tower Oaks B	0 p	15	∢ .		
	NB	15.5	В	NB Through NB Right	37 240 560	42	38	165 165 0	A D F		
	SB	40.4	Q	SB Left SB Through	335 776	53 36	162 162	637 636	Q		
	g	000		SB Right EB Left	77	77	417	641 726 727	Ошш	50.1	۵
	3	t S	-	EB Right WB Left	63	87	440	751	. 4 0		
	WB	42.6	Q	WB Through WB Right	195	49	71 81	314 345	O A		
	N N	37.5		NB Left	Rockledge Blvd at 0	t I-270 NB on and o 0	off ramp 0 31	0 152	4 0		
		0.30	ر	NB Right SB Left	214	32	31	152 152 67	υV		
	SB	2.1	A	SB Through SB Right	947	2 0	4 0	67	4 4	12.7	œ
	EB	27.1	J	EB Left EB Through	530	52 54	123 123	441	0		۵
	aw			WB Left	0	0 0	0 0	0 0	4 4 4		
\exists)			WB Right	ء د	> 4	,	,	ι	_	

Table C.14: AM Peak - No Build - Intersection Delay and Level of Service

Intersection LOS				U							L						c	٥						U						C)						æ						۷						В						ć	'n		
Intersection Delay				20.7							149.0						Ç	7.61						25.3						200							13.6						6.4						12.1						Ç	13.4		
SOT	4 4	A A	∢ ∢	4 4	: ∢ ∘	£ U U	> ∢	o a	J	шш	ш ш і	шш	шш	ш	A A	A A	O A	A A	A	D	A	O A	E A	A E	A 4	4 4	A	E A	A O	C	E D	В	8 V	v	A A	∢ ∢ ⋅	4 4 8	2 4 4	A B	∢	4 4	A A	A A	∢ ∢	D A	A	4 4 4	Α Ο .	∢ ∢ ∢	:	€ <	: A	шш	. u u	E B	Ą	A 4	
Max Queue	31	0	0	0	0 0	672	0	687	687	2703 2703	1978	1979 2003	2143 2143	2143	254	0	501	0	0 258	258	0	397 0	301	0 758	758 746	0	0	252	285	674 669	222 222	222	29	142	0 0	0 0	0 0	0 0	188	0	0	0	0	274	172 152	0	0 0	243	000	0 0	0 0	136	118	118	150	544 544	567 830	
Ave. Queue	1 0	0	0 0	0	0 0	97	0	232	23.2 23.2	2594 2594	1863	1864 1888	1921 1921	1921 nps						39			62	()						99	55	55	0	mp 26	0 0	0 0	0 0 %	800	23	0 du	0 0			22 0		du			0 0 0	000	000	. 1	15	15	31	63 62	55 61	
Delay Off	2 0	0	0 0	0	0 0	23	0	21	49 103	155	243	203 191	229 151	94 O NB on and off ran	86	0	24	0	0 52	44	0 NB on and off ran	23	3	09	0 88	0	0 It Rock Spring Dr	57 7	6	24	60	19	0	31	0 0	0 0	0 0 2	000	10	rd at I-270 SB on rai	0	0	0	0	37	0 rd at I-270 SB off ra	0 0	20 0	0 2 0	0 0	0 0	2 at Burdette Rd	80	67	64	97	5 106	
Volume							MD 107	IND 10/			165			157 43- MD 187 at I-270	164 1537		∞	0	~	10			181 1482							1684	191 26	252	5	47-Democracy Blvc	0 0	0 0	0 0	0 0	ugh 779	48- Democracy Blv	0	0	0	1761 0	222 779	0 49- Democracy Blv	0 0	327	165	000	0 0	334 50- MD 190	20	111	17	52 1817	15	
Movement	NB Left	NB IIIIOUgii	SB	S	EB,	WB Left	>	NB Left	NB Inrough NB Right	SB	SB Right EB Left	EB I	WB Left WB Through	WB Right	NB Left NB Through	_	SB	EB Left EB Through	ш	₹ >	NB Left	NB Through NB Right	SB T	SB	EB Through EB Right	WBT	WB Right	NB Left NB Through	NB Right SB Left	SB	EB	EB Rig	WB Thro	NB Le	NB Thro	SB Let	EB Lef	EB Rig	WB Through WB Right	NB Le	NB Thro	SB Lef	SB Rig EB Lef	EB Thro	WB Le WB Thro	WB Rig	NB Thro	SB Lei	SB Through SB Right	EB Thro	WB Le	WBRig	NB Le	NB Rig SB Lef	SB Thro	EB Lef EB Thro	EB Rig WB Le	
Approach LOS	4				<u> </u>				a	L.		<u>.</u>	L.		8		v			a		C	∢		Э			8		С	۵		∢		v		α		8					∢	∢				ی		4		L		U	8		
Approach Delay	2.4	5.4				22.0	0.34	1	51.5	217.2		185.4	188.2		12.0		24.5			51.5		23.3	8.5		77.4			15.0		22.1	37.4		7.2		30.9		12.8	0.4	10.3					5.2	8.6				33.9		2.5		73.2	7:57	34.5	10.9		
Approach	EZ.	QN	SB		EB	W.B		9	S N	SB	1	EB	WB		NB		SB	EB		WB		NB	SB		EB	WB		NB		SB	EB		WB		NB	SB	ä	3	WB		8 Z	SB		EB	WB		B Z	ę	88	EB	W/B		ű.	2	SB	EB		-
Intersection				41							42	I				ı	ç	£	1					44						77	₽	I					47	1					48					I	49		1				Ç	<u> </u>	I	-

Table C.14: AM Peak - No Build - Intersection Delay and Level of Service

elay Intersection LOS				Ω						ω								a							U				_				В								_							ш							ш	
Intersection Delay				51.9						14.4					<u> </u>		; T	744.4							26.3				_				16.7					<u></u>		2 5 5 7 1			<u> </u>			T		70.7							60.2	\neg
SOT er	∢ ∢	4 4	(. T 4	4 4	B A		- 4	4 4	4 4	4 4	4 4 6	4 4	u.	л ш <	ч	ЭО	U C	۵۵	T O	A	∀ .	Φ Δ	4 4	∢ <	B A	⋖ ⋖	4 4		4 4	α .	A A	4	X 4	A A	4 4	u	- < =		7 O	A	ш и	u 0 «	4	Q 4	OA	4 4	: ш	< < ·	A 4	ш	4 <	∢ ∢	4 4	C A C	<u></u>
ne Max Queue	0 0	0 0	0 0	0 869	0 0	757	7000	0	0 0	0	151	0 0	151	149	148	769	770	584	584	358	87	0	391	0 0	0 0	427	0 0	0 0	-	0 0	601	0 0	0 0	63	0 0	0 0	725	0 0	5059	5059	1235	1235	467		425	425	0 0	295	0	852	852	0 0	0 0	0 0	0 614	614
Ave. Queue	0 0	000	0 0	338	0					0		0 0 1	0	s Rd	25	183	184	135	135	116	1 1	0	0 86	0	0	41	0 0	0	off ramp	0	119	0	0 0	18	0 0	0 0	p/Parkview Ave	0 0	2475	2475	1159	1159	115	on ramp	95	95	0 0	2 02 02	0	648	648		0 0	0 0	0 478	478
Volume Delay	0		000	119	0	16	190 at I-270 SB off r	8 0	0	0	3 0	0 0	0 2	190 at Seven Locks	69	95	59	30	42	117	1 124 at 1-270 NB off r	0	0 40	0 0	0 0	16	0 0	0	cy Blvd at I-270 NB	0 0	38	0 0	0 0	2 2	0 0	0 0	at I-270 SB off ram	1051	102	38	0 463	547	35	Mill Rd at I-270 NB	52	23	0 0	62	6 0	152	76 Mill Rd at 1-270 SR	Mill Rd at 1-270 5B	0 0	0 0	eft 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	282
Н	Н			533			- 2			0 0			0 0	53-MD	23	625	183	24	940	122 n 642	158 54-MD	0	732	0 0	0	931	0 0	0 0	55- Democra	0 0	950	0 0	0 0	1651	0 0	0 0	66- Watkins Mill Rd	0 0	540	132	0 207	116	692 1	57- Watkins	396	485	0 0	197	0	0 ، 951	172 58- Watkins	58- watkins	0 0	0 0	0 937	184
H	NB Left NB Through	NB Right	SB Through	EB Through	EB Right WB Left	WB Through WB Right	40.01	NB Through	SB Left	SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Through WB Right	NRIeff	NB Through	SB Left	SB Through SB Right	EB Left	EB Right	WB Left WB Through	WB Right	NB Left	NB Through NB Right	SB Left SB Through	SB Right	EB Through	EB Right WB Left	WB Through	night dwy	NB Left NB Through	NB Right	SB Left SB Through	SB Right	EB Through	EB Right WB Left	WB Through WB Right	n BN	NB Through	SB Left	SB Through SB Right	EB Left EB Through	EB Right	WB Through	WB RIGHT	NB Left NB Through	NB Right SB Left	SB Through	EB Left EB Through	EB Right	WB Left WB Through	WB Right	NB Left	NB Through NB Right	SB Left SB Through	EB Left EB Through	EB Right
Approach LOS				L		В		ш			۷		Υ		ш		ш	٥	2	۵		,	۵			В				Q	ì			۷				ш		Э	ч		Ω		Q			ر	,	ıL					ш	
Approach Delay				118.7		16.1		80.2			3.0		5.4		68.2		56.7	375	C:/C	38.2			39.8			15.7				37.9				4.5				763.2		76.2	463.5		41.1		35.7			000	0.02	140.5					72.5	
Approach	82	0.2	SB	EB		WB		NB		SB	EB		WB		NB		SB	ä	9	WB		9	NB	SB		EB		WB		NB	2	SB		EB		WB		NB		SB	EB		WB		NB		SB	g	3	WB		q	S N	SB	EB	
Intersection				51						52							-	55							54								55							y.	3							57							28	

Table C.15: AM Peak - No Build - Alternative Intersection Delay and Level of Service

ection Delay Intersection LOS			37.2 D					36.0						11.0 B						25.3 C						10.3 B						14.1 B											3.7 A					C	59.9					36.5 D	
eue LOS Interse	шО	8 4 0) J	B & L	ъ Е Е	Q «	< ∢ ∢	A B	< < <	4 4 4	A	4 4	∀	τ ∢ ∢	< < <	∢ ∢	A	Δ 8	A B	0 80 4	ы в	D	A	< < <	. a a	8 B	A A G	□ B <	o o	4 4	A A	4 4 C) V 4	V 4	< <	C A D	4 4	< < <	. A A	A	V A	4 4 4	∀ ✓ ✓	∀ ∀ ∀	X	J J	O & C	٥٥٥	L. L. 1	L U 6	8 ×	ч 4	4 4 4	∢ < (∀
Ave. Queue Max Que	82 515 82 515	24 450 167 759 167 759		55 187			0 0						85 1116								96 280		_					1 34 77 647 0 58				0 0 0		53 495				1 104			2 99				7 273				442 513 442 513		+	5	0 0 0		
Volume Delay						2-MD 85 at I-270 NB on and o					SBor						restv						9 NB			62 2 54 11		871 15 634 3	SB						SE I			85 5 0 0 0 0 0 62	0 0 0 0 653 1	8- MD 80 at I-270 SB on and o	19 19 19	0 0 0	0 0 0	99 6	152 6 0 0	9- MD 121 at Gateway Ceni 162 29			6 119 76 158		21 at I-270 NB o		445 3 0 0 0 0		
Approach LOS Movement	NB Left C NB Through				WB Left WB Through WB Right			B SB Through SB Right	EB Left EB Through	WB Left WB Through	WB Right	NB Left A NB Through			EB Through EB Right	WB Left WB Through	WB Right	NB Left C NB Through		SB Right	D EB Through EB Right			NB Left A NB Through NR Right				WB Through WB Right		A NB Through NB Right	SB Left SB Through			C WB Through WB Right	NB Left NB Through		B SB Through SB Right	A EB Through FB Right			A NB Through				A WB Through WB Right			SB Through SB Right				NB Left D NB Through	NB Right SB Left SB Through		EB Right
Approach Delay Ap	22.7	48 9		49.9	49.9	X Cy		19.6				5.5	0 17	0.00				19.0	707	13.4	54.1	44.1		-1.0	12.7		10.5	6:6		3.9		0 97		22.5			13.6	4.6	0.5		4.9			3.2	3.7		19.1	41.6	167.1	זייי	20.5	27.0		;	11.1
Intersection Approach	NB	8	1	EB	WB	a z		SB 2	EB	WB		NB	g	33	EB	W		NB N	8	4	89	WB		NB	88	5	83	WB		NB N		9		WB	2	!	SB 7	88	WB		NB	SB	· · · · · · · · · · · · · · · · · · ·	83	WB	:	NB NB	SB	E E B	W	WB	NB	SB	10	E E

Table C.15: AM Peak - No Build - Alternative Intersection Delay and Level of Service

^	
NB NBT	
SBL SB Thr	
SB Right EB Left EB Throug EB Right	EB TI
WB T WB WB	WB T WB WB
NB Le	NB Le
NB Righ SB Left SB Throu	NB R SB I
SB Ri, EB Lk	
EB Rig WB Li	EB Rig
WBRi	
NB Let NB Thro	NB Lei NB Thro
SB Left SB Throu	SB Left SB Throu
EB Left EB Throu	
EB Righ WB Lef	
WBRig	WBRig
NB Left NB Throu NB Righ	NB Left E NB Throu NB Righ
SB Left SB Throu	
EB Left EB Throu	
WB Le	WB Le
WB NE	
NB Throu NB Righ	
SB Righ	A SB Through SB Righ
EB Throug EB Right WB Left	
WB Inrou WB Righ	WB Throu
NB Lef	NB Lef NB Throu
SB Lef	SB Through
SB Rig EB Le EB Thro	SB Ng EB Le C EB Thro
EB Rig	
WB Inn	WB Ring WB Ring WB Ri
NB Le NB Thro	NB Thro
SB Le SB Thro	NB KIG SB Le SB Thro
EB L EB Thr	
EB Rig WB Le	
WB Throu	A WBThrou WB Righ
NB Left	NB Left
NB Right SB Left	
SB Throu SB Righ	SB Throu
EB Le EB Thro EB Rig	B EB Le EB Thro EB Rig
WB Le WB Thre WB Ri	
NB Left	Z
N N	
SB	C
EB .	B 8 8
WB-	

Table C.15: AM Peak - No Build - Alternative Intersection Delay and Level of Service

11	NB Left NB Through		_	∢		
Sign	NB Right			4 4		
Fig. 134 Fig. 154	SB Left SB Through			:		
NB 235.6 F SB 185.6 F NB 235.6 F NB 130.0 B NB 130.0 B NB 134.4 F NB 242 C SB 242 C SB 242 C SB 242 C SB 243 C SB 243 C SB 244.5 D NB 485.3 D NB 485.3 D NB 485.3 D NB 485.3 D NB 442 A NB 385.4 C SB 232.4 D SB 252.4 D SB 252.5 C SB 2				τ < α <	45.6	۵
NB 235.6 F 18.5 18.5 18.5 18.6 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.5 18.6 18.5 18.7 18.5 18.5 18.8 18.5 1		752 74 0 0 0	593 1795 0 0 0	(H 4		
SB		lebrook Rd at \		<u>.</u>		
He H				4 O		
NB 518 P SB 75.1 E SB 75.2 E NB 75.3	SB			4 4 4	81.3	ш
NB 51.8 D SB 75.1 E EB 50.2 E WB 114.4 F WB 124.2 C SB 46.1 D WB 41.5 D WB 40.5 D WB 38.5 E WB 38.5 E WB 38.5 E WB 38.5 E WB 38.5 D WB 31.1 B WB 31.	EB	2		Э ш ш		
NB 51.8 D SB 75.1 E SB 75.1 E NB 114.4 F SB 24.2 C SB 24.2 C SB 46.1 D SB 46.1 D SB 46.1 D SB 46.2 C SB 47.5 D SB 48.5 D SB 52.4 D SB 52.4 D SB 52.4 D SB 11.1 B WB 11.5 B WB 11.5 B WB 26.7 C SB 49.1 D SB 49.1		36 26 61 19 16 4	36 233 36 233 36 233 36 233	V B C		
NB 51.8 D	NB Left	23- MD 124 at	-	ш		
SB 75.1 E	NB Through NB Right		84 263 0 0	O A		
EB 59.2 E WB 114.4 F NB 65.5 F SB 24.2 C CB 175 B WB 10.4 B WB 46.1 D CB A A CB A A CB A A CB A A CB B B	SB Left SB Through SB Right	69 148 1252 98 594 18		ш ш ш		
W6 1144 F N8 242 C 58 242 C 65 F C 8 175 B 8 175 B 8 46.1 D 88 46.1 D 88 46.1 D 88 46.1 D 88 46.2 A 88 30.4 C 88 30.4 C 88 30.4 C 88 30.4 C 88 52.4 D 88 52.4 D 88 52.4 D 88 11.1 B 88 11.1 B 89 52.4 D 89 52.4 D 88 11.1 B 88 11.1 B 88 11.1 B 88 6.0	EB Left EB Through	35 142 20 18	524 1170 524 1170	g r 8	80.6	ш
NB 655 F F F F F F F F F F F F F F F F F F	E N	76 5 0 0 116	317 1125 0 0 0 700 1110	4 4 u		
NB 65.5 F SB 24.2 C SB 24.2 C WB 19.4 B WB 40.3 D WB 40.5 D WB 11.5 B WB 11.5 D SB 25.7 C SB 25.7		50 66 MD 124 at I-270 SB on and		- ш		
SB 242 C C EB 175 B B WB 194 B B NB 475 D D SB 46.1 D D SB 30.4 C C SB 20.8 6 F EB 30.4 C C SB 52.4 C C WB 17.5 B B WB 11.1 B B WB 11.5 B B NB 25.7 C C SB 52.4 D D SB 52.4 D		16 62 87 67		Э Э		
FB 175 B B B B B B B B B B B B B B B B B B B		0 0 13 63	81 313	В		
EB 175 B WB 194 B NB 475 D WB 415 D WB 423 D WB 442 A WB 163 B WB 163 B WB 163 B WB 175 B WB 175 B WB 111 B WB 115 B SB 491 D	SB Through SB Right FB Left			В В В	20.9	U
WB 45.5 B B WB 46.1 B B WB 46.1 B B B B B B B B B B B B B B B B B B B	EB Through 1 EB Right		53 432 62 455	(B B		
NB 47.5 D WB 48.5 D WB 48.5 D WB 38.5 E EB 30.4 C WB 38.5 E WB 17.5 B WB 11.1 B WB 11.5 B SB 26.7 C C 38.6 F E 6.9 C E 7 A WB 11.5 B SB 26.7 C C 38.6 C E 8 B WB 11.1 B WB 11.5 B SB 26.7 C C 38.6 C C 49.1 D C 59.6 C C 69.6 C C 7 C C 7 C C 7 C C 8 C C 8 C C 8 C C 8 C C 9 C	WB Left WB Through	48 27 248 19	88 755 88 755	C		
SB 46.1 D EB 49.3 D WB 41.6 D SB 208.6 F WB 16.3 B WB 17.5 B WB 17.5 B WB 11.1 B WB 11.5 B WB 11.5 B WB 11.1 B SB 52.4 D WB 11.5 B WB 11.5 B WB 11.5 B WB 11.5 B SB 6.0 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C </td <td>WB Right</td> <td>5- MD 117 at</td> <td>0 0 0</td> <td>Α .</td> <td></td> <td></td>	WB Right	5- MD 117 at	0 0 0	Α .		
EB 49.3 D D D D D D D D D D D D D D D D D D D	NB Left NB Through NB Right	20 116 538 64 415 23	167 703 167 703 167 703 58 618	ш		
EB 49.3 D WB 41.6 D NB 48.5 D NB 16.3 B WB 30.4 C NB 4.2 A WB 38.5 E SB 69.6 E WB 17.5 B WB 11.1 B WB 11.5 B WB 26.7 C NB 26.7 C SB 26.7 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C	SB Left SB Through		217 808 217 808	D		
WB 48.5 D D S S S S S S S S S S S S S S S S S	SB Right EB Left ER Through		0 0 0 209 763	∢ '- '	46.6	Q
WB 41.6 D SB 208.6 F EB 30.4 C WB 16.3 B WB 38.5 E WB 17.5 B WB 11.1 B WB 11.5 B WB 11.5 B WB 26.7 C SB 49.1 D	EB Right WB Left		219 791	2 O H		
NB	WB Through WB Right		110 364 0 0	υV		
SB 2086 F F C C C C C C C C C C C C C C C C C	NB Left	5- MD 117 at Bu	20 126	ш		
FB 30.4 C WB 16.3 B NB 17.5 B WB 17.5 B WB 11.1 B WB 11.5 B SB 26.7 C SB 49.1 D	NB Ihrough NB Right SB Left	24 /2 25 15 91 211	20 126 20 126 260 417	л 8 г		
WB 30.4 C NB 16.3 B SB 4.2 A WB 38.5 E WB 17.5 B WB 11.1 B WB 11.5 B WB 11.5 B WB 11.5 B WB 11.5 B SB 26.7 C SB 49.1 D	SB Through SB Right		260 417 260 417	L L	38.0	۵
NB	EB Lett EB Through EB Right		197 946 198 946 192 936	J U U		
NB	WB Left WB Through	66 49 52 66	95 377 96 378	O 4 4		
SB 4.2 A WB 38.5 E NB 24.2 C SB 69.6 E SB 17.5 B WB 11.1 B WB 11.5 B WB 26.7 C SB 26.7 C SB 49.1 D	NB Left	MD 117 at I-270 SB off rai		<		
EB 4.2 A E A A B B B B B B B B B B B B B B B B	NB Through NB Right			X 4 4		
EB 4.2 A WB 38.5 E SB 69.6 E C C WB 17.5 B WB 11.1 B WB 11.1 B SB 26.7 C SB 49.1 D	SB Left SB Through SB Right	0 0 0		< < <	,	
WB 38.5 E NB 69.6 E SB 69.6 E C C C NB 46.5 D WB 11.1 B WB 11.5 B NB 26.7 C SB 49.1 D	EB Left EB Through			< < <	13.0	٥
NB 69.6 E EB 24.2 C WB 17.5 B NB 46.5 D WB 11.1 B WB 11.5 B NB 26.7 C	WB Through	310 39	123 840	K B &		
SB 69.6 E EB 24.2 C WB 17.5 B WB 11.1 B WB 11.1 B WB 11.5 C NB 26.7 C	WB Right	ID 117 at I-270		∢ .		
EB 24.2 C WB 17.5 B NB 46.5 D EB 11.1 B WB 11.5 B NB 26.7 C SB 49.1 D	NB Left NB Through NB Right			4 4 4		
EB 24.2 C WB 17.5 B NB 46.5 D SB 52.4 D WB 11.1 B WB 11.5 B SB 49.1 D	SB Left SB Through SB Right		8 8	ВΑ		
WB 17.5 B NB 46.5 D SB 52.4 D WB 11.1 B WB 11.5 B SB 49.1 D	EB Left EB Through		107 889 107 889	L O	41.2	Ω
NB 46.5 D SB 52.4 D WB 11.1 B WMB 11.5 B SM 49.1 D	WB Left WB Through	92 18	0 0 0 0 73 374	# 4 B		
NB 46.5 D SB 52.4 D WB 11.1 B WB 11.5 B NB 26.7 C SB 49.1 D	WB Right NB Left	- MD 117 at Pe	_	∢		
SB 52.4 D EB 11.1 B WB 11.5 B NB 26.7 C SB 49.1 D	NB Through NB Right			В Е		
WB 11.5 B B NB 26.7 C	SB Left SB Through SB Right			T T 4		
WB 11.5 B NB 26.7 C	EB Left EB Through			: B &	17.1	æ
NB 26.7 C	EB Right WB Left WB Through	9 2 8 91 740 12	33 255 25 320 25 320	A 7 8		
NB 26.7 C	WB Right 30- St NB Left	Grove Rd at I-2		A ====================================		
SB 49.1 D	NB Through NB Right			3 B V		
	SB Left SB Through SB Right	8		< □ <	ç	ć
83	EB Left EB Through			4 4 ¢	43.8	۵
59.0 E	EB Right WB Left WB Through	0 0 0 0 0	0 0 0 209 731 0 0	A A		
	WB Right			4		

Table C.15: AM Peak - No Build - Alternative Intersection Delay and Level of Service

ion Delay Intersection LOS			2.0 C				2.7 D					3.8 C				1.3 B					0.1 D					4.2 E					4.5 F				7.1 E					0.1				0.5 C	_
LOS Intersect	A B A	x	X Q Q	4 4 4	4 4	4 Q 4	A A 11	LUK	B V	4 Q	В Ш В	C E 2.	A B B	4 0	Q \ \	D A B	4 4 a	2 8 4	O A	:	A A D	O A C	J	Б	8 1 1	A 6	шО	J Q 4	4 4	₹ O ∢ r	ω	₹ ∀ ⊩ ∪	UU	U Q &	A 1 1	T 4 4	A B	O 4 C	a a o		- O O 4	X 4 () U 4	A A F	ш <
Queue Max Queue			80 518 0 0 0 96 532				0 56 0 0 071 2134			\prod			0 0 48 320 34 283	-			19 257 28 293 20 189		_				148 525 0 0					120 354 120 354 120 354				0 0 452 847 452 847		37 222 0 25 0 25			+				83 304 83 304 95 335	-		5 67 0 0 68 533	
Delay Ave.		Ш	45		at I-270 SB off ramp 0 0	0 44 0	3 0 0 7.7	22 0	12 0 -270 on and off ramps	0 52	14 64 0	24 56 20	13	9 at Great Falls Rd 42	42 6 44	47 2 17	9 6	8	39 at I-270 Ramps 51 0	0 0	0 0 45	0 23	84	9 at Wooton Pkwy 54 58	16 99 78	0 08	30	38	Rd at Tower Oaks Blvd 0	48	45 29	89	8 Blvd at I-270 off rmap 22 24.8	23.5	85.8 107.4	101.2 0.0 9.4	3.2 Rd at Tower Oaks Blvd 76	1 1 2	51 36 29	93	51 45	at I-270 NB on and off ramp	33	0 60	92
Movement Volume	NB Left B Through NB Right	SB Left B Through	Spinglit EB Left B Through EB Right	WB Left B Through WB Right	AB U-Turn B Through	NB Right SB Left B Through	SB Right EB Left R Through	EB Right WB Left	B Through WB Right	NB Left B Through	NB Right SB Left B Through	SB Right EB Left B Through	EB Right WB Left 'B Through	wb right	B Through NB Right SB Left	B Through SB Right EB Left	B Through EB Right WR Left	WB Lent 18 Through WB Right	NB Left B Through	NB Right SB Left	B Inrougn SB Right EB Left	B Through EB Right	wb Leit 18 Through WB Right	NB Left B Through	NB Right SB Left	SB Right EB Left	B Through EB Right	wb Leit 18 Through WB Right	NB Left B Through	SB Left B Through	SB rugili EB Left B Through	WB Left 0 WB Through 1649 WB Right 79	38- NB Left B Through	NB Right SB Left B Through	SB Night EB Left B Through	EB Right WB Left B Through	WB Right 39	B Through NB Right	SB Left B Through SB Right	EB Left B Through	WB Left B Through WM Right	NB Left	NB Right SB Left	B Through SB Right FB Left	B Through
Approach LOS	89	æ				٥			В В	۵					٥			В В) (٥	ш					Q		L.					u.			ω	٥		۵				U
h Approach Delay	14.5	13.4	46.3			36.3	0 O	0.66	11.6	36.7	27.4	28.2	13.6		37.9	7.6	10.9	13.8	51.4		54.5	37.8	63.4	41.6	7.7%	i i	58.4	52.4		211.0	29.4	86.7	22.5	0.7	106.4	0.6		16.4	39.7	92.0	41.5	0.00		2.4	32.2
Intersection Approacl	NB		31 EB	WB	NB	SB	32 FB		WB	NB		33 EB	WB		82 Z	SB 34	EB	WB	2	£ .	35	EB	WB	82	g	36	EB	WB	NB		37 EB	WB	NB		38 EB	WB		NB N	SB 39		WB	QN	2	SB 40	EB

Table C.15: AM Peak - No Build - Alternative Intersection Delay and Level of Service

Intersection LOS			C	ر					ш						۵						Ú						U						В						۷						c	n					89			
Intersection Delay			0,00	0.34					150.1					,	10.0						34.4						21.1						14.5						6.5						Ç	12.6					14.3			
SOT	4 4	∢ ∢	A A	4 4 <	τ υ υ	> ∢	0 0 1			. 4	ш ш ш	ш <	(∢ ∢	(U 4	∢ ∢	4 Q G	0 4	∢ ∪	Э	4 4	E A	T A	4 4	ш.	4 4	U U <	(ш с	O O A	В	3	4 4	4 4	∢ ∢	B & .	A B A	<	:	∢ ∢	4 4	4 4	O A	∢	4 4	4 Q	4 4	∢ ∢	4 4	4 4	шш	E	В В	- B A	. T 8	⋖
Max Queue	30	0	0	0 0	651	0	673	2706 2706	2706	1989	2151 2151 2151	260	0 0	524	0	243	0	0 408	0 266	266	1149	1139	0 0	263	297	634	222	222	29	152	0	0	0	552	0 191 0	0	0 0	0 0	0 0	284	173	0	0 0	310	0	0 0	0 0	127	118	118	151	659	845	875
Ave. Queue	0	0	0	0 0	106	0	247	2598	2598	1867	1925 1925 1925	amps 64	500	75	0	0 41	41 0 amps	0	0 0	61	529	552	0	89	69	102 102 65	56	56 56 1		amb	0	0	0	58	24 0	ramp 0	0 0	0 0	0 0	23	31	am		0	0 0	0 0	0 0		15			9/		
Delay	2 0	0	0	0 0 0	24	0 37 at Tuckerman Ln	21 50	161	246	204	230 157 96	270 NB on and off r 85	. 0 0	24	0 0	52	45 0 -270 NB on and off r	0	0 0 55	2 0	09	170	0 0	37 at Rock Spring Dr 57	9	24	59	20	11	3lvd at I-270 NB off r 30	0 0	0	0 0	14	0 11 0	Blvd at I-270 SB on	0 0	0 0	0 0	0	36	0 Blvd at I-270 SB off ra	0 0	0 48	3 0	0 0	0 0	3 2 2	80 80 59	67 79	65	10	106	2
Volume	100	0	0	0 0	986	0 42- MD 18	232 1496	60	166	630	714 390 156	43- MD 187 at I. 163	0 0	1538	0 0	126	10 0 44- MD 187 at I-2	0	0 179	1484	239	396	0 0	45- MD 187 255	1382	12 1707 150	190	252 1	9 3	47-Democracy BI 226	0	0	0 0	1682	0 778 0	48- Democracy	0 0	0 0	0 0	1793	223	0 49- Democracy B	0 0	0 358	0 188	0 0	0 0	780	20 4	11 50	17 121	24 1839 15	1 1495	21
Movement	NB Left NB Through	NB Right SB Left	SB Through SB Right	EB Left EB Through	WB Left	WB Right	NB Left NB Through	SB Left	SB Right EB Left	EB Through EB Right	WB Left WB Through WB Right	NB Left	NB Right	SB Through SB Right	EB Left EB Through	WB Left	WB Inrougn WB Right	NB Left	NB Right SB Left	SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through	EB Left FR Through	EB Inrougn EB Right WB Left	WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Left WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Left WB Through	>	NB Left	-	SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left NB Through	NB Right SB Left	SE	8 -	WB Through	WB Right
Approach LOS	<				ر)	Q	ш	-	F	ш	a		v		٥	a	ر	J.	⋖	ш				В	U	c	٥	∢		U			В	В					۷	٨				O			∢	ш		U	В	В	
Approach Delay	2.5				23.4		53.4	219.6	0.013	186.6	191.1	-		23.7			51.2	23.2	7.67	8.1	128.9			i i	15.0	22.4	38.0	38.0	7.2		30.4			14.0	10.8					5.3	8.5				32.5			2.8	73.2		34.0	12.6	12.6	
Approach	NB		SB	EB	WB		NB NB	SB	3	EB	WB	g		SB	EB	aw.	WB	an a	Q.	SB	EB		WB	-	NB	88	EB	EB	WB		NB	SB		EB	WB		NB	SB		EB	WB		- NB		SB	EB		WB	NB		S8	EB	WB	
Intersection		1	-	Ī	1				42					Ş	5	1			L	:	4	1			1		45	l				1	47	1				ı	48						ç	y 4	1			l	20			

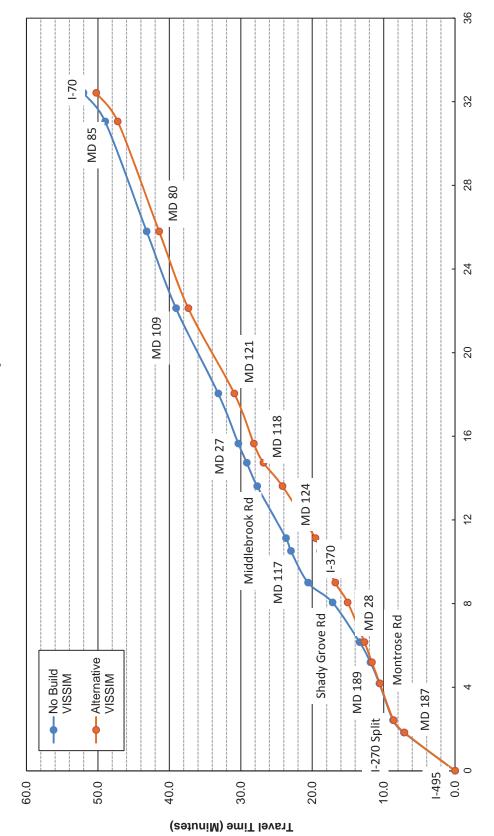
Table C.15: AM Peak - No Build - Alternative Intersection Delay and Level of Service

Intersection LOS			Q							В							Q							U							œ								a							ш							В		
Intersection Delay			44.7							14.1							44.0							27.7							16.5								45.3							70.8							17.8		
SOT	4 4 4	X	4 4 1	- ∢	2	A	ш «	₹ ∢	V V	∢ ∢	< 4 4	:	∢	3	A B	шс	a o	Q Q	F O	⋖	4 4	α .	V V	4 4	8 ×	₹ ∢	4 4	∢	: 4 C) 4	4 4	V V	4 4	4 4		ı	D	O	Αu	D	ш О.	V	O 4	O 4	₹ ∢ .	E A	В	ΑH	. 4	4 4	₹ ∢ .	4 4	A A	C	0 4 4
Max Queue	0 0 0		0 0	0	0 0	0	3346	0 0	0	0 0	146	0 171	0	149	0 777	778	584	584	387	83	0	410	0 0	0 0	399	0	0 0	0	0 0 88	0	0	88	0 0	0	198	0 0	198 852	852	0	932	448	0	437	437	0 0	411	411	0 856	856	0 0	0	0 0	0	559	514 514 0
Ave. Queue	0 0 0		0 0 8	0	0 0 24	0	1360	0 0	0 0	0 0	9 0	0 7	0	23	0	185	135	135	112	0 0	0 0	102	0 0	0 0	44	0	0 0	ramp 0	0 01	0 0	0 0	19	0 0	0 0	arkview Ave	0 8	48 140	140	0 52	252	90	0 ramp	108	108	0 0	0 121	121	0 929	929	0	0 0	0 0	0 0	152	174 174 0
Delay	0 0 0		0 0 8	66 0	0 0 2	0	79	0 0	0	0 0	» « O	0 2	0 at Seven Locks Rd	69	0 29	59	30	38	110 32	at I-270 NB off ram	0	40	0 0	0 0	18	0	0 0	Blvd at I-270 NB off	0 37	; 0	0 0	0 4	0 0	0 0	1-270 SB off ramp/Pa	808	39	50	0 8	45	71 29	0 II Rd at I-270 NB on I	45	30	0 0	0 79	10	0 170	87	0	0 0	0 0	0 0	19 24	WB Left 426 40 174 WB Through 862 2 174 WB Right 0 0 0 0
Volume 51-MD 190	0 0 0	0 0	0 0 2	0	0 0	0	262	0	0 0	0 0	982	299	0 53-MD 19	21 59	0 624	183	24	846	122 647	160 54-MD 124	0 0	772	0 0	0 0	963	0	0 0	55- Democracy	0 0	0	0 0	0 1683	0 0	0	Watkins Mill Rd at	0 0	166 611	147	1068	9	115 742	0 57- Watkins Mil	409	503	0 0	382	1039	0	157	0 0	0 0	0 0	0 0	1416 424	426 862 0
Movement	NB Left NB Through NB Right	SB Left	SB Right	EB Through	WB Left	WB Right	NB Left	NB Right	SB Left SB Through	SB Right EB Left	EB Through	WB Through	WB Right	NB Left NB Through	NB Right SB Left	SB Through	SB right EB Left	EB Through EB Right	WB Left WB Through	WB Right	NB Left	NB Right	SB Left SB Through	SB Right EB Left	EB Through	WB Left	WB Through WB Right	NB Left	NB Through	SB Left	SB Inrougn SB Right	EB Left EB Through	EB Right WB Left	WB Through WB Right	S6-	NB Through	NB Right SB Left	SB Through SB Right	EB Left	EB Right	WB Lett WB Through	WB Right	NB Left NB Through	NB Right	SB Through	SB Right EB Left	EB Through EB Right	WB Left WB Through	WB Right	NB Left	NB Right	SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Left WB Through WB Right
Approach LOS				ш	œ		u				A	٨		ш		ш		Q	D		Q				В				Q			∢				Q		Q	ш		U		Q				O	ш						υ	В
Approach Delay				99.1	15.7		0.01	0.67			2.8	5.4		68.2		56.9		37.5	36.8		40.3				17.7				37.4			4.5				48.2		41.0	0	T:00	34.6		36.7				28.9	157.9						20.0	14.5
Approach	NB	5	25	EB	8		92	Q.	SB		EB	WB		NB		SB		EB	WB		82	2	SB		EB		WB		NB	4	28	EB		WB		NB		SB	a	9	WB		NB		SB		EB	WB		SN N	9	SB		EB	WB
Intersection		1	51		ı					52		•			·		53							54						ı	52		1				ı	i.	95	ļ						57		•					28		

Table C.16: AM Peak - No Build - I-270 Vehicle Network Performance

	No Build (Delay Total)	Alternative (Total Total)	% Change
Total Delay	33,996,630	24,588,482	-28%
Average Delay per Vehicle	313	223	-29%
Total Travel Time	63,609,822	56,416,942	-11%
Vehicles (Arrived)	89,132	93,941	5%
Latent Demand	43,736	39,343	-10%
Latent Delay	119,614,848	109,844,998	-8%
Total Distance	468,502	503,389	7%
Average Speed	27	32	21%

PM Peak


Table D.1: PM Peak - No Build - I-270 Vehicle Travel Time

I-270 Northbound	Segment Length (miles)	No Build VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change	I-270 Southbound	Segment Length (miles)	No Build VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change
From I-495 interchange					From I-70				
to MD 187	1.8	430.8	426.8	-0.9%	to MD 85	1.7	94.6	94.6	0.0%
to I-270 Split	0.6	90.8	90.2	-1.1%	to MD 80	5.4	306.4	307.1	0.3%
to Montrose Rd	1.8	114.8	115.0	0.0%	to MD 109	3.7	211.1	210.9	0.0%
to MD 189	1.0	75.2	67.0	-10.7%	to MD 121	3.6	204.8	205.4	0.0%
to MD 28	1.0	90.9	63.0	-30.8%	to MD 27	2.5	146.4	146.6	0.7%
to Shady Grove Rd	1.9	227.7	140.7	-38.2%	to MD 118	1.1	65.2	65.3	0.0%
to I-370	0.9	205.0	103.8	-49.3%	to Middlebrook Rd	1.1	71.4	70.6	0.0%
to MD 117	1.5	143.5	127.2	-11.2%	to MD 124	2.2	138.3	132.1	-4.3%
to MD 124	0.6	41.5	39.3	-7.1%	to MD 117	0.9	121.9	52.9	-56.6%
to Middlebrook Rd	2.5	242.1	277.2	14.5%	to I-370	1.0	75.7	119.1	56.6%
to MD 118	1.1	87.2	160.0	83.9%	to Shady Grove Rd	1.5	83.5	83.5	0.0%
to MD 27	0.9	71.0	80.5	12.7%	to MD 28	1.9	114.2	114.4	0.0%
to MD 121	2.4	168.7	163.6	-3.0%	to MD 189	1.0	62.8	62.8	0.0%
to MD 109	4.1	354.7	386.3	8.7%	to Montrose Rd	1.0	64.8	64.8	0.0%
to MD 80	3.7	246.4	245.3	-0.4%	to I-270 Split	1.9	117.7	112.9	-4.2%
to MD 85	5.3	348.9	347.7	-0.3%	to MD 187	0.4	23.1	23.0	0.0%
to I-70	1.4	182.9	181.2	-1.1%	to I-495 interchange	1.9	156.1	154.9	-0.6%
I-270 Total (miles/minutes)	32.4	52.0	50.2	-3.8%	I-270 Total (miles/minutes)	32.6	34.3	33.7	0.0%
I-270 Spur Northbound					I-270 Spur Southbound				
From Cabin John Pkwy					From I-70				
to MD 190	0.5	126.4	112.4	-11.1%	to I-270 Split	30.3	1,878.8	1,842.7	-1.9%
to I-495	1.1	272.6	237.8	-12.8%	to Democracy Blvd	0.7	189.8	39.0	-79.5%
to Democracy Blvd	1.4	228.1	114.1	-50.0%	to I-495	1.3	515.0	122.5	-76.3%
to I-270 Split	0.9	76.6	56.5	-27.3%	to MD 190	1.3	197.7	207.5	5.1%
to I-70	30.0	2,600.6	2,497.8	-4.0%	to Cabin John Pkwy	0.6	162.4	165.7	2.5%
I-270 Spur Total (miles/minutes)	34.0	55.1	50.3	-9.1%	I-270 Spur Total (miles/minutes)	34.2	49.1	39.6	-18.4%

Table D.2: PM Peak - No Build - I-270 Local Vehicle Travel Time

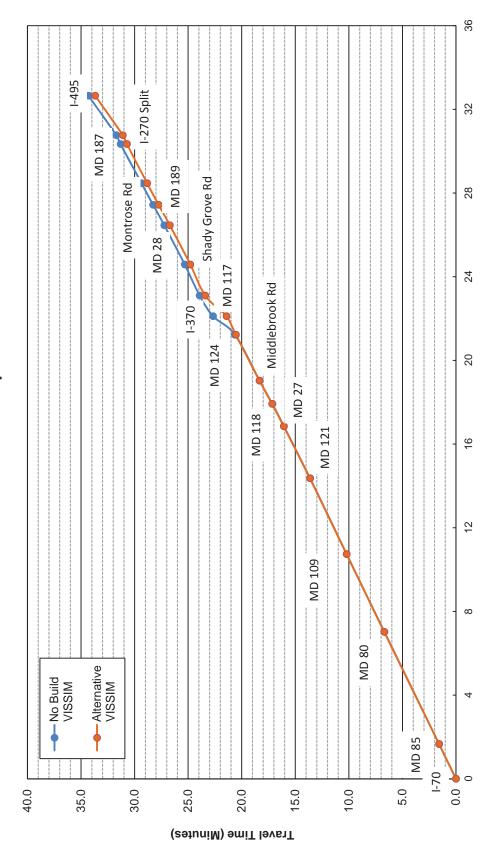

I-270 Northbound	Segment Length (miles)	No Build VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change	I-270 Southbound	Segment Length (miles)	No Build VISSIM Travel Time (seconds)	Alternative VISSIM Travel Time (seconds)	% Change
From C-D start					From C-D start				
to Montrose Rd	0.8	64.7	57.0	-12.3%	to Shady Grove	1.3	88.9	86.7	-2.2%
to MD 189	1.3	213.3	110.3	-48.4%	to MD 28	1.8	120.6	119.7	-0.8%
to MD 28	1.0	93.1	74.2	-20.4%	to MD 189	1.1	94.5	73.1	-23.2%
to Shady Grove	2.0	515.6	134.7	-73.8%	to Montrose	1.2	88.7	85.4	-4.5%
to I-370	1.0	521.1	168.9	-67.6%	to I-270 mainline	0.9	60.1	60.3	0.0%
to MD 117	1.2	528.7	220.0	-58.4%					
to MD 124	0.8	452.3	205.7	-54.4%					
to I-270 mainline	0.8	214.9	175.2	-18.6%					
I-270 Local Total (miles/minutes)	8.9	43.4	19.1	-55.8%	I-270 Local Total (miles/minutes)	6.3	7.5	7.1	-12.5%

Figure D.1: PM Peak - No Build I-270 Travel Time Graph - Northbound

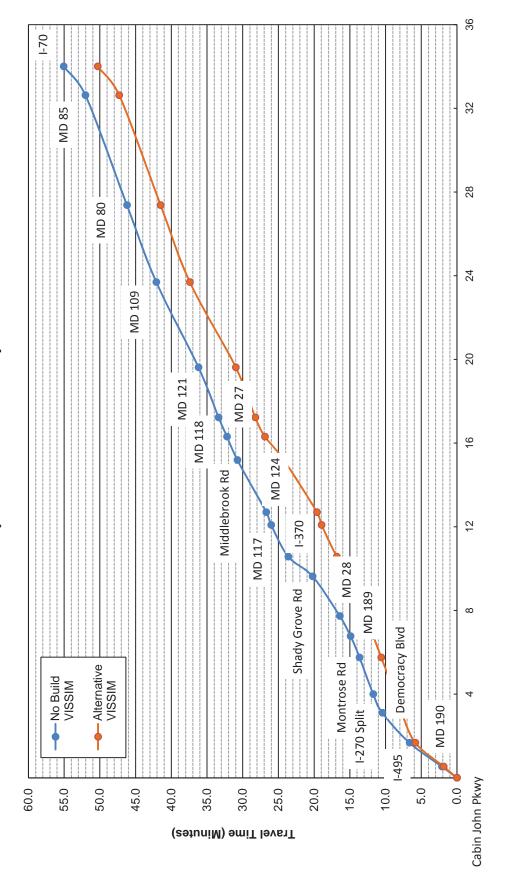

Miles Along Corridor / Direction of Traffic Flow

Figure D.2: PM Peak - No Build I-270 Travel Time Graph - Southbound

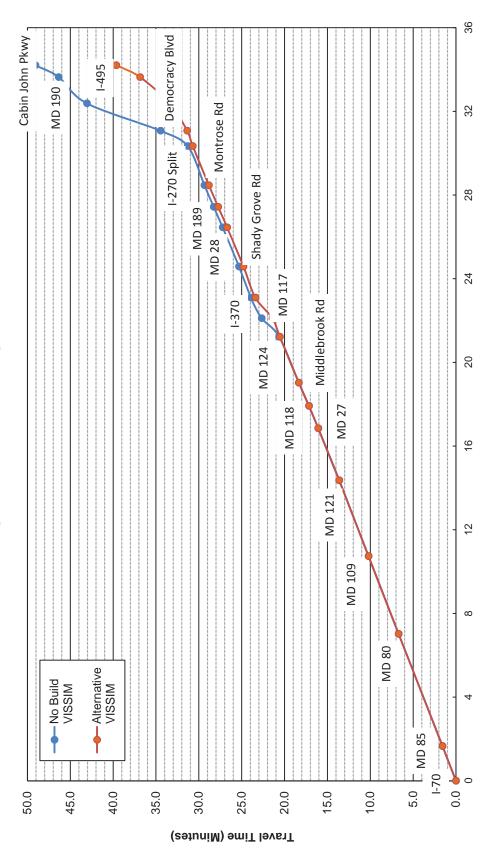

Miles Along Corridor / Direction of Traffic Flow

Figure D.3: PM Peak - No Build I-270 Spur Travel Time Graph - Northbound

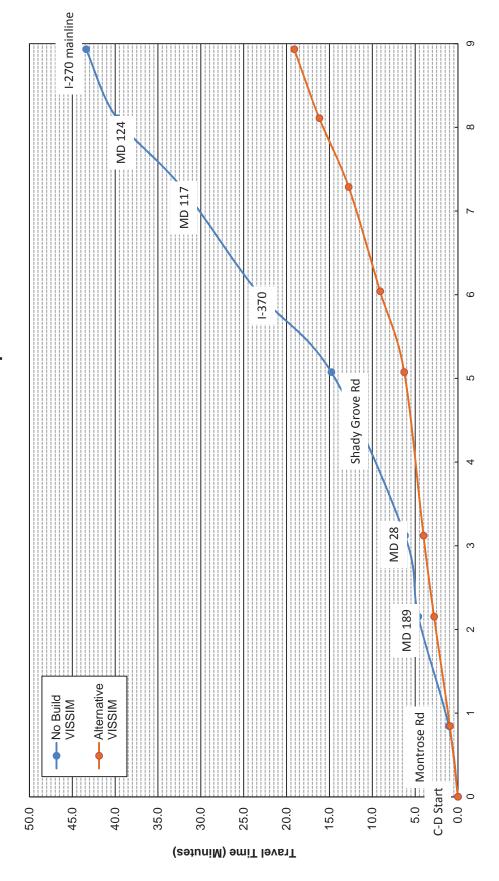

Miles Along Corridor / Direction of Traffic Flow

Figure D.4: PM Peak - No Build I-270 Spur Travel Time Graph - Southbound

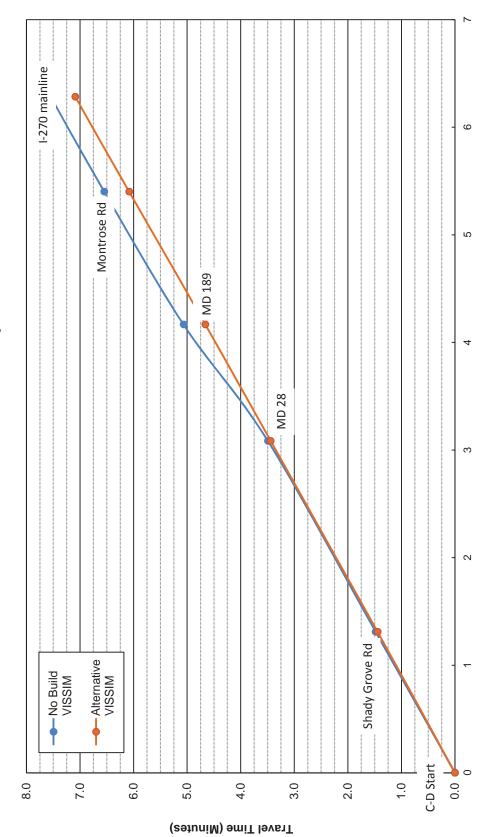

Miles Along Corridor / Direction of Traffic Flow

Figure D.5: PM Peak - No Build I-270 Local Travel Time Graph - Northbound

Miles Along Corridor / Direction of Traffic Flow

Figure D.6: PM Peak - No Build I-270 Local Travel Time Graph - Southbound

Miles Along Corridor / Direction of Traffic Flow

Table D.3: PM Peak - No Build - I-270 Vehicle Speed

I-270 Northbound	RITIS Segment Number	No Build VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change	I-270 Southbound	No Build VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change
From I-495 interchange					From I-70			
to MD 187	6001+6002	15.3	15.5	0.0%	to MD 85	63.3	63.3	0.0%
to I-270 Split	6003+6004	23.4	23.6	4.3%	to MD 80	62.9	62.8	0.0%
to Montrose Rd	6005+6006	55.0	54.9	0.0%	to MD 109	63.4	63.5	1.6%
to MD 189	6007+6008	48.5	54.5	10.2%	to MD 121	63.6	63.5	-1.6%
to MD 28	6009+6010	38.2	55.1	44.7%	to MD 27	61.1	61.0	0.0%
to Shady Grove Rd	6011+6012	30.0	48.6	63.3%	to MD 118	59.2	59.2	0.0%
to I-370	6013+6014	16.6	32.7	94.1%	to Middlebrook Rd	56.0	56.7	1.8%
to MD 117	6015+6016	38.0	42.9	13.2%	to MD 124	57.2	59.9	5.3%
to MD 124	6017+6018	53.1	56.2	5.7%	to MD 117	26.2	60.3	130.8%
to Middlebrook Rd	6019+6020	37.0	32.3	-13.5%	to I-370	46.9	29.8	-36.2%
to MD 118	6021+6022	46.3	25.2	-45.7%	to Shady Grove Rd	64.1	64.1	0.0%
to MD 27	6023+6024	46.4	41.0	-10.9%	to MD 28	59.1	59.0	0.0%
to MD 121	6025+6026	51.1	52.7	3.9%	to MD 189	56.0	56.1	0.0%
to MD 109	6027+6028	41.4	38.0	-7.3%	to Montrose Rd	57.4	57.4	0.0%
to MD 80	6029+6030	53.7	54.0	0.0%	to I-270 Split	57.2	59.7	5.3%
to MD 85	6031+6032	54.2	54.4	0.0%	to MD 187	65.5	65.8	1.5%
to I-70	6033+6034	27.0	27.2	0.0%	to I-495 interchange	43.6	44.0	0.0%
I-270 Total (miles/minutes)		37.4	38.7	5.4%	I-270 Total (miles/minutes)	57.1	58.2	1.8%
I-270 Spur Northbound					I-270 Spur Southbound			
From Cabin John Pkwy					From I-70			
to MD 190	6045	15.4	17.3	13.3%	to I-270 Split	58.1	59.3	1.7%
to I-495	6044	15.0	17.2	13.3%	to Democracy Blvd	13.9	67.5	378.6%
to Democracy Blvd	6042+6043	22.6	45.2	95.7%	to I-495	9.2	38.5	322.2%
to I-270 Split	6040+6041	41.9	56.9	35.7%	to MD 190	22.8	21.8	-4.3%
to I-70	6005 - 6034	41.5	43.2	2.4%	to Cabin John Pkwy	12.6	12.4	-7.7%
I-270 Spur Total (miles/minutes)		37.0	40.5	10.8%	I-270 Spur Total (miles/minutes)	41.8	51.8	23.8%

Table D.4: PM Peak - No Build - I-270 Local Vehicle Speed

I-270 Northbound	No Build VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change	I-270 Southbound	No Build VISSIM Speed (MPH)	Alternative VISSIM Speed (MPH)	% Change
From C-D start				From C-D start			
to Montrose Rd	47.0	53.4	12.8%	to Shady Grove	53.1	54.4	1.9%
to MD 189	22.1	42.7	95.5%	to MD 28	52.9	53.3	0.0%
to MD 28	37.4	46.9	27.0%	to MD 189	41.2	53.3	29.3%
to Shady Grove	13.6	52.2	271.4%	to Montrose	50.1	52.0	4.0%
to I-370	6.7	20.6	200.0%	to I-270 mainline	52.9	52.7	0.0%
to MD 117	8.5	20.4	150.0%				
to MD 124	6.5	14.4	100.0%				
to I-270 mainline	13.6	16.9	21.4%				
I-270 Local Total (miles/minutes)	12.3	28.1	133.3%	I-270 Local Total (miles/minutes)	49.9	53.2	6.0%

Figure D.7: HCM 2010 Density Level of Service Criteria (pc/mi/ln)

HCM 2010 Freeway LOS	<u> </u>
<11	A
>11 - 18	В
> 18 - 26	С
> 26 - 35	D
> 35 - 45	Е
> 45	F
HCM 2010 Freeway Merge and Diverge	Segment LOS
< 10	A
> 10 - 20	В
> 20 - 28	С
> 28 - 35	D
> 35 - 40	Е
> 40	F
HCM 2010 Freeway Weaving Segn	nent LOS
< 10	A
> 10 - 20	В
> 20 - 28	С
> 28 - 35	D
> 35 - 40	Е
> 40	F
HCM 2010 C-D Weaving Segmen	nt LOS
< 12	A
> 12 - 24	В
> 24 - 32	С
> 32 - 36	D
> 36 - 40	Е
> 40	F

Table D.5: PM Peak - No Build - I-270 Vehicle Density

				, , , ,						-	***		
		No build	Ť	Alternative	ıve	, ,			ping ov		Alternative	e A	
I-270 Northbound	Type	$\left. \begin{array}{c} \mathrm{Density} \\ \mathrm{(pc/mi/ln)} \end{array} \right 1$	ros	Density (pc/mi/ln)	ros	% Change	I-270 Southbound	Type	Density (pc/mi/ln)	SOT	Density (pc/mi/ln)	TOS C	% Change
I-270	Freeway	06	F	06	F	%0	1-270	Freeway	19	C	19	C	%0
I-270 Diverge to MD 187	Diverge	78	日	78	F	%0	I-270 Merge from WB I-70	Merge	17	В	17	В	%0
I-270	Freeway	98	F	84	F	-2%	I-270	Freeway	24	C	24	C	%0
ockledge Rd	Diverge	78	F	78	F	%0	I-270 Merge from EB I-70	Merge	16	В	16	В	%0
I-270	Freeway	98	F	85	F	-1%	I-270	Freeway	22	C	22	C	%0
I-270 Weave from MD 187 to I-270 HOV	Weave	58	F	57	F	-2%	I-270 Diverge to SB MD 85	Diverge	23	C	23	C	%0
I-270 Lane Drop	Merge	65	ഥ	99	F	%0	I-270	Freeway	24	C	24	C	%0
I-270	Freeway	51	ഥ	51	F	%0	I-270 Diverge to NB MD 85	Diverge	15	В	15	В	%0
I-270 Merge from I-270 Spur	Merge	37	E	32	D	-14%	I-270	Freeway	16	C	19	C	%0
I-270 Weave from I-270 HOV to I-270 C-D	Weave	33	D	31	D	%9-	I-270 Merge from MD 85	Merge	19	В	20	C	2%
I-270	Freeway	32	D	27	D	-16%	I-270	Freeway	25	C	25	C	%0
I-270 Diverge to C-D (MD 189)	Diverge	42	ഥ	34	D	-19%	I-270 Diverge to MD 80	Diverge	16	В	17	В	%9
I-270	Freeway	42	E	33	D	-21%	I-270	Freeway	20	C	20	C	%0
I-270 Diverge to C-D (MD 28)	Diverge	58	ഥ	39	E	-33%	I-270 Merge from MD 80	Merge	14	В	11	В	-21%
I-270	Freeway	52	ഥ	29	D	-44%	I-270	Freeway	23	C	23	C	%0
I-270 Merge from C-D (MD 189)	Merge	71	F	28	С	-61%	I-270 Diverge to MD 109	Diverge	12	В	12	В	%0
I-270 Diverge to C-D (Shady Grove Rd)	Diverge	73	ഥ	28	D	-62%	I-270	Freeway	22	C	22	C	%0
I-270	Freeway	62	L 노	36	E	-42%	I-270 Merge from MD 109	Merge	14	В	12	В	-14%
I-270 Weave from C-D (MD 28) to C-D (Shady Grove Rd)	Weave	82	H	38	田	-54%	1-270	Freeway	24	C	24	C	%0
I-270	Freeway	82	T	43	Э	-48%	I-270 Diverge to SB Weigh Station	Diverge	12	В	13	В	%8
I-270 Merge from C-D (Shady Grove Rd)	Merge	113	上	47	F	-58%	1-270	Freeway	24	C	24	C	%0
I-270	Freeway	77	ഥ	54	ഥ	-30%	I-270 Merge from SB Weigh Station	Merge	12	В	12	В	%0
I-270 Merge from C-D (I-370)	Merge	127	F	68	F	-30%	I-270	Freeway	23	C	23	C	%0
I-270 Diverge to C-D (MD 117)	Diverge	133	F	84	F	-37%	I-270 Diverge to MD 121	Diverge	6	A	6	A	%0
	Freeway	26	D	26	D	%0	I-270	Freeway	12	В	12	В	%0
I-270 Merge from C-D (MD 124)	Merge	58	日	49	F	-16%	I-270 Merge from WB MD 121	Merge	10	В	10	В	%0
I-270	Freeway	31	D	29	F	116%	I-270	Freeway	15	В	15	В	%0
I-270 Diverge to EB Middlebrook Rd	Diverge	23	C	29	F	191%	I-270 Merge from EB MD 121	Merge		В	13	В	%0
	Freeway	28	D	93	H	232%	I-270	Freeway	20	C	20	C	%0
I-270 Diverge to WB Middlebrook Rd	Diverge	23	C	97	H	322%	I-270 Diverge to MD 27	Diverge	13	В	13	В	%0
I-270	Freeway	25	C	70	H	180%	I-270	Freeway	17	В	17	В	%0
I-270 Diverge to EB MD 118	Diverge	24	С	69	F	188%	I-270 Merge from WB MD 27	Merge	14	В	13	В	-7%
I-270 Diverge to WB MD 118	Diverge	43	F	68	F	107%	I-270	Freeway	20	C	20	C	%0
I-270	Freeway	31	D	42	Ε	35%	I-270 Weave from EB MD 27 to MD 118	Weave		В	15	В	%0
I-270 Weave from MD 118 to MD 27	Weave	41	F	61	F	46%	I-270	Freeway	19	C	19	C	%0
I-270	Freeway	27	D	31	D	15%	I-270 Merge from WB MD 118	Merge	15	В	14	В	-7%
I-270 Merge from EB MD 27	Merge	41	F	61	F	46%	I-270	Freeway	22	C	21	C	-5%
I-270	Freeway	28	D	30	D	7%	I-270 Merge from EB MD 118	Merge	19	В	19	В	%0
I-270 Merge from WB MD 27	Merge	24	C	26	C	%8	I-270	Freeway		D	28	D	%0
	Freeway	30	D	32	D	7%	I-270 Merge from Middlebrook Rd	Merge	30	D	28	С	-7%
I-270 Diverge to MD 121	Diverge	27	C	26	C	4%	I-270 Diverge to Watkins Mill Rd	Diverge	24	C	19	В	-21%

Change 124% -83% -10% -29% -29% -72% -55% 29% 45% **%9-**-7% -5% -23% 32% -71% %0 -5% -5% 4% -3% -5% -4% %0 %0 %0 %0 %0 %0 Alternative Density (pc/mi/ln) 25 1 12 16 35 7 12 54 65 32 13 13 20 23 8 18 18 19 20 25 15 13 23 **FOS** Ω Ω No Build Density (pc/mi/ln) 7 9 86 42 29 22 18 7 4 19 19 26 26 31 19 52 13 12 16 14 36 24 19 2 Diverge Diverge Diverge Diverge Merge Freeway Merge Merge Diverge Diverge Freeway Merge Merge Freeway Merge Merge Freeway Diverge Freeway Freeway Freeway Freeway Merge Merge Freeway Freeway Freeway Freeway Freeway reeway Freeway 1-270 Merge from I-270 C-D (Shady Grove I-270 Merge from I-270 C-D (Shady Grove I-270 Merge from Rockledge Dr / MD 187 I-270 Diverge to I-270 C-D (Shady Grove 1-270 Diverge to Rockledge Dr / MD 187 I-270 Merge from I-270 C-D (MD 189) L-270 Diverge to I-270 C-D (MD 189) 1-270 Diverge to I-270 HOV Lane I-270 Merge from Rockledge Dr I-270 Merge from I-270 (I-370) I-270 Merge from Watkins Mill I-270 Merge from WB MD 124 I-270 Merge from I-270 C-D I-270 Diverge to I-270 Spur I-270 Diverge to I-270 C-D I-270 Merge from MD 117 1-270 Diverge to MD 124 I-270 Diverge to I-370 I-270 Southbound Rd Northern) Rd Southern 1-2701-270-41% 142% -17% -3% -3% %5--3% -3% %9°-%0 %0 %0 %0 %0 0% -3% %0 %0 %0 %0 Q Ω pc/mi/ln) 9 19 34 19 36 34 22 32 18 37 38 30 18 36 18 36 18 36 63 TOS Ω No Build Density (pc/mi/ln) 30 43 38 34 65 54 93 39 22 18 36 18 36 21 34 20 22 Table D.5: PM Peak - No Build - I-270 Vehicle Density Freeway Diverge Diverge Diverge Diverge Diverge Diverge Weave Merge Merge Freeway Merge Freeway Freeway Freeway Merge Freeway Freeway Freeway Freeway Merge Freeway Freeway Freeway Freeway I-270 Merge from NB Weight Station 1-270 Diverge to NB Weigh Station I-270 Weave from MD 85 to I-70 I-270 Merge from Scenic View I-270 Merge from EB MD 121 I-270 Diverge to Scenic View I-270 Diverge to NB MD 85 I-270 Diverge to SB MD 85 I-270 Merge from MD 109 I-270 Diverge to MD 109 I-270 Merge from MD 80 I-270 Diverge to MD 80 **[-270 Northbound** 1-270 Lane Drop I-270 1-270I-270

Change -85% -82% %98-%28--79% %09--2% -2% 2% %0 **%9** %9 3% 1% %0 %0 ros Alternative Density (pc/mi/ln) 133 116 16 96 09 83 13 20 50 51 70 94 77 51 **FOS** No Build Density (pc/mi/ln) 109 154 125 145 125 118 7 94 48 20 89 95 94 83 61 Freeway Weave Diverge Diverge Freeway Merge Freeway Merge Freeway Freeway Freeway Merge Freeway Diverge Merge Merge I-270 Diverge to WB Clara Barton Pkwy 1-270 Spur Diverve to Cabin John Pkwy 1-270 Spur Weave from I-270 HOV to 1-270 Merge from Clara Barton Pkwy 1-270 Merge from Democracy Blvd I-270 Spur Diverve to EB MD 190 I-270 Spur Merge from I-495 I-270 Merge from MD 190 I-270 Spur Lane Drop I-270 Southbound Democracy Blvd I-270 Spur I-270 Spur I-270 Spur I-270 Spur I-270 Spur I-270 Spur Change -28% %82--34% -25% -17% -52% -50% -61% -26% -56% %8-%9-%8-4% %8--5% -2% % -8% **FOS** Alternative (pc/mi/ln) Density 55 24 26 24 28 63 7 45 85 92 77 33 22 29 25 TOS Table D.6: PM Peak - No Build - I-270 Spur Vehicle Density Density (pc/mi/ln) 106 78 89 99 50 99 32 62 64 49 6 84 46 59 66 28 Diverge Merge Merge Freeway Freeway Merge Freeway Merge Freeway Diverge Freeway Merge Merge Freeway Merge Freeway Freeway Freeway -270 Spur Merge from Clara Barton Parkway I-270 Spur Merge from WB Democracy Blvd 1-270 Spur Merge from Cabin John Parkway 1-270 Spur Merge from EB Democracy Blvd I-270 Spur Merge from Westlake Terrace I-270 Spur Diverge to Democracy Blvd I-270 Spur Merge from MD 190 I-270 Spur Diverge to I-495 I-270 Diverge to MD 190 I-270 Spur Northbound I-270 Spur I-270 Spur

1-270 Northbound 1-270 C-D		No Build	Alter	Alternative				No Build	IA.	Alternative	
I 270 C D Director to ED Monteness D d	Type	Density LOS (pc/mi/ln)	Density (pc/mi/ln)	LOS	% Change	I-270 Southbound	Type	Density L(pc/mi/ln)	TOS Dei	Density LOS	% Change
L O C Discourse to DD Monteson D J	Freeway	_		D	3%	I-270 C-D	Freeway	6	,	×	-11%
I-2/0 C-D Diverge to ED Montose Kd	Diverge		21	C	%0	I-270 C-D Weave from I-370 EB to I-270	Weave	23 E	В	19 B	-17%
I-270 C-D	Freeway	16 B	16	В	%0	I-270 C-D Diverge to Shady Grove Rd	Diverge	11	В	12 B	%6
I-270 C-D Weave between Montrose Rd Loop Ramps	Weave	12 A	12	⋖	%0	I-270 C-D	Freeway	∞		∀ 8	%0
I-270 C-D	Freeway		18	В	-22%	I-270 C-D Merge from WB Shady Grove Rd	Merge	6	A	A 6	%0
I-270 C-D Merge from WB Montrose Rd	Merge	79 F	39	E	-51%	I-270 C-D	ᆮ	14 I	В	14 B	%0
I-270 C-D	Freeway		45	E	-35%	I-270 C-D Merge from EB Shady Grove Rd	Merge	11	В	11 B	%0
I-270 C-D Merge from I-270	Merge		99	H	-38%	I-270 C-D	Freeway	21	0	21 C	%0
I-270 C-D	Freeway		46	ഥ	-30%	I-270 C-D Merge from I-270	Merge	26		18 B	-31%
I-270 C-D Diverge to MD 189	Diverge		21	C	-52%	I-270 C-D Diverge to I-270	Diverge	27	0	18 B	-33%
I-270 C-D	Freeway		28	D	%69-	I-270 C-D Diverge to I-270	Diverge	18	В	18 B	%0
I-270 C-D Merge from MD 189	Merge	112 F		C	%08-	I-270 C-D	Freeway	17	В	17 B	%0
I-270 C-D	Freeway	59 F	50	C	%99-	I-270 C-D Diverge to MD 28	Diverge	12	В	12 B	%0
I-270 C-D Weave between I-270 (to MD 28 from MD 189)	Weave	99	30	C	-55%	I-270 C-D	Freeway	111	В	11 B	%0
I-270 C-D	Freeway	43 E	38	E	-12%	I-270 C-D Merge from WB MD 28	Merge	14 I	В	13 B	-7%
I-270 C-D Diverge to MD 28	Diverge			Н	167%	I-270 C-D	Freeway	14 I	В	14 B	%0
I-270 C-D	Freeway	29 D		E	34%	I-270 C-D Merge from EB MD 28	Merge	33 I	D O	23 C	-30%
I-270 C-D Weave between MD 28 Ramps	Weave		32	D	19%	I-270 C-D	Freeway	45 I	E	19 C	-58%
I-270 C-D	Freeway		20	C	-5%	I-270 C-D Merge from I-270	Merge	61	F	21 C	%99-
I-270 C-D Merge from MD 28 WB	-	22	14	В	-36%	I-270 C-D	Freeway	48	H	23 C	-52%
I-270 C-D Merge from I-270 and Drop Lane	_	27		В	-33%	I-270 C-D Diverge to MD 189	Diverge	26			-4%
1-270 C-D Diverge to 1-270	Diverge	47		၁	45%	I-270 C-D	Freeway	28	O I	27 D	-4%
I-270 C-D	Freeway			၁	-53%	I-270 C-D Merge from MD 189	Merge			22 C	-19%
I-270 C-D Diverge to Shady Grove Rd	Diverge			В	-13%	I-270 C-D Diverge to I-270	Diverge		D	22 C	-37%
I-270 C-D	Freeway	119	91	В	-87%	I-270 C-D	Freeway	24	0	24 C	%0
I-270 C- D Merge from I-270 and EB Shady Grove Rd	Merge	129 F	15	В	-88%	I-270 C-D Diverge to WB Montrose Rd	Diverge	18	В	17 B	%9-
I-270 C-D	Freeway		. 26	D	-79%	I-270 C-D	Freeway	23	0	21 C	%6-
I-270 C-D Merge from WB Shady Grove Rd				H	%89-	I-270 Weave between Montrose Rd Loops	Weave	43	F 4	40 F	-7%
I-270 C-D Diverge to I-270	Diverge			H	-61%	I-270 C-D	Freeway		В	16 B	2%
I-270 C-D	Freeway		47	ш I	-32%	I-270 C-D Merge from EB Montrose Rd	Merge	6		10 A	11%
I-270 C-D Diverge to I-370	Diverge		51	T I	-7%	I-270 C-D	Freeway	81	В	18 81	%0
1-2/0 C-D	Freeway		0 2	4	-44%				-		
1-2/0 Merge from 1-3/0 EB	Merge	120	4/ 60	T D	-38%						
1-270 C-D Weave from 1-370 to 1-270	Weave		62	T II	-34%						
I-270 C-D	Freeway		51	Ľ.	-39%						
I-270 C-D Weave from I-270 to MD 117	Weave		74	H	-12%						
I-270 C-D Diverge to MD 124	Diverge		89	F	-37%						
I-270 C-D	Freeway	148 F	66	F	-33%						
I-270 C-D Merge from EB MD 124	Merge		62	F	-40%						
I-270 C-D Merge From WB MD 124	Merge	68	95	Ľ.	7%						
I-270 C-D	Freeway		53	Ľ.	-35%						
I-2/0 C-D Merge from Watkins Mill	Merge	73	73	C	%0				$\frac{1}{1}$		

Table D.8: PM Peak - No Build - I-270 Vehicle I-270 Northbound	No Build VISSIM Throughput	Alternative VISSIM Throughput	% Change	Data Collection Measurement	I-270 Southbound	No Build VISSIM Throughput	Alternative VISSIM Throughput	% Change
Between I-495 and MD 187	4133	4136	0%	100	North of I-70	2366	2366	0%
Between MD 187 on and off ramps	3716	3722	0%	102	Between I-70 on ramps	2705	2703	0%
Between Rockledge Blvd on and off ramps	3530	3554	1%	105	From I-70 interchange to MD-85	4048	4047	0%
Between Rockledge Dr and I-270 Spur	3863	3869	0%	108	Between MD-85 on and off ramps	2380	2379	0%
Between I-270 Spur and Montrose Rd	8715	8952	3%	110	Between MD-85 and MD-80	3079	3078	0%
Between Montrose Rd on and off ramps	5677	5901	4%	112	Between MD-80 on and off ramps	2420	2416	0%
Between Montrose Rd and MD 189	5192	5608	8%	114	Between MD-80 and Md-109	2866	2861	0%
Between MD 189 and MD 28	5185	5990	16%	116	Between MD-109 on and off ramps	2769	2766	0%
Between MD 28 on and off ramps	5167	6351	23%	118	Between MD-109 and MD-121	2936	2938	0%
Between MD 28 and Shady Grove Rd	4374	5592	28%	120	Between MD-121 on and off ramps	2411	2406	0%
Between Shady Grove Rd and I-370	3541	4873	38%	123	Between MD-121 and MD-27	3357	3359	0%
Between I-370 on and off ramps	3235	4305	33%	126	Between MD-27 on and off ramps	3449	3454	0%
Between I-370 and MD 117	3771	5661	50%	129	Between MD-27 and MD-118	3761	3763	0%
Between MD 117 and MD 124	2932	4244	45%	133	Between MD-118 on and off ramps	3716	3711	0%
Between MD-124 on and off ramps	3025	4353	44%	136	Between MD-118 and Middlebrook Rd	4379	4368	0%
Between Watkins Mill Rd and Middlebrook Rd	5346	6408	20%	139	Between Middlebrook Rd on and off ramps	4380	4374	0%
Between Middlebrook Rd on and off ramps	5022	5851	17%	142	Between Middlebrook Rd and MD-124	5489	5445	-1%
Between Middlebrook Rd and MD 118	4374	5025	15%	146	Between MD-124 on and off ramps	4298	4179	-3%
Between MD-118 on and off ramps	4034	4607	14%	150	Between MD-124 and MD-117	5448	5414	-1%
Between MD 118 and MD 27	4222	4667	11%	154	Between MD-117 and I-370	7014	6695	-5%
Between MD-27 on and off ramps	3068	3362	10%	159	Between I-370 on and off ramps	3506	3311	-6%
Between MD 27 and MD 121	3729	3979	7%	163	Between I-370 on ramp to Shady Grove Rd	5063	4866	-4%
Between MD-121 on and off ramps	2485	2634	6%	167	Between Shady Grove Rd and MD 28	5271	5122	-3%
Between MD 121 and MD 109	4076	4030	-1%	171	Between MD 28 on and off ramps	5451	5300	-3%
Between MD-109 on and off ramps	3755	3689	-2%	175	Between MD 28 and MD 189	4790	4637	-3%
Between MD 109 and MD 80	3914	3833	-2%	179	Between MD 189 and Montrose Rd	4781	4636	-3%
Between MD-80 on and off ramps	3235	3170	-2%	183	Between Montrose Rd on and off ramps	5712	5575	-2%
Between MD 80 and MD 85	3902	3849	-1%	187	Between Montose Rd and I-270 Spur	7393	7477	1%
Between MD-85 on and off ramps	3270	3208	-2%	193	Between I-270 Spur and Rockledge Blvd	3349	3341	0%
Between MD 85 and I-70	5245	5196	-1%	197	Between Rockledge Blvd on and off ramps	2564	2551	-1%
North of I-70	2745	2702	-2%	200	Between MD 187 on and off ramps	3037	3025	0%
				203	Between MD 187 and I-495	3410	3397	0%
I-270 Spur Northbound					I-270 Spur Southbound			
Between I-495 and Democracy Blvd	4577	4860	6%	600	Between I-270 Split and HOV on ramp	3177	3514	11%
Between Democracy Blvd on and off ramps	4108	4359	6%	603	Between HOV on ramp and Democracy Blvd	2321	3442	48%
Between Democracy Blvd and I-270 Split	4839	5112	6%	607	Between Democracy Blvd on and off ramps	1847	3076	67%
		1	l	610	Between Democracy Blvd and I-495	2196	3629	65%

Table D.9: PM Peak - No Build - I-270 Loc-	No Build VISSIM Throughput	Alternative VISSIM Throughput	% Change	Data Collection Measurement	I-270 Local Southbound	No Build VISSIM Throughput	Alternative VISSIM Throughput	% Change
Between Montrose Rd EB off ramp and and EB on ramp	1771	1821	3%	800	Between I-370 on ramp and I-270 off ramp	3074	3027	-2%
Between Montrose Rd EB on ramp and WB off ramp	2092	2142	2%	804	Between I-270 off ramp and Shady Grove off ramp	1538	1486	-3%
Between Montrose Rd WB off ramp and on ramp	1835	1881	3%	807	Between Shady Grove off ramp and Shady Grove WB on ramp	819	793	-3%
Between Montrose Rd WB on ramp and I- 270 on ramp	3265	3499	7%	809	Between Shady Grove WB and EB on ramps	1522	1485	-2%
Between I-270 on ramp and MD 189 off ramp	3446	3788	10%	811	Between Shady Grove on ramp and I-270 on ramp	2144	2142	0%
Between MD 189 ramps	2743	3097	13%	813	Between I-270 on ramp and I-270 off ramp1	2759	2731	-1%
Between MD 189 off ramp and I-270 on ramp	3571	4005	12%	815	Between I-270 off ramp1 and I-270 off ramp2	1919	1902	-1%
Between I-270 on ramp and I-270 off ramp	4101	4707	15%	817	Between I-270 off ramp2 and MD 28 off ramp	1743	1724	-1%
Between I-270 off ramp and MD 28 EB off ramp	3205	3668	14%	819	Between MD 28 off ramp and MD 28 WB on ramp	1216	1204	-1%
Between MD 28 EB off ramp to MD 28 EB on ramp	2899	3300	14%	821	Between MD 28 WB on ramp and MD 28 EB on ramp	1482	1472	-1%
Between MD 28 EB on ramp and MD 28 WB off ramp	3037	3433	13%	823	Between MD 28 EB on ramp and I-270 on ramp	3045	3023	-1%
Between MD 28 WB off ramp and MD 28 WB on ramp	1910	2159	13%	825	Between I-270 on ramp and MD 189 off ramp	3728	3692	-1%
Between MD 28 WB on ramp and I-270 on ramp	2599	2888	11%	827	Between MD 189 on and off ramps	2788	2765	-1%
Between I-270 on ramp and I-270 off ramp	3127	3747	20%	829	Between MD 189 on ramp and I-270 off ramp	3369	3341	-1%
Between I-270 off ramp and Shady Grove off ramp	1832	2244	22%	831	Between I-270 off ramp and Montrose Rd off ramp	2437	2415	-1%
Between Shady Grove off ramp and I-270 on ramp	587	801	36%	833	Between Montrose Rd off ramp and Montrose Rd WB on ramp	2191	2167	-1%
Between I-270 on ramp and Shady Grove WB on ramp	2585	2864	11%	835	Between Montrose Rd WB on ramp and EB off ramp	2748	2773	1%
Between Shady Grove WB on ramp and I- 270 off ramp	3241	4154	28%	838	Between Montrose Rd EB off and on ramps	1550	1583	2%
Between I-270 off ramp and I-370 off ramp	2834	4123	45%	840	Between Montrose Rd EB off ramp and I-270	1871	1900	2%
Between I-370 off ramp and I-370 EB on ramp	721	1399	94%					
Between I-370 EB and WB on ramps	1223	2237	83%					
Between I-370 WB on ramp and I-270 off ramp	2144	3646	70%					
Between I-270 off ramp and I-270 on ramp	1336	2018	51%					
Between I-270 on ramp and MD 117 off ramp	2289	3478	52%					
Between MD 117 off ramp and MD 124 off ramp	1622	2432	50%					
Between MD 124 off ramp and MD 124 EB on ramp	673	1002	49%					
Between MD 124 EB and WB on ramps	1177	1494	27%					
Between MD 124 on ramp I-270	1087	1153	6%					

Table D.10: PM Peak - No Build - I-270 On Ramp Queue Length - Northbound

MD 189 C-P on ramp	Table D.10: PM Peak - No Build - I-270 (In Ramp Queue L	ength - Northbou	nd			
MD 189 C-D on ramp		VISSIM Average Queue	VISSIM Average Queue	Change	VISSIM Maximum Queue (feet)	VISSIM Maximum Queue (feet)	Change
MD 28 C-D on ramp	Rockledge Dr on ramp		•			194	
Shady Grove Rd C-D on ramp	MD 189 C-D on ramp	550	0	-100%	5029	0	-100%
1.370 C-D on ramp	MD 28 C-D on ramp	837	2	-100%	3967	156	-96%
MD 124 C-D on ramp	Shady Grove Rd C-D on ramp	1563	0	-100%	4941	0	-100%
MD 118 on ramp	I-370 C-D on ramp	3270	2344	-28%	5052	5056	0%
MD 27 BB on ramp	MD 124 C-D on ramp	3345	1179	-65%	5058	3851	-24%
MD 127 WB on ramp	MD 118 on ramp	0	4	0%	101	333	230%
MD 121 on ramp	MD 27 EB on ramp	0	0	0%	0	0	0%
MD 80 on ramp	MD 27 WB on ramp	0	0	0%	0	0	0%
MD 80 on ramp	MD 121 on ramp	1	0	-100%	116	20	-83%
No Build VISSIM Alternative VISSIM Average Queue (feet) No Build VISSIM Average Queue (feet) No Build VISSIM Average Queue (feet) No Build VISSIM Average Queue (feet)	MD 109 on ramp	0	0	0%	0	0	0%
1-270 Spur Northbound	MD 80 on ramp	0	0	0%	0	0	0%
No Build VISSIM Average Queue (feet)	MD 85 on ramp	0	0	0%	0	0	0%
No Build VISSIM Average Queue (feet) No Build VISSIM Maximum Queue (feet) No Build VISSIM Maximum Queue (feet) No Build VISSIM Average Queue (feet) No Build VISSIM	I-270 Spur Northbound	VISSIM Average Queue	VISSIM Average Queue		VISSIM Maximum	VISSIM Maximum	
1-495 Northbound	Democracy Blvd EB on ramp	0	0	0%	28	0	-100%
Cabin John Pkwy on ramp 28 17 -39% 750 646 -14% 750 750 646 -14% 750 7	Democracy Blvd WB on ramp	0	0	0%	0	0	0%
No Build VISSIM Alternative VISSIM Average Queue (feet) No Build VISSIM Maximum Queue (feet) No Build VISSIM Maximum	I-495 Northbound	VISSIM Average Queue	VISSIM Average Queue		VISSIM Maximum	VISSIM Maximum	
No Build VISSIM Average Queue (feet) No Build VISSIM Average Queue (feet) No Build VISSIM Average Queue (feet) No Build VISSIM Maximum Queue (feet) No Build VISSIM	Cabin John Pkwy on ramp	28	17	-39%	750	646	-14%
No Build VISSIM Average Queue (feet) No Build VISSIM Maximum Queue (feet) No Build VISSIM Maximum Queue (feet) No Build VISSIM Maximum Queue (feet) No		0	0	0%	23	0	
Montrose Rd WB on ramp 876 176 -80% 2820 695 -75% I-270 on ramp 0 0 0% 0 0 0% MD 189 on ramp 100 0 -100% 1069 0 -100% I-270 on ramp 1 0 -100% 86 0 -100% MD 28 EB on ramp 0 0 0% 0 6 0% MD 28 WB on ramp 15 0 -100% 382 0 -100% Shady Grove Rd EB on ramp 884 0 -100% 3939 0 -100% I-270 on ramp 1151 3 -100% 4164 195 -95% Shady Grove Rd WB on ramp 580 204 -65% 1960 1863 -5% I-370 WB on ramp 1262 631 -50% 2428 2431 0% I-370 WB on ramp 1496 901 -40% 2556 2533 -1% I-270 on ramp 4134		VISSIM Average Queue	VISSIM Average Queue	0/0	No Build VISSIM Maximum	VISSIM Maximum	%
Montrose Rd WB on ramp 876 176 -80% 2820 695 -75% I-270 on ramp 0 0 0% 0 0 0% MD 189 on ramp 100 0 -100% 1069 0 -100% I-270 on ramp 1 0 -100% 86 0 -100% MD 28 EB on ramp 0 0 0% 0 6 0% MD 28 WB on ramp 15 0 -100% 382 0 -100% Shady Grove Rd EB on ramp 884 0 -100% 3939 0 -100% I-270 on ramp 1151 3 -100% 4164 195 -95% Shady Grove Rd WB on ramp 580 204 -65% 1960 1863 -5% I-370 WB on ramp 1262 631 -50% 2428 2431 0% I-370 WB on ramp 1496 901 -40% 2556 2533 -1% I-270 on ramp 4134	Montrose Rd EB on ramp	0	0	0%	0	0	0%
1-270 on ramp	Montrose Rd WB on ramp	876	176	-80%	2820	695	-75%
1	I-270 on ramp	0	0	0%	0	0	0%
MD 28 EB on ramp MD 28 WB on ramp 15 0 -100% 382 0 -100% Shady Grove Rd EB on ramp 884 0 -100% 3939 0 -100% Shady Grove Rd WB on ramp 1151 3 -100% 4164 195 -95% Shady Grove Rd WB on ramp 580 204 -65% 1960 1863 -5% 1-370 EB on ramp 1262 631 -50% 2428 2431 0% 1-370 WB on ramp 1496 901 -40% 2556 2533 -1% 1-270 on ramp 4134 3488 -16% 5058 5054 0% MD 124 EB on ramp 724 23 -97% 2768 513 -81%	MD 189 on ramp	100	0	-100%	1069	0	-100%
MD 28 WB on ramp 15 0 -100% Shady Grove Rd EB on ramp 884 0 -100% 3939 0 -100% 1-270 on ramp 1151 3 -100% 4164 195 -95% Shady Grove Rd WB on ramp 580 204 -65% 1960 1863 -5% 1-370 EB on ramp 1262 631 -50% 2428 2431 0% 1-370 WB on ramp 1496 901 -40% 2556 2533 -1% 1-270 on ramp 4134 3488 -16% 5058 5054 0% MD 124 EB on ramp 724 23 -97% 2768 513 -81%	I-270 on ramp	1	0	-100%	86	0	-100%
MD 28 WB on ramp 15 0 -100% Shady Grove Rd EB on ramp 884 0 -100% 3939 0 -100% 1-270 on ramp 1151 3 -100% 4164 195 -95% Shady Grove Rd WB on ramp 580 204 -65% 1960 1863 -5% 1-370 EB on ramp 1262 631 -50% 2428 2431 0% 1-370 WB on ramp 1496 901 -40% 2556 2533 -1% 1-270 on ramp 4134 3488 -16% 5058 5054 0% MD 124 EB on ramp 724 23 -97% 2768 513 -81%	MD 28 EB on ramp	0	0	0%		6	0%
Shady Grove Rd EB on ramp 884 0 -100% 3939 0 -100% I-270 on ramp 1151 3 -100% 4164 195 -95% Shady Grove Rd WB on ramp 580 204 -65% 1960 1863 -5% I-370 EB on ramp 1262 631 -50% 2428 2431 0% I-370 WB on ramp 1496 901 -40% 2556 2533 -1% I-270 on ramp 4134 3488 -16% 5058 5054 0% MD 124 EB on ramp 724 23 -97% 2768 513 -81%	MD 28 WB on ramp	15	0	-100%	382	0	-100%
I-270 on ramp 1151 3 -100% 4164 195 -95% Shady Grove Rd WB on ramp 580 204 -65% 1960 1863 -5% I-370 EB on ramp 1262 631 -50% 2428 2431 0% I-370 WB on ramp 1496 901 -40% 2556 2533 -1% I-270 on ramp 4134 3488 -16% 5058 5054 0% MD 124 EB on ramp 724 23 -97% 2768 513 -81%	Shady Grove Rd EB on ramp	884	0	-100%	3939	0	-100%
Shady Grove Rd WB on ramp 580 204 -65% 1960 1863 -5% I-370 EB on ramp 1262 631 -50% 2428 2431 0% I-370 WB on ramp 1496 901 -40% 2556 2533 -1% I-270 on ramp 4134 3488 -16% 5058 5054 0% MD 124 EB on ramp 724 23 -97% 2768 513 -81%	I-270 on ramp	1151	3	-100%	4164	195	-95%
I-370 EB on ramp 1262 631 -50% 2428 2431 0% I-370 WB on ramp 1496 901 -40% 2556 2533 -1% I-270 on ramp 4134 3488 -16% 5058 5054 0% MD 124 EB on ramp 724 23 -97% 2768 513 -81%					1960		
I-370 WB on ramp 1496 901 -40% 2556 2533 -1% I-270 on ramp 4134 3488 -16% 5058 5054 0% MD 124 EB on ramp 724 23 -97% 2768 513 -81%	I-370 EB on ramp						
I-270 on ramp 4134 3488 -16% 5058 5054 0% MD 124 EB on ramp 724 23 -97% 2768 513 -81%	·						
MD 124 EB on ramp 724 23 -97% 2768 513 -81%	*						
	MD 124 EB on ramp						
	MD 124 WB on ramp	47	21	-55%	484	456	

Table D.11: PM Peak - No Build - I-270 Off Ramp Queue Length - Northbound

Table D.11: PM Peak - No Build - I-270 C	off Ramp Queue I	Length - Northbou	ınd			
I-270 Northbound	No Build VISSIM Average Queue (feet)	(feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
MD 187 off ramp NB	35	35	0%	274	247	-10%
MD 187 off ramp SB	0	0	0%	0	0	0%
Rockledge Dr off ramp	2	1	-50%	122	86	-30%
Tower Oaks Blvd off ramp	36	39	8%	217	238	10%
Montrose Rd off ramp EB	0	0	0%	0	0	0%
Montrose Rd off ramp WB	0	0	0%	0	0	0%
MD 189 off ramp WB	26	28	8%	162	175	8%
MD 189 off ramp EB	1	1	0%	160	145	-9%
MD 28 off ramp EB	36	47	31%	204	312	53%
MD 28 off ramp WB	0	0	0%	0	0	0%
Shady Grove Rd off ramp - Redland Blvd	0	0	0%	0	0	0%
Shady Grove Rd off ramp WB	40	52	30%	234	238	2%
Shady Grove Rd off ramp EB	0	0	0%	0	0	0%
I-370 off ramp WB	1	51	5000%	146	646	342%
I-370 off ramp EB	0	0	0%	0	0	0%
MD 117 off ramp	1364	2093	53%	3622	4508	24%
MD 124 off ramp	120	171	43%	795	877	10%
Watkins Mill Rd off ramp	2816	3442	22%	4911	5056	3%
Middlebrook Rd EB off ramp	0	0	0%	0	0	0%
Middlebrook Rd WB off ramp	0	0	0%	0	0	0%
MD 118 WB off ramp - Seneca Meadows	0	0	0%	0	0	0%
MD 118 WB off ramp	0	0	0%	0	0	0%
MD 118 EB off ramp	0	0	0%	0	0	0%
MD 27 off ramp WB	48	53	10%	234	269	15%
MD 27 off ramp EB	0	0	0%	0	0	0%
MD 121 off ramp WB	75	76	1%	326	295	-10%
MD 121 off ramp EB	1	0	-100%	94	0	-100%
MD 109 off ramp EB	24	22	-8%	214	210	-2%
MD 109 off ramp WB	0	0	0%	0	0	0%
MD 80 off ramp EB	21	21	0%	235	174	-26%
MD 80 off ramp WB	0	0	0%	27	28	4%
MD 85 NB off ramp	0	0	0%	28	13	-54%
MD 85 SB off ramp	1	1	0%	102	97	-5%
I-270 Spur Northbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
Clara Barton Pkwy off ramp EB	0	0	0%	0	0	0%
Clara Barton Pkwy off ramp WB	0	0	0%	0	0	0%
MD 190 off ramp EB	0	0	0%	0	0	0%
MD 190 off ramp WB	8	5	-38%	521	453	-13%
Democracy Blvd off ramp WB	42	41	-2%	206	191	-7%
Democracy Blvd off ramp EB	17	18	6%	120	111	-8%

Table D.12: PM Peak - No Build - I-270 On Ramp Queue Length - Southbound

Table D.12: PM Peak - No Build - I-270	Trump Queue I	l southern				
I-270 Southbound	No Build VISSIM Average Queue (feet)	(feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
MD 85 on ramp	0	0	0%	18	16	-11%
MD 80 on ramp	0	0	0%	0	0	0%
MD 109 on ramp	0	0	0%	0	0	0%
MD 121 WB on ramp	0	0	0%	0	0	0%
MD 121 EB on ramp	0	0	0%	0	0	0%
MD 27 WB on ramp	0	0	0%	0	0	0%
MD 27 EB on ramp	0	0	0%	0	0	0%
MD 118 WB on ramp	0	0	0%	0	0	0%
MD 118 EB on ramp	0	0	0%	0	0	0%
Middlebrook Rd on ramp	0	0	0%	0	0	0%
Watkins Mill Rd on ramp	4	0	-100%	154	0	-100%
MD 124 WB on ramp	1137	0	-100%	3265	0	-100%
MD 117 on ramp	49	74	51%	910	301	-67%
I-370 C-D on ramp	0	0	0%	0	0	0%
Shady Grove Rd C-D on ramp North	0	0	0%	0	0	0%
Shady Grove Rd C-D on ramp South	0	0	0%	0	0	0%
MD 189 C-D on ramp	0	0	0%	0	0	0%
Montrose Rd C-D on ramp	0	0	0%	0	0	0%
Rockledge Dr on ramp	0	0	0%	0	0	0%
MD 187 on ramp	0	0	0%	0	0	0%
IVID 187 on ramp	U	U	070	U	U	070
	No Build VISSIM	Alternative	0/	No Build	Alternative	0./
I-270 Spur Southbound	Average Queue (feet)	VISSIM Average Queue (feet)	% Change	VISSIM Maximum Queue (feet)	VISSIM Maximum Queue (feet)	% Change
	Average Queue (feet)	Average Queue	Change	Maximum Queue (feet)	Maximum Queue (feet)	Change
I-270 Spur Southbound Democracy Blvd on ramp I-495 Southbound	Average Queue (feet) 622 No Build VISSIM Average Queue (feet)	Average Queue (feet)		Maximum	Maximum	
Democracy Blvd on ramp	Average Queue (feet) 622 No Build VISSIM Average Queue	Average Queue (feet) 3 Alternative VISSIM Average Queue	Change -100%	Maximum Queue (feet) 1832 No Build VISSIM Maximum	Maximum Queue (feet) 203 Alternative VISSIM Maximum	-89%
Democracy Blvd on ramp I-495 Southbound	Average Queue (feet) 622 No Build VISSIM Average Queue (feet)	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet)	-100% % Change	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet)	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet)	-89% % Change
Democracy Blvd on ramp I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet)	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet)	-100% % Change -87% -85% % Change	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet)	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet)	-89% % Change -48% -31% % Change
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet) 0	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet) 0	-87% -85% Change 0%	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet) 5	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet) 0	-48% -31% Change -100%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet) 0 0	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet) 0 0	-87% -85% Change 0% 0%	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet) 5 62	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet) 0 0	-48% -31% Change -100% -100%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet) 0 0 0	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet) 0 0 0	-87% -85% Change 0% Change	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet) 5 62 0	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet) 0 0 0	-48% -31% -100% -100% -0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet) 0 0	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet) 0 0	-100% -100% -100% -87% -85% -85% -85% -9% -80% -9% -9% -9% -9% -9% -9% -9% -9% -9% -9	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet) 5 62 0 0	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet) 0 0	-48% -31% Change -48% -31% Change -100% -100% 0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet) 0 0 0	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet) 0 0 0	-87% -85% Change 0% Change	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet) 5 62 0 0 0 0	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet) 0 0 0	-48% -31% -100% -100% -0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet) 0 0 0 0	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet) 0 0 0 0	-100% -100% -100% -87% -85% -85% -85% -9% -80% -9% -9% -9% -9% -9% -9% -9% -9% -9% -9	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet) 5 62 0 0	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet) 0 0 0 0	-48% -31% Change -480 -31% Change -100% -100% 0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet) 0 0 0 0 0 0	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet) 0 0 0 0 0	-100% -100% -87% -85% -85% -85% -85% -9% -85% -9% -9% -9% -9% -9% -9% -9% -9% -9% -9	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet) 5 62 0 0 0 0	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet) 0 0 0 0 0	-48% -31% Change -48% -31% Change -100% -100% -0% -0%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet) 0 0 0 0 0 0	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet) 0 0 0 0 0 0	-87% -85% Change 0% 0% 0% 0% 0%	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet) 5 62 0 0 0 12	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet) 0 0 0 0 0 0 0	-48% -31% Change -48% -31% Change -100% -100% 0% 0% -100% -100%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp I-270 on ramp I-270 on ramp	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet) 0 0 0 0 0 0 0 9	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet) 0 0 0 0 0 0 0 0 0	-100% -100% Change -87% -85% Change 0% 0% 0% 0% 0% -100%	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet) 5 62 0 0 0 12 399	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet) 0 0 0 0 0 0 0 0 0	-48% -48% -31% Change -100% -100% 0% -100% -100% -100%
I-495 Southbound I-270 Spur on ramp MD 190 on ramp I-270 C-D Southbound I-270 on ramp I-370 on ramp Shady Grove Rd WB on ramp Shady Grove Rd EB on ramp I-270 on ramp MD 28 WB on ramp MD 28 EB on ramp	Average Queue (feet) 622 No Build VISSIM Average Queue (feet) 4587 59 No Build VISSIM Average Queue (feet) 0 0 0 0 0 0 0 9 0	Average Queue (feet) 3 Alternative VISSIM Average Queue (feet) 579 9 Alternative VISSIM Average Queue (feet) 0 0 0 0 0 0 0 0 0 0 0	-87% -85% Change 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	Maximum Queue (feet) 1832 No Build VISSIM Maximum Queue (feet) 5068 734 No Build VISSIM Maximum Queue (feet) 5 62 0 0 0 12 399 0	Maximum Queue (feet) 203 Alternative VISSIM Maximum Queue (feet) 2636 504 Alternative VISSIM Maximum Queue (feet) 0 0 0 0 0 0 0 0 0 0 0	-48% -31% Change -48% -31% Change -100% -100% 0% 0% -100% -100% -100% 0%

Table D.13: PM Peak - No Build - I-270 Off Ramp Queue Length - Southbound

I-270 Southbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
MD 85 SB off ramp	3	9	200%	164	152	-7%
MD 85 NB off ramp	19	18	-5%	354	318	-10%
MD 80 off ramp	1	1	0%	176	153	-13%
MD 109 off ramp WB	0	0	0%	70	66	-6%
MD 109 off ramp EB	0	0	0%	0	0	0%
MD 121 off ramp EB	245	211	-14%	1058	948	-10%
MD 121 off ramp WB	1	0	-100%	148	52	-65%
MD 27 off ramp EB	23	22	-4%	143	139	-3%
MD 27 off ramp WB	0	0	0%	0	0	0%
MD 118 off ramp EB	24	23	-4%	125	128	2%
MD 118 off ramp WB	0	0	0%	16	0	-100%
Watkins Mill Rd off ramp	111	117	5%	436	413	-5%
MD 124 off ramp EB	156	133	-15%	578	619	7%
MD 124 off ramp WB	19	11	-42%	435	364	-16%
I-370 off ramp WB	9	1613	17822%	168	3944	2248%
I-370 off ramp EB	0	0	0%	0	0	0%
Shady Grove Rd off ramp - Omega Drive	1	2	100%	51	109	114%
Shady Grove Rd off ramp	0	0	0%	0	0	0%
MD 28 off ramp	3	3	0%	128	109	-15%
MD 189 off ramp EB	125	114	-9%	541	436	-19%
MD 189 off ramp WB	0	0	0%	0	0	0%
Montrose Rd off ramp WB	0	0	0%	0	0	0%
Montrose Rd off ramp EB	11	7	-36%	573	371	-35%
Rockledge Dr off ramp	184	116	-37%	668	487	-27%
1-270 Spur Southbound	No Build VISSIM Average Queue (feet)	Alternative VISSIM Average Queue (feet)	% Change	No Build VISSIM Maximum Queue (feet)	Alternative VISSIM Maximum Queue (feet)	% Change
Democracy Blvd off ramp EB	23	31	35%	169	164	-3%
Democracy Blvd off ramp WB	0	0	0%	0	0	0%
MD 190 off ramp WB	78	88	13%	652	684	5%
MD 190 off ramp EB	0	0	0%	0	0	0%
Clara Barton Pkwy WB off ramp	0	0	0%	0	17	0%

Table D.14: PM Peak - No Build - Intersection Delay and Level of Service

Intersection LOS			ш					c	ì					U						۵						۵	1						٩						٩						۷					c	1					æ		
Intersection Delay			116.5					47.5	?					21.7						48.4						12.0							6.2						7.7						1.9					22						18.7		
SOT	л О п	шш	шш	F B	L L	3	4 4 4	O A	∢ ∢ <	4 4 4	∢	B	D A	∢ ∢ ⋅	4 4 4	4 4		E A	шО	O E	O A L	ш п. С	ر	4 4	B B	В	В	ВВ	B A	A	4 4	4 4	< < <	4 4	A A	A	4 4 9	۰ ۸ ر	∢ ∢ <	4 4	4 4	٨	∢ ∢ ∢	4 4	< < <	:	4 4	U C) B a	A C B	م م	80 LL L	. ш	4 A	x	4 4 (υAπ	4 4
Max Queue	891	1227	1227	146 146	777	1854	0 0 0	0 0	0 0 0	0 0	0	1315	436	0 0	0 0 0	0 0	838	839	251 1054	1046	720	238	738	0 0	241	241	215	246 26	510	211	0 211	0 0	0 0 5	109	157	0	0	0 0	126 50	000	0	123	53	000	000	0 51	23	664	690	212 213 233	249	860	884	332	0 0	0 0 0	904 6	468
Ave. Queue	480	1005	1005	32	561 561 561	ramp 730	0 0 0	114	0 0 0	000	amp 0	215	50	0 0	0 0 0	0 0	328	328	50	92 207	207	61	TQ dwi	0 0	27	27 0	24	37	74	ramp 3	3	0 0	0 0	# E C	0	ramp 0	0 0 8	0 0	0 0 0	000	0	ramp 3	0 0 0	000	0 0	0	0	120	128	29	15	384	408 f ramp	81	000	0 0 8	0 40	92 0
Delay 5 at Sam's Club Driv					192 167 127	NB or				000	SB on						Crestw						70 NB						3 3	1-270 SB on and off 5	3	0 0	0 0	0 2 0	6	: I-270 NB on and of	0 0 ;	0 15	N 2 0	o m 0	0 0	I-270 SB on and off	0 0 0	000	0 0	1 1	2 0	1 at Gateway Center 34	13	22 8	39	200	74 t I-270 NB on and of	09	+ 0 0	0 0 6	10	0 0
Volume 1- MD 8	566	155	76	24 169	548 28 220	2-MD 85 at l	0 0 0	745	0 0 0	000	3- MD 85 at I	1960	174	0 0	0 0 0	0 0	4- MD 8	1453	106 945	927	28	77	5- MD 80 a	2 2	486	23	0	. 5 . 15	671	6- MD 80 at 56	0 0	0 0	0 0 %	99	448	7- MD 109 at	0	324	80	83	222	8- MD 80 at	37	000	0 166	34	109	9- MD 121 613	69	303	24	346	10- MD 121 at	399	0 0	0 0 5	336	681
Movement	- BB ~	SB	5	EB	WB Left WB Through WB Right	NB Left	B N	SB	EB Left EB Through	WB Left WB Through	WB Right	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Through EB Right WB Left	WB Through WB Right	NB Left	NB Through NB U-Turn	SB Left SB Through	SB Right EB Left	EB Right	WB Left WB Through	3	NB NB	NB Right SB Left	SB	EB	EB Right WB Left	WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Right	WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Right WB Left	WB Through WB Right	NB Left	NB Through NB Right	SB Through	EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left	NB Inrough NB Right SB I off	SB Through SB Right	EB Left EB Through	WB Left	WB Right	NB Left NB Through	SB Left SB Through	SB Right EB Left	EB Right	WB Through WB Right
Approach LOS	ш	ш		O	ш		ш	U				В	Q					ш	U		ш	۵		∢	,	В	æ		В		A		<	1	∢			B	<	τ	٨		A		Þ	:	∢	٥	a	O	æ	u		U		c	۵	U
Approach Delay	62.4	172.8		34.9	173.4		59.3	29.5				19.9	42.6					57.0	32.5		65.3	54.0		-1.3		12.6	14.2		11.6		3.5		1	C: /	9.0			14.7	2.5	C:7	0.4		5.0		6.0	}	1.4	203	29.3	21.3	14.8	9 0 7 7	140.0	22.1		,	12.2	21.2
Approach	NB	SB		EB	WB		8 N	SB	EB	WB		NB	SB	į	EB	WB		NB	SB	1	EB	WB		NB		SB	EB		WB		NB	SB	į	9	WB		NB	SB	g	9	WB		NB	SB	EB	}	WB	2	NR	SB	EB	αW	920	NB	88	Ę	9	WB
Intersection			н					2	ı					m						4						ľ	ı						9						7						∞					σ	1					10		

Table D.14: PM Peak - No Build - Intersection Delay and Level of Service

Intersection LOS			U					U						4					٩					ц	J					۷					٥	٥					⋖					Q					۷	:		
Intersection Delay			23.8					25.3						6.8					5.0					c g	7.00					9.0					, 00	C.C.					7.3					42.6					8.9			
SOT	X	F	E A	4 4 4	4 O 4	4 4	В В О	шОО	ы в в	a U U	4 0	0 4 4	4 4 4	X	∢ ∢	4 4	4 4	A 0 .	∢ ∢ ∢	C 4 4	4 4 4	0 0	о О ш	C	0 0	a L. L	. ш	8 A 8	4 4	E A	ш в	ы В	4 4	< < <	:	O A A	< < <	Ω 4	A A	0	4 4 4	4 4 4	4	ВΕ	шш	F O O) B O	O A	4 4	4 4 D	4 8 ¢	B	1 4 4	A
Max Queue	000	1064 0	55	202	381	0 80	98 98 216	250	525 526 565	736 736	736	0 0	0 0	000	0	790	0	0 157	0 0	100	0 404 0	566	525	1052	128	1516	1516	69 181	278	311	134	242 262	0 0	000	0 0	280	0 11	0	0	128	0 515	0 0 253	0 %	234 234 90	651	651 544 544	544	735	0 0	0 0	150	166 166 0	0 0 271	320
Ave. Queue	000	252	0 0	16	0 49	0 %	22 38	69	7.8	153 153	153	0 0	0 0 0	000	0 0	42	0 0	34	000	0 0	0 11 0	110	125	324	30	1051	1051 kwy	11	19	26	14	39 48	00	00	0 0	42 0	000	0 0	0 0	26	0 15	0 0 12	0 (43	421 421	421 89 89	89	112 112	0 0	0 0	23	15	0 0 27	41
Delay 1-270 SB on and off r	0 0	91	44	9 0	27 0	7 at Observation Dr	11 44	33	18	25 30	10 at I-270 NB off ramp	0 0	0 0 0	000	0 0	5 0 at I-270 SR off ramp	0	0 20	000	0 2 0	0 3	7 at Crystal Rock Dr 32	30	54	53	95	184 Seneca Meadows P	14	7 8 2	5 59	11	69 13	at I-270 NB on ram	000	0 0	26 0	2 0 0	3 at I-270 SB off ram	0.0	36.2	0.0	0.0	0.0 118 at Aircraft Dr	70 5	152	196 33 22	19	29 8 8 And Acceptation	ok Rd at Observatio	0 0 36	0 10	10 6	0 6	7
Volume 11- MD 121 at	0 0	270	252 0	717	544 537	12- MD 2: 0	61 146	188	2108	41 1695	13- MD 27	0 0	0 0 0	0 1516	0	1789 0 14-MD 27	0	175	000	1681	0 1565 0	15- MD 2: 76 1196	55	1481	125	104	665 16- MD 118 at	103	15	11 23	312	30	17- MD 118	0 0	0 0	493	282	18- MD 118	0	168	1411	0 0 1573	0 19-MD	53	440	126 125 1415	21	380 30 Middlebro	20-Middlebro	0 0 125	0 186	14 1100 0	0 1313	17
Movement	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Left WB Through WB Right	NB U-Turn	NB Right SB Left	SB Through SB Right	EB Through EB Right	WB Left WB Through	WB Right	NB Through NB Right	SB Left SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left NB Through	NB Right SB Left	SB Right	EB Through EB Right	WB Left WB Through WB Right	NB Left	NB Right SB Left	SB Through SB Right	EB Left EB Through	WB Left WB Through	WBRight	NB Left NB Through	SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Left WB Through WB Right	NB Left	NB Right SB Left	SB Through SB Right	EB Left EB Through FB Right	WB Left WB Through	WB Right NB Left	NB Through NB Right	SB Left SB Through SB Right	EB Left EB Through	WB Left WB Through	WB Right	NB Left NB Through NB Right	SB Left SB Through	SB Right EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left	NB Inrough NB Right SB Left	SB Through SB Right	EB Left EB Through	WB Left WB Through	WB Right
Approach LOS		ш		∢	æ	٥	٥	О	В	U		D		∢		Α			a	٧	A	J	,	D	Q			∢	⋖		В	Q				O	Ą			Q	٩	٧		U	ш	O	,	v			O	۷	Ą	
Approach Delay		68.8		6.3	13.7	0 7 0	0.7.0	41.5	19.2	28.7		45.8		0.1		5.1		6	50:0	1.9	3.4	31.7		52.6	40.6	162.7		4.9	7.4		13.9	53.8				25.5	6.6			36.2	6.0	5.4		26.0	163.1	22.6		24.7			20.5	6.0	8.5	
Approach	NB	SB		EB	WB	QN	Q.	SB	EB	WB		NB	SB	EB		WB	NB		28	EB	WB	E E	2	SB	EB	WB	:	NB	SB		EB	WB	Z.	2	SB	EB	WB		NB	SB	EB	WB		NB	SB	83	1	WB	2	NR	SB	EB	WB	
Intersection			11					12						13					14					<u>ر</u> تر	1					16					7	ì					18					19					20	ı		

Table D.14: PM Peak - No Build - Intersection Delay and Level of Service

Delay Intersection LOS			∢						ω						ш					۵						۵					,	.					ω.					U					Q						_	,
Intersection			4.6						13.7						77.1					43.7						49.6						O'SS					13.1					28.5					48.0						72.5	
SOT	4 4	< < <	4 4	4 4	< < <	∢	2 0 0	۵۵	A B	4 4	V A A	4	u u .	т ш а	шО	4 4 4	. ш	ш ш	₹ 4	± < <	: O	L U	4	7 H Q	D E	∀	7 O m	D A	В	шО	7 F O	C	O O	J U	4 4	∢ ∢ <	4 4	4 4 u	4 4 A	∢ ∢	4 H <	(11 11	8 4	4 4 4		л 8	ш ш	У В Е	T 0	۷ «	4 4	4 Q 4	1	4 4
Max Queue	0 0	0 0	000	109	248	0 00%	309	72	110	307	307	1087	1084	462	724	718 0	0	162 162	583	365	1093	2016	0 0	743 678	099	0 621 622	650	1003	283	283	416 416 416	875 875	865	1040	0 0	0 0 0	000	569	0 0	0 0	4643	4642	975	374	127	127 147 443	443	355 355 340	738	0 0	342	0 629		0 0
Ave. Queue	0 0	0 0 0	0 0	0 4 0	2 0 0	on Rd	8 83 83	∞ ∞	20	28	32 32 32	069	0 0	149 149 55	151	0 0	0	46	161	161 15 0	411	523	0 27	314 314 43	153	155	162	226	77	77	144	172	167	226	0	0 0 0	000	0 0	0	0 0	3696	3695	98	0 20	17	16 26 264	264	84 84 69	248	248 ramp 0	35	109		0 0
Delay Rd at I-270 SB on r	0 0	0 0	0 0	3 0	8 0	O Rd at Waring Statio	55	48 38	7 11	8 7	22 7 2	124 at MD 355 118	144 94	92 65 14	77 26	3 0 136	90 t I-270 SB on and o	85 102	0 81	9	54	83 21	0 117 at MD 124	135 90 45	64 41	5 81 42	38	38	17 at Bureau Dr 74	35	103 95 42	62 30	21 32	32 20 at I-270 SB off rame	0	0 0 0	000	4 0 73	0 0	it I-270 NB off ram 0 0	84	83	18	0 0	17 at Perry Pkwy 60					d at I-2				
Volume 21- Middlebrook	0 0	0 0 0	000	742	438	22- Middlebrook	1 236	32	24	1125	221 1506 3	3- MD	1137	706	364	439 0 1578	86 24- MD 124 at	53 21	0	454	1839	5 1157	25- MD	55 685 465	136 969	182 152 1159	57	1157	26-MD 1	34 272	285 23 83	50 1686	16	235 27- MD 117	0	0 0	000	947	0 0	28-MD 117 at 0	150	558	945 0	1381	29- MD 11 19	26 33 238	20 119	230 817 30	36 1240	378 30- Shady Grove	1026	1169		0 0
Movement	NB Left NB Through	SB Left	SB Inrougn SB Right	EB Left EB Through FB Right	WB Left WB Through	WB Right	NB Through	SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Left WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through SR Right	EB Left EB Through	EB Right WB Left	WBRight	NB Left NB Through	NB U-Turn SB Left	SB Through SB Right FB Left	EB Right	WB Left WB Through	WB Right	NB Left NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Right WB Left	WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Inrougn WB Right	NB Left NB Through	SB Left	SB Right EB Left	EB Through EB Right	WB Through WB Right	NB Left NB Through	NB Right SB Left	SB Right	EB Leit EB Right	WB Left WB Through WB Right	NB Left	NB Inrough NB Right SB Left	SB Through SB Right	EB Left EB Through EB Right	WB Left WB Through	WB Kignt NB Left	NB Through NB Right	SB Left SB Through SB Right		EB Left EB Through
Approach LOS				۷	Ą		۵	υ		A	A		ш	Q	U	ш		ш		a	Q	U		ш	Q	c	2	D		Q	ш	O	,	٠				∢	ш		ц	-	В	٧	c	2	L.	U	Q		۷	٥		
Approach Delay				2.6	7.9		48.4	30.5		8.0	8.8		136.1	45.0	29.4	1334		89.9		47.2	54.1	20.8		74.9	38.3	45.9	C.	42.7		47.5	89.8	31.4		4.0.6				3.7	42.8		, c	7.00	18.4	7.4	0.15	4T.0	152.0	22.0	41.5		6.9	35.7	-	
Approach	NB	5	38	EB	WB		NB	SB		EB	WB		N N	SB	EB	8%	!	NB		28	EB	WB		NB	SB	ä	2	WB		NB	SB	EB	:	MW WB	NB	8	a a	EB	WB	- R	g	3	EB	WB	2	SIN N	SB	EB	WB		NB	SB		EB
ntersection			21		<u> </u>			<u>I</u>	22						23					24					<u>I</u>	25						07					27					28					29						;	30

Table D.14: PM Peak - No Build - Intersection Delay and Level of Service

		í	IAB Leit					•		
Stringer		ω	NB Through NB Right SB Left	1444 0 0	0 0	202 0	0 6 6 6 7 8	8 4 4		
Columbia C		A	SB Through SB Right	744	s 0 ¦	7 0	163	4 4 1	21.7	U
Mathematical Color		ш	EB Left EB Through EB Right	232 0 306	55 0 58	47 0 62	206 0 266	A E		
Maintenage			WB Left WB Through WB Right	0 0	0 0 0	0 0 0	0	4 4 4		
Selection Color			NB U-Turn NB Through	32-MD 28 a 0	t I-270 SB off ramp 0 0	0 0	0	∢ ∢		
Statistical Color		c	2 3	0 426 0	45	73	00E 0	∀		
Mail				99	0 3	000	34	4 4	8. 1.	∢
WORTHOUSED 17.3 MOD 28 at 1-270 on mind off integers 17.3 MOD 28 at 1-270 on mind off integers 2.0 mod 2.0 m		τ		932	9 0	16	238	< < <		
Mile Region 10		∢	× ×	1733 0 33- MD 28 at I-	7 0 270 on and off ram	21 0	272	4 4		
Mail Registry		۵	NB Left NB Through	0 190	0 20	42 50	214	A Q		
Stronger		ш	SB	125 20 0	19 163 0	350	223 425 0	8 4 A		
WER BERFY 40 40 60 60 WAR BERFY 40 40 10 20 WAR BERFY 40 40 10 20 WAR BERFY 24 40 20 10 WAR BERFY 1284 42 10 NB BERFY 134 42 10 NB BERFY 134 42 9 NB BERFY 139 42 9 NB BERFY 139 42 1 SB REAL 134 40 1 SB REAL 134 40 1 NB BERFY 139 44 1 SB REAL 134 40 0 0 SB REAL 134 40 0 0 SB REAL 134 10 0 0		U	S P B	291 280 935	139 116 9	350 175 175	425 457 457	т т 4	52.3	Q
Mile Region 15		۵	WB VB	0 40 1284	0 47 52	0 210 184	0 432 395	A 0 0		
No.		,	>	34- MD 189	0 at Great Falls Rd	0	0	∢		
SST Floreign SST		۵	NB Left NB Through	43	48	12 9	95 94 105	Δ Δ Φ		
ES Bright		Ą	SB Left SB Through	19 18 13	41 46	6 7	201 83 83	4 0 0		
Registry 155 20 511		8	SB Right EB Left EB Through	414 415 647	24	40	0 415 208	∀ ∪ ∢	13.8	В
Will Right 15 51 Will Right 1854 151 51 Na Left 25-MD 484 1-270 Ramps 67 10 Na Left 220 0 0 Na Left 220 0 0 Signification 0 0 0 0 Will Right 0 0 0 0 </td <td></td> <td>, ,</td> <td>EB Right WB Left</td> <td>56</td> <td>4 20</td> <td>10</td> <td>244</td> <td>. A 8</td> <td></td> <td></td>		, ,	EB Right WB Left	56	4 20	10	244	. A 8		
NB Left 229 67 61 61 61 61 61 61 61		m	WB Through WB Right	853 18 35. MD 18	19 13	51	391 425	8 8		
State		٥	NB Left NB Through	35- MD 18 229 0	9 at I-2/0 Kamps 47 0	41	184	Ω «		
SER Principal SER Principal SER Principal SER Principal SER		ı	NB Right SB Left	0 352	0	0 142	0 561	E A		
EB Right 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ш	SB Inrougn SB Right EB Left	0 0 483	0 31	0 0 91	0 0 340	C A A	42.5	Q
WEIGHT 4434 54 110 WEIGHT 36-MD 189 at Wooden Plevy 10 NB Hight 36-MD 189 at Wooden Plevy 144 NB Left 251 144 NB Incugh 554 13 144 NB Incugh 255 104 28 SB Right 105 73 121 EB Right 205 73 121 NB Right 205 73 140 NB Right 205 15 140 NB Right 205 15 140 NB Right 205 15 140 NB Right 205 10 0 NB Right 205 20 0 0 NB Right 205 <td></td> <td>U</td> <td>EB Through EB Right</td> <td>374</td> <td>23</td> <td>91</td> <td>340</td> <td>U & C</td> <td></td> <td></td>		U	EB Through EB Right	374	23	91	340	U & C		
No burner 356,000 189 at Working 144 NB Erft 694 55 144 NB Erft 694 51 144 NB Erft 694 51 144 NB Erft 694 51 144 NB Erft 697 120 144 144 144 148 149 144 144 148 149 144 149 144 149 149 144 149 144 149 144 149 144 149 144		۵	WB Left WB Through WB Right	449 434 0	54 44 0	110 110 0	274 274 0	O O <		
NB Through		,	NB Left	36- MD 189 238	at Wooton Pkwy 58	144	498	E		
SE Pitrough 527 78 513 515	46.2	۵	NB Through NB Right	694 176 251	51 12 104	144 144 281	498 498 808	0 B		
EB Right	83.2	ш	SB Through SB Right	927	0	313	795	B A	52.6	Q
WB Left 150 71 140 WB Fight 37. Montrose Rd at Tower Oaks Bidd 140 NB Left 37. Montrose Rd at Tower Oaks Bidd 140 NB Left 37. Montrose Rd at Tower Oaks Bidd 140 NB Left 540 0 0 NB Left 870 0 0 SB Left 87 52 132 SB Left 97 14 44 WB Right 90 0 0 0 WB Flight 2493 39 248 WB Flight 36 11.1 16 44 WB Flight 37 7.7 12 12 SB Flicough 36 11.1 16 44 WB Flight 37 7.7 12 48	38.6	۵	EB Through	554 205	,3 38 15	121	432 432 432	- O 8		
Second Part	39.7	Q	WB Left WB Through WB Right	160 782 317	71 42 19	140 140 140	639 639 639	B D E		
NB Right S40 0 0 0 0 0 0 0 0 0		<	NB Left	37- Montrose R	Rd at Tower Oaks B	0 0	0	∢ <		
SB Through 0 0 0 SB Right 291 160 253 EB Left 0 0 0 EB Through 1891 7 44 EB Through 203 39 248 WB Right 265 27 248 WB Right 265 27 248 NB Right 26 0 43 NB Right 36 11.9 17 SB Right 37 12 12 WB Right 37 1.1 16 WB Right 50 11.9 17 WB Right 50 2.9 0 WB Right 50 23 74 SB Right 31 1.6 7 WB Right 505 23 74 SB Right 31 1.6 7 WB Right 31 1.6 7 SB Right 31 1.6 7 WB Right	4.0	1	NB Right SB Left	540 87	0 0	0 132	0 729	4 4 0		
EB Fleff 0 0 0 EB Right 1891 7 44 EB Right 0 0 0 WB Left 79 39 44 WE Though 265 27 248 WE Right 265 27 248 NB Right 26 24 50 NB Right 26 24 50 NB Right 26 7.8 50 SB Right 26 7.8 50 SB Right 363 11.9 17 SB Right 363 11.9 17 EB Left 97 40 82 WB Right 204 11.1 16 WB Right 211 12.1 17 EB Left 97 40 82 WB Right 506 23 74 SB Left 373 31 82 NB Left 97 40 82 WB Right	135.5	ш	SB Through SB Right	291	160	0 253	0 758	A F	30.7	U
WB Left 79 39 44 WB Right 2493 39 44 WB Right 38-Tower Caks Bud at L270 off map 248 NB Left 706 24 32 NB Right 26 78 50 SB Right 9 2.9 0 SB Right 363 11.9 17 SB Right 36 10.7 1 SB Right 36 2.9 0 SB Right 36 11.9 17 SB Right 36 2.9 0 WB Right 37 7.7 12 WB Right 621 2.6 3 NB Right 621 2.6 3 NB Right 621 2.6 3 SB Left 105 98 31.1 WB Right 44 126 33.6 SB Left 525 120 33.1 SB Left 525 120 33.1	7.5	∢	EB Left EB Through EB Right	0 1891 0	0 7 0	0 44	0 576 0	< < <		
NB Left		۵	WB Left WB Through WB Right	79 2493 265	39 39 27	44 248 248	576 784 784	۵۵۷		
NB Right 26 7.8 50 SB Left 9 19;7 1 SB Through 9 2.9 0 SB Right 37 7.7 12 WB Right 39 11.9 17 WB Right 34 11.1 16 WB Through 204 11.1 16 WB Through 37 7.7 12 WB Right 39 16.4 16 WB Through 506 2.8 31 SB Left 105 98 311 EB Left 105 98 311 EB Right 525 120 313 EB Right 525 120 313 EB Right 545 46 115 WB Through 525 120 313 EB Right 318 15 136 WB Through 525 46 115 WB Right 318 15 136 WB Through 455 46 110 WB Right 318 15 136 WB Through 525 46 115 WB Through 526 568 WB Through 354 87 92 SB Right 60 0 0 SB Right 60 140 568 SB Right 60 140 568 SB Right 60 140 60 EE LE Right 60 0 WB Through 460 1155 317 EB Right 60 0 WB Through 60 140 60 WB Through 60 60 WB T	23.1)	NB Left NB Through	38- Tower Oaks 706	Blvd at I-270 off rr 24 0.0	1ap 50 43	238	O 4		
SB Right 9 2.9 0 EB Left 11 11.1 17 EB Through 363 11.9 17 WB Left 37 7.7 12 WB Through 204 11.1 16 WB Through 204 11.1 16 NB Through 773 31 82 NB Through 773 31 82 NB Right 621 2 0 SB Left 506 23 74 SB Right 131 15 72 SB Right 44 126 115 WB Through 525 120 336 WB Right 33 43 116 WB Right 860 10 0 92 NB Right 860 140 568 88 SB Left 0 0 92 58 SB Right 0 0 0 92 SB Right 0		В	NB Right SB Left SB Through	26 9 0	7.8 19.7 0.0	50	238 39 39	A B A		
EB Filtrough 363 11.9 17 WB Right 37 7.7 12 WB Right 39 16.4 16 WB Right 204 11.1 16 WB Right 204 11.1 16 NB Right 621 2.6 3 NB Right 621 23 74 SB Left 205 23 74 SB Right 506 23 74 SB Right 506 23 74 SB Right 505 120 313 EB Left 505 120 313 EB Right 44 126 336 WB Right 318 15 115 WB Right 318 15 136 WB Right 318 15 328 WB Right 30 0 0 NB Through 354 87 92 SB Right 0 0 0 <			SB Right EB Left	9	2.9	0	23 187	В	17.5	8
Web Left (WB Through) 1.37 1.0.4 1.0 WB Right (WB Through) 3 1.0.4 1.0 NB Left (SB Le	11.5	ω	EB Through EB Right	363	11.9	17	187	8 V		
39-Montrose Rd at Tower Cake Blvd 82 NB Through 773 31 82 NB Right 621 2 0 SB Right 131 15 75 EB Through 525 120 313 EB Right 545 46 115 WB Right 318 15 116 WB Right 318 15 116 WB Right 318 15 136 WB Right 341 119 568 NB Right 60 0 0 SB Right 0 0 0 EB Left 0 0 0 EB Left 0 0 0 WB Right 354 87 317 EB Through 354 87 317 EB Right 306 140 0 EB Right 306 140 0 WB Right 306 0 WB Right	13.1	æ	WB Left WB Through WB Right	139 204 3	16.4 11.1 2.6	16 3	152 152 108	8 B		
NB Filtrough 773 31 82 NB Right 621 2 0 SB Left 211 65 75 SB Right 131 15 74 SB Right 131 15 72 EB Through 525 120 313 EB Right 44 126 336 EB Right 44 126 336 WB Right 545 46 115 WB Right 318 15 136 NB Through 341 119 568 NB Right 60 0 92 SB Right 0 0 0 SB Right 0 0 0 EB Left 0 0 0 EB			NB Left	39- Montrose R	kd at Tower Oaks B	vd 82	379	٥		
SB Through 506 23 74 SB Right 131 15 72 EB Left 105 98 311 EB Left 105 98 311 EB Right 44 126 336 WB Right 455 43 116 WB Right 318 15 136 WB Right 860 140 568 NB Through 341 119 568 NB Right 60 0 0 58 SB Right 0 0 0 0 0 EB Left 0 0 0 0 0 EB Left 6 201 317 EB Right 306 144 0 0		Ф	NB Through NB Right	621	31 2 65	82 0 75	379	O A 4		
EB Left 105 98 311 EB Through 525 120 313 EB Right 44 126 336 WB Hueft 545 46 115 WB Right 318 15 136 WB Right 31 15 136 WB Right 860 0 0 0 0 0 0 NB Through 860 140 0 568 SB Left 0 0 0 588 SB Right 6 0 0 0 92 SB Right 6 0 0 0 0 0 EB LE B LEFT 6 0 0 0 0 0 0 EB Through 354 87 92 SB Right 6 201 317 EB Right 6 201 317 EB Right 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		U	SB Through SB Right	506	23	74	332 350	ВСГ		
WB Right 44 126 135 155 WB Through 455 45 46 115 116 WB Right 318 15 136 116 WB Right 318 15 136 136 WB Through 318 1270 NB on and off ramp 1270 NB cell 120 568 156 SB Cell 130 56 SB Cell 130	117.2	ш	EB Left EB Through	105	98 120	311	677	L L .	42.8	a .
WB Right 318 15 136 AD-Rockledge Blvd at L270 NB on and off ramp 0 0 NB Left 0 0 0 NB Through 341 119 568 NB Right 860 140 568 SB Left 0 92 58 SB Right 6 0 0 0 EB LThrough 460 155 317 EB Through 460 155 317 EB Right 306 14 0 0 0 0 WB Left 0 0 0 0 0 0		۵	EB Kignt WB Left WB Through	545 455	12b 46 43	33b 115 116	701 412 412	- O O		
NB Through 341 119 568 NB Right 860 140 568 SB Left 0 0 92 SB Right 0 0 0 EB Left 6 201 317 EB Through 460 155 EB Right 306 14 0 WAB Left 0 0 0			WB Right 40-	318 Rockledge Blvd a	15 it I-270 NB on and o	136 off ramp	442	B <		
SB Left 0 92 SB Through 354 87 92 SB Right 0 0 0 EB LATHOUGH 460 155 317 EB Right 306 14 0 WB Left 0 0 0		F	NB Through NB Right	341 860	0 119 140	568	843 843	4 1 1 1		
EB Through 460 155 317 EB Right 306 14 0 Will Left 0 0 0		ш	SB Left SB Through SB Right	354	97	92	261 261 0	4 4		
EB Right 306 14 0 0 WB Left 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ı.	EB Left EB Through	6 460	201 155	317	830	נייי	115.2	L.
What Through			EB Right WB Left	306	14	0	0	В		

Table D.14: PM Peak - No Build - Intersection Delay and Level of Service

100 100	30.3	U	- IB	0	0	0	0	А		
No. 1974 No. 1974			_	0	0	0	0	A A		
Mile			S	0 0	0 0		0 0	4 4 4	52.3	۵
No. 1975 No. 1975			EB	0	0		0	4 4		
		ш	\ \ \ \ \ \ \	883 0	56		877	E A		
Miles Mile			>	42- MD 187 215	at Tuckerman Ln		1323	τ ο		
1875/46 1918 1918 1918 1919		ш	NB Through	2291	71 78 775		1323	E .		
		LL.	SB Through	1150	186		2706			
Milliand Milliand		Ŀ	EB Left EB Through	300		651 652	1424 1425	E F	133.5	u.
No.1997 No.1997		u	EB Right WB Left	118 459 666	151 191 216	675 1943	1449 2143 2143	4 4 H		
No. 1964 St. 95			WB Right	164 43- MD 187 at I-2	150 70 NB on and off ra	1943	2143	. 止		
Stringer Color C		В	NB Left NB Through	563 2497	33 15	122	410	C B		
			NB Right SB Left	0	0		0	A A		
Minchester 0		U	SB Through SB Right	1289	24		0	O A «	21.2	U
With Transport With			EB Through	0 0	0 0		0 0	< < <		
Milliong Milliong		ш	WB Left WB Through WB Right	09	956		282 282	E E		
Statistical			NB Left	44- MD 187 at I-2	70 NB on and off ra	sdu	0	X 4		
Simple Sign Sign		Е	NB Through NB Right	2411 0	46 0		843 0	D A		
Charley Charles Char		В	SB Left SB Through	149	56		283	E B		
With Flooring 1739 64-54 64-14		u	SB Right EB Left	646		171	613	A E	41.9	Ω
Wilfrigue, 0		ш	EB Right	178	64	91	521	E A		
10 10 10 10 10 10 10 10			WB Through	000	0 0	000	000	4 4 4		
Colored Colo			NB Left	45- MD 187 492	at Rock Spring Dr 36	113	693	D		
State Stat		В	NB Through NB Right	2178	16 13		694 727	B		
E. Filtright		U	SB Left SB Through		62 39	113	523	E D		
Figure 4844 317 1339 5166 D D W/B Linety 15		٥	SB KIBIT EB Left EB Through		59	139	506 506	E E	29.4	U
Fig. 1987 Well-Right Sign Sig		2	EB Right		37		506	0 0		
No. 10 N		В	WB Through WB Right		29 32 8		108 97) O A		
No.		٥	NB Left	ig.	vd at I-270 NB off ra 45		135	0 <		
SB Rhough 0 0 0 A EB Left 0 0 0 A EB Left 0 0 0 A EB Right 0 0 0 A WB ERR 0 0 0 A WB Right 0 0 0 A NB Left 0 0 0 A WB Right 0 0 0 A NB Left 0 0 0 A NB Right 0 0 0 A SB Hord 0 0 0 A SB Right 0 0 0 A SB Right 0 0 0 0 A SB Right 0 0 0 0 A WB Right 0 0 0 0 A WB Right 0 0 0 0 A WB Right			NB Right SB Left		0		0	:		
FE Filtrough			SB Through SB Right	1 1 1	0		0	A A	9.0	∢
Wild Left 0 0 0 A WB Rinough 222 1 2 53 A WB Right 0 0 0 A NB Finough 0 0 0 A NB Finough 0 0 0 A SB Right 0 0 0 A EB Right 0 0 0 A WB Right 0 0 0 A WB Right 0 0 0 A WB Right 0 0 0 A NB Right 0 0 0 A NB Right 0 0 0 A A WB Right 0 0 0 A 10 0 0 <t< td=""><td></td><td>۷</td><td>EB Left EB Through FB Right</td><td></td><td>0 1</td><td></td><td>57</td><td>V V V</td><td>:</td><td>:</td></t<>		۷	EB Left EB Through FB Right		0 1		57	V V V	:	:
WB Right 0 0 A NB Florengery Blod at L-270 St orn amp 0 0 A NB Florengery Blod at L-270 St orn amp 0 0 A NB Florengery Blod at L-270 St orn amp 0 0 A NB Florengery Blod at L-270 St orn amp 0 0 A SB Left 0 0 0 A SB Right 0 0 0 A SB Right 0 0 0 A WW Bright 0 0 0 A WB Right 0 0 0 A NB Right 0 0 0 A NB Right 0 0 0 A SB Right 0 0 0 A WB Right 0 0 0 A SB Right 0 0 0 A SB Right 0 0 0 A SB Right 0 0 <t< td=""><td></td><td>۷</td><td>WB Left WB Through</td><td></td><td>0</td><td></td><td>0 53</td><td>1</td><td></td><td></td></t<>		۷	WB Left WB Through		0		0 53	1		
NB Right 0 0 0 0 0 A NB Right 0 0 0 0 0 A SB Right 0 0 0 0 0 0 A SB Right 0 0 0 0 0 0 A SB Right 0 0 0 0 0 0 A EB Right 543 30 0 0 0 0 A WB Right 543 30 33 338 A WB Right 0 0 0 0 0 A NB Rihough 0 0 0 0 0 A SB Right 0 0 0 0 0 A NB Rihough 0 0 0 0 A NB Right 60 0 0 0 0 A SB Right 0 0 0 0 0 A NB Right 60 0 0 0 A SB Right 60 0 0 0 A NB Right 60 0 0 0 A SB Right 60 0 0 0 A NB Right 60 0 0 0 A SB Right 60 0 0 0 A NB Right 60 0 0 0 A SB Right 60 0 0 0 A NB Right 60 0 0 0 A SB Right 60 0 0 0 A SB Right 60 0 0 0 A NB Right 60 0 0 0 A SB Right 60 0 0 0 A SB Right 60 0 0 0 B SB Right 60 0 0 0 B SB Right 60 0 C B SB Right 60 C B SB Right 132 118 E SB Right 73 69 18 118 E NB Richard 77 24 147 E SB Right 74 77 24 147 E SB Right 74 77 24 147 E SB Right 133 100 130 722 B SB Right 138 18 B SB Right 138 18 B SB Richard 138 100 130 722 B SB Right 138 124 393 1120 D WB Right 13 124 393 1120 D WB Right 13 124 393 1120 D			WB Right	2	0 Ivd at I-270 SB on ra		0	Α .		
SB Left			NB Left NB Through NB Right		0 0	0 0 0	0 0 0	4 4 4		
SB Right			SB Left SB Through		0	0 0	0	Y Y		
EB Right 0 0 0 0 A WB Left 543 30 53 338 C WB Right 0 0 0 A NB Right 0 0 0 A NB Right 0 0 0 A SB Right 60 3 0 A A SB Right 60 3 0 A A SB Right 60 0 0 A A SB Right 60 3 0 A A WB Through 1830 4 18 285 A WB Right 162 69 652 B		∢	SB Kight EB Left EB Through		0 0	0 19	0 0 258	4 4 4	7.5	⋖
WB Right 3 43 318 A WB Right 0 0 A NB Left 0 0 A NB Left 0 0 A NB Right 0 0 A NB Right 60 3 0 A SB Right 60 3 0 A EB Left 0 0 A A SB Right 60 3 0 A A SB Right 60 3 0 A A WB Left 0 0 0 A A WB Left 0 0 A A WB Left 27 0 0 A A WB Right 6 69 65 B A NB Left 27 24 147 E SB Left 44 77 24 147 E SB Right 122			EB Right WB Left		30	0	338	A		
NB Left		Ф	WB Through WB Right		3	43	318 0	4 4		
NB Right			NB Left	racy B	lvd at I-270 SB offra	0	0	∀ 4		
SB Right 60 0 0 A SB Right 60 3 0 0 A EB Hrough 0 0 0 A EB Right 0 0 0 A WB Left 0 0 0 A WB Through 1830 4 18 285 A WB Right 27 80 18 118 E NB Right 5 66 18 118 E SB Right 122 16 24 147 E SB Right 122 16 24 147 E SB Right 122 16 24 147 E SB Right 122 16 130 792 F EB Right 32 6 122 89 B EB Right 32 112 89 F WB Left 133 1120 792 F			NB Right SB Left		0 52	0 0 29	0 176	x		
EB Left 0 0 0 A EB Right 0 0 0 A WB Left 0 0 0 A WB Left 0 0 0 A WB Right 1830 4 18 285 A WB Right 20 0 0 A A NB Left 27 69 18 118 E NB Right 6 68 18 118 E SB Through 7 69 18 147 E SB Right 122 16 24 147 E SB Right 122 16 24 147 E SB Right 126 17 24 147 B SB Right 122 16 24 147 B EB Left 138 100 130 792 F EB Right 32 122 819 A<		Q	SB Through SB Right	09	3	0	0	A A	7.0	٥
EB Right 0 0 0 0 WB Flight 1830 4 18 285 WB Right 162 16 69 662 NB Left 27 80 18 118 NB Through 7 69 18 118 NB Right 6 68 18 118 SB Left 44 77 24 147 SB Right 122 16 24 147 SB Right 122 16 24 147 EB Right 32 6 122 819 WB Left 33 100 130 792 WB Left 32 6 122 819 WB Left 13 124 393 1120			EB Left EB Through	0 0	0	0 0	0	4 4 ·	?	(
WB Right 1830 4 18 285 WB Right 162 Bundlette Rd 162 662 NB Through 27 80 18 118 NB Right 6 68 18 118 SB Through 9 70 24 147 SB Right 122 16 24 147 SB Right 136 170 24 147 SB Right 136 130 792 EB Through 32 6 122 WB Left 13 124 393 1120 WB Left 13 44 393 1120			EB Right WB Left	0	0	0 0	0	A A		
NB Left 27 69 18 118 NB Through 7 69 18 118 NB Right 6 68 18 118 SB Left 44 77 24 147 SB Right 122 16 24 147 EB Through 9 70 24 147 EB Right 1296 17 130 792 EB Right 32 6 122 819 WB Left 13 124 393 1120 WB Left 13 44 393 1120		⋖	WB Through WB Right	1830	16	18	285 662	ВВ		
NB Right 6 68 18 118 SB Left 44 77 24 147 SB Through 9 70 24 147 SB Right 122 16 24 147 EB Left 138 100 130 792 EB Through 1296 17 130 792 EB Right 32 6 122 819 WB Left 13 124 393 1120 WB Through 2143 44 393 1120		ш	NB Left NB Through	27	80	18	118	шш		
SB Right 9 70 24 147 SB Right 122 16 24 147 EB Left 138 100 130 792 EB Through 1296 17 130 792 EB Right 32 6 122 819 WB Left 13 124 393 1120 WB Through 2143 44 393 1120			NB Right SB Left	6 44	68	18	118	E		
EB Right 13 792 EB Right 32 6 120 792 WB Left 13 124 819 120 WB Through 2143 44 393 1120		O	SB Through SB Right	122	70 16	24	147	E B	37.0	۵
WB Left 13 124 393 1120 WB Through 2143 44 393 1120		U	EB Lett EB Through EB Right	138 1296 32	17	130	792 792 819	A B		
		Q	WB Left WB Through	13	124	393	1120	F		

Table D.15: PM Peak - No Build - Alternative Intersection Delay and Level of Service

ш «
NB Left 230 NB Through 0 NB Right 0 NB Right 0 SB Through 0 SB Right 0 NB Right 0
A NB Left NB Right NB Right SB Hriough SB Right SB Right EB Left EB Right WB Left WB Right WB Right WB Right WB Right WB Right
NB Left NB Through NB Right SB Left SB Through SB Right EB Left EB Right WB Left WB Through WB Through WB Through
NB Left NB Right SB Left SB Left SB Through SB Right EB Left SB Right EB Left WB Left
No Left
NB Left NB Through 3 SB Left SB Through SB Right SB
NB Left 0 0 0 0 0 0 0 0 0

Table D.15: PM Peak - No Build - Alternative Intersection Delay and Level of Service

Intersection LOS			ш						۵						C)						۵							В							۷						•	1						∢						۵						В			
Intersection Delay			114.3						46.2						20.8							43.3							11.6							5.8						1	Ü,						1.9						41.7						18.5			
SOT	. О п			- L 8	ь п	L.	В А	∢ ∢ ∪	∪ ∢ <	< < <	X	∢ .	В	A O	V V	4 4	V V	4 4	: .	J 0 .	E A	υυ	ъ О .	E A	В	∢	4 4	8 8	ВВ) < <	¥ 89 1	9 V	4	< < <	A A	< < <	< < <	< < <		A A	A	4 4	A A	∢ ∢	∢ ∢	A	A A	∢ ∢ ∢	< < <	< < <	: < <	: 0	C	ш U «	¥ 0 4	D 8 L	. E		-	4 4	4 4	O A	4 A A	ε
Max Queue	870	1230	1230	151	757	757	1820	0 0	0	000	000	0	0 1307	498	0 0	0 0	0	0	, ,	805	217	864 855	715	230	230	0	0 0	179	0 249	0 0 0	40	88	188	188	0 0	0 0 8	103	140		0	0 226	137	51	0	0	108	0 64	0 0		0 0 55	27	583	583	215	249	295	581	903	0 0	0	0	360	438 0	>
Ave. Queue	463	1008	1008	32	528	amp 528	682	0 0 ;	125	000	000	0 dws	0 196	995	0 0	0 0	0 0	0	200	263	49	97 83	191	191	61	0	0 0	27	0 24	. 8 %	0 0	0 0	3	0 8 0	0 0	0 0	n m c	o m c	ramp	0 0	31	0	0	0 0	0 0	c	0	000	000	000	0 0	Dr 119	119	31	8 8	28	238	ramp 82	0 0	0 0	0	42	06	,
Delay at Sam's Club Drive	38 71	129	211	81	175	116 -270 NB on and off r	57	0 0 8	0 0	000	000	270 SB on and off ra	19	43	0 0	0 0	0 0	0	5 at Crestwood Blvd	44	77	30	49	80	82 20	: I-270 NB on and ra	0 -3	16	3	0 4	12	3 3 270 SB on and off r	4	0 8 0	0 0	0 0	· 10 0	∞ ∞	-270 NB on and off	0 0	0 15	0 4	2 0	0	0 0		0	0 0		0 4 6	2 0	at Gateway Center	29	23	42	13	62	1-270 NB on and off	0 0 4	0	0	18	8 0	,
Volume 1- MD 85	573	152	72	24	570 31	225 2-MD 85 at I-	1137	0 0	745	000	000	3- MD 85 at I-	1982	173	0 0	0 0	0 0	0	4- MD 85	1470	105	942 924	951	44	78	5- MD 80 at	2 6	473	148	; o u	15	612	55	909	0 0	0 0 8	999	444	7- MD 109 at I	0	319	0 25	08	83	222	8- MD 80 at I-2 63	97	000	0 0	34	110	9- MD 121 633	873 71	302	y 4 %	248	75	10- MD 121 at	0 907	0 0	0	336	218 681	,
Movement	NB Through NB Right	8	S	EB	WB Left WB Through	>	NB Through	ع ام اع	SB Through SB Right	B	WB Left WB Through	WB Right	NB Left NB Through	NB Right SB Left	SB Through SB Right	EB.	EB Right WB Left	WB		NB Through	NB U-Turn SB Left	SB Through SB Right	EB Through	wa Left	WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through	SB Right FB Left	EB Through	WB Left	WB Right	NB Left	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Right	WB Through	JII SAN	NB Left NB Through	NB Right SB Left	SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left	NB Through NB Right	SB Through	EB Left	EB Right WB I off	WB Right	NB Left	NB Through NB Right	SB Left SB Through	EB Left	EB Right	WB Through	WB KIGHT	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Right	WB Lett WB Through	
Approach LOS	ш	ш	-	U	ш		ш	(J				В		Ω					ш		S	ш		Q		⋖	В		В	4	n		⋖			4	٨				В	٧		A		∢		4	₹	۷		Q	U	· ·	ر	ш		U			8	U	
Approach Delay	60.1	180.3	100.3	34.8	158.6		56.7	r c	30.3				18.8		42.9					45.6		30.4	62.5		54.3		-1.8	12.8		13.4		10.9		3.4		,	0.0	8.3				14.4	2.5		0.4		5.1		0.9	ñ. O	1.5		29.8	21.6	, L	15.1	95.4		21.5			12.3	20.8	
Approach	N N	85	9	EB	WB		N N	Ę	SB	EB	WB		NB		SB	EB		WB		NB		SB	EB		WB		NB	SB		EB		MA		S N	SB	Ę	9	WB		NB		SB	EB		WB		NB	SB	g	9	WB		NB	SB	g	E B	WB		NB	SB		EB	WB	_
Intersection			₽						2						ď	n						4							2							9						1	`						∞						6						10			

Table D.15: PM Peak - No Build - Alternative Intersection Delay and Level of Service

N	61.0 E	NB RIIGHT NB RIIGHT SB Left SB Through SB Riight EB Left EB Riight EB Riight		0 83 0	222	955	4 4 4 4	22.2	U
		SB SB EB TF		37	0	;	:	22.2	υ
	6.4 A	EB		0 9	0 16	14 0 208	∷ ш ∢ ∢	_	
E 4 1 2 4		WB Left WB Throug		0 0 27	0 0	0 390	A A D		
		WB Right	12- MD 2:	0 7 at Observation Dr 0	0	0	A 4 1		
4 1 2 4		NB Inroug NB Right SB Left	61 146	12 44	22 38	98 98 216	0 8 0		
		SB Throug SB Right EB Left	188 204	62 33 34	43 68 83	251 288 518	υОО	25.3	v
2 4		EB Throug EB Right	104 104	18 17 25	85 97 150	519	8 8 C		
4	28.3 C	WB Throug	h 1695 69 13-MD 27	29 9 at I-270 NB off ramp	150	731) O 4		
	45.9 D	NB T	359 h 0	46 0	61	276 0	ΔA		
		NB Right SB Left SB Throug	0 0 0	0 0 0	0 0 0	0 0 0	4 4 4		
	0.1 A	SB EB EB	0 0 1516	0 0 0	0 0 0	0 0 0	4 4 4	7.0	۷
	4	EB WE	0 0 h 1794	0 0 5	0	0 0	4 4 4		
	_	WB Right	0 14-MD 27	0 at I-270 SB off ramp	2 0	0	: ∢		
		NB Left NB Throug	0 0 0	0	0 0	0	4 4 4		
Li Li	50.4 D	NB Right SB Left SB Throug	173 0	0 50 0	33	0 152 0	A D A		
		SB Right EB Left FR Throug	0 0	0 0	0 0 4	0 0 88	4 4 4	5.1	∢
		EB Throug EB Right WB Left	1680 0 0	0 0	0 0	88 0	4 4 4		
	3.5 A	WB Throug	h 1597 0	4 0	12 0	395	4 4		
	31.3 C	NB Left NB Throug	77 h 1196	32 31	109	549	υυ		
		NB Right SB Left	160	29	124	561 1230	ОШ		
		SB Throug SB Right EB Left	1500 230 125	28 28 53	386 367 35	1230 1223 127	υО	0.69	ш
4	40.6 D	EB Throug EB Right	1 49 62	36	30	123	D 8 1		
	159.2 F	WB Left WB Throug WB Right	105 h 126 667	93 102 181	1017 1017	1481 1481 1481	<u>.</u>		
	_	NB Left	16- MD 118 at 106	Seneca Meadows Pk	wy 2	96	8		
		NB Throug NB Right	h 1389 1	6 6	11 19	191 244 311	4 4 4		
	7.5 A	SB Throug	1226 11	5	22 26	311	(06	⋖
1	13.9 B	EB Left EB Throug EB Right	23 1 0 r	58 65 11	14 14 14	135 135 135	ш ш 8		
<u></u>	53.9 D	WB Left WB Throug	103 h 7 30	69	43	243 242 262	шшш		
-		NB Left	17- MD 118	at I-270 NB on ramp	0	0	∢		
		NB Throug NB Right	0 0 0	0 0	0 0	0 0	44.		
		SB Left SB Throug	0 0 0	0 0	0 0 0	0 0 0	∢ ∢ ∢		
7	26.5 C	EB Left EB Throug	491 0	27	43	304	₹ ∪ ∢	13.8	ш
		EB Right WB Left	0	0	0	0	A A		
	6.6	WB Throug	1362 18- 18- 18- 18- 18- 18- 18- 18- 18- 18-	2 12 3 at I-270 SB off ramp	45	107 569	A 8		
		NB Left NB Throug	0 0	0.0	0 0	0	4 4		
	7 96	SB Left	169	36.5	26	131	∀		
1		SB Right EB Left		0.0	0 0	000	(7.4	۷
	5.4 A	EB Throug	1407 0	5.4	12 0	376	∶		
	6.1 A	WB Throug	0 h 1652	6.1	13	261	∢ ∢ ∢		
-		NB Left	19-MD	118 at Aircraft Dr	42	241	с ш		
7	26.1 C	NB Throug NB Right	h 52 227	69	42 5	241	E		
	161.6 F	SB Left SB Throug	437 14	213	410	639	ш ш .		
		EB Left EB Throug	126 125 1415	200 32 22	98 88	639 532 532	- U U	42.3	۵
		EB Right WB Left	21	19 25	88 121	532 810	В		
	25.4 C	WB Throug	397 20-Middlebro	30 9 ok Rd at Observation	121 121 Dr	810	O A		
		NB Left NB Throug	0 0	0 0	0 0	0	A A		
		NB Right SB Left	0 125	98	0 23	0	0 A		
7	20.4 C	SB Throug SB Right	186	0 10	0 23	150	A 8	8.8	∢
	6.1 A	EB Left EB Throug EB Right	14 1150 0	8 9 0	15 15 0	164 164 0	4 4 4		
	8.5	WB Left WB Throug	0 h 1313	0	0 26	0 264	4 4		

Table D.15: PM Peak - No Build - Alternative Intersection Delay and Level of Service

NB SB SB WB			NB Left	0 0	0 0	0	0	¥		
			NB Through NB Right	0	0	0 0	0	4 4		
			SB Left SB Through	0 0 0	0 0	0 0 0	0 0	444		
	2.6	Ą	EB Left EB Through	0 742	0 6 6	0 0 4	0 105	4 4 4	4.6	∢
	7.9		WB Left WBThrough	438	0 80 0	0 0 0	206	4 4 4		
	_		WB Right 2	2- Middlebrook R	d at Waring Station	U U Rd 83	309	Φ 0		
	48.4	Q	NB Through NB Right	1 236	55	83	309	۵۵۵		
	31.0	U	SB s,	32 2 24	39	8 8	72	0 Q 4	;	
	8.1		EB Left EB Through	4 1125 198	15 8	27 27	281	B A	74.0	n
	9.6		N N	234 1604	25	38	363	C C A		
			>	3 23- MD 1	3 24 at MD 355	38	363	A		
	144.9	ш	NB Left NB Through	479	126	744	1107	ᇿᇿ		
	45.7		NB Right SB Left SB Through	/ 181 699	92 97 97	0 148 148	480 480	- L U		
			SB Right EB Left	718	12 75	36	422	B B	75.6	ш
	8767		EB Right WB Left		33	70	803)		
WB	129.4	F	WB Leit WB Through WB Right	1645 90	132 85	677	945 5	Υ Τ Τ		
_	_		NB Left) 124 at	1- 270 SB on and of 1 64	23	105	н		
	62.7		NB Through NB U-Turn		0 09	23	105	ВΑ		
	41.0		SB Left SB Through SR Right		69 72 6	139	624 624 295	шш		
a	248		EB Left	0 1883	0 25	0 0	0 0	4 4 0	28.8	U
89	24.8	U	EB Through EB Right	36	25 24	179	1084	U U		
WB	22.7	U	WB Lett WB Through	1174	23	105	809	o v «		
			WD NIBIR	25- MD 1	17 at MD 124	946	0	ξ .		
NB	85.3	ш	NB Left NB Through NB Right	52 658 442	157 100 55	346 346 68	750 750 706	ᄠᄪ		
SB	38.1		SB Left SB Through	132	64	154	674	E D		
			SB Right EB Left	182 151	5 84	0 182	0 642	A 4	53.4	Q
EB	52.4	Q	EB Through EB Right	1133	49	182	643	Q I		
WB	44.5	۵	WB Left WB Through	387 1301	74 40 3	271	1022	ш О «		
			ND loft	26-MD11	7 at Bureau Dr	> 8	96	Į u		
N N N	55.4	ш	NB Lett NB Through NB Right	93 34 256	83 84 42	8 8 8	264	1 1 0		
SB	99.3	ш	SB Left SB Through	275	114	159 159	422 422	4 4		
			SB Right EB Left	49	46 84	217	422 892	D 4	46.1	Q
EB	41.9	Q	EB Through EB Right	1625	41	218	891	D 8		
WB	37.4	۵	WB Left WB Through	1626	39	307	1051 1051 1100	a a c		
			NO NIBILI	27- MD 117 at	I-270 SB off ramp	755	0011	۽ ر		
NB			NB Left NB Through NB Right	0 0 0	0 0 0	0 0 0	0 0 0	4 4 4		
SB			SB Left SB Through	0	0	0	0	:		
			SB Right EB Left	0	0 0	0 0	0	4 4	19.9	U
EB	6.5	٨	EB Through EB Right	912	9	50	483	A A		
WB	62.4	ш	WB Left WB Through	289	62	180	987	4 A		
_			WB Right	28- MD 117 at	0 I-270 NB off ramp	0 (0 0	∢ .		
NB			NB Lent NB Through NB Right	0 0	000	000	000	4 4 4		
SB	141.1	4	SB Left SB Through	228	132	3194	4514	чA		
	18.0		EB Left EB Through	3 911	110	77	936	. ₄ 8	53.3	۵
			EB Right WB Left	0	0	0	0	V V		
MW B	0.5	4	WB Right	0	0	62	379	4 4		
NB NB	42.3	٥	NB Left NB Through	25 MD 11.	at Perry Pkwy 63 58	17	126	шш		
			NB Right SB Left	33 240	19 193	27	146 451	B		
	156.3	ш	SB Through SB Right	121	199	271	451	ш	51.5	۵
	21.3	U	EB Left EB Through	241 850 22	8 8	87	360	A A		
	48.2		WB Left WB Through	36 36 1244	121 49	293	741	τ - 0		
			WB Right 3	379 O- Shady Grove R	38 d at I-270 NB off re	293 mm	741	Q		
	49.5	۵	NB Left NB Through	1053	116	476	957	4 4 ¢		
	146.9		SB Left	0 1141	0 147	0 0	0 1109	₹ ₹ ±		
			SB Right EB Left	0	0	0	0	4 4	84.4	ш
EB			EB Through EB Right	0 0 5	0 0 0	0 0 0	0 0	4 4 (
	53.0	۵	WB Lett WB Through	334	0	0 0	0 0	O 4		

Table D.15: PM Peak - No Build - Alternative Intersection Delay and Level of Service

Intersection LOS			U						۷						Q						В						۵						Q						U						ш					Q					L	ш	
Intersection Delay			21.2						8.1						40.2						14.5						41.4						52.8						23.6						17.5					42.6					0.00	109.8	
SOT	8 B	⋖ ⋖ ⋖	к м п	A A	∢ ∢	∢	∢ ∢ <	(Q 4	< < <	:	4 4 4	< <	4 Q V) T 4	ч	A A	Q Q &	:	۵۵۹	α α	A O	V 4 4	o o	В	0 V .	4 H 4	A O	C	Q	∢	D D	х п п	- A E	D 8	E D	8	< < <	Δ 4	E A	∢ ∢ ८	3 U U	U	4 4 4	8 V V	C 8 8	8 B	B &	٥٧	E A	8 4	чч	0 0 8	o 4	ᄔ	(4 K	: ш ш «	A A
Max Queue	0 0	0 0 142	0 370	0 242	0	0	000	281	74	0 248	307	323	332	405	405 313	313	390	56	95	83	0 464	172	451	485	197	456	341	341	290	0	497	794	,81 0 474	474	889	889	000	256	279	531	774	259	251	39	2.3 185 185	175	162	389	337	382	069 999	424 424 454	0	840 840 226	226	648	3 0
Ave. Queue	102	7 0 0	0 78	0 0	0	0 0	000	74	0 0	0 15	23	0 mps 53	53 61	360	360	0	171 147 0	12	6 6	7	0 44	6 10	56	72	43	129	0	91	111	0	141	299 316	0 127	127	145	Blvd o	000	31	95	0 0	215	map 52	46		16	11 17	17 4	84	0 76	74 305	307	118	loff ramp	573 573	87	243	0
Delay ve Rd at I-270 SB off	0 16	00 0	0 0 28	0 0 26	0	0 8 at I-270 SB off ram	000	46	o m 0	0	0 2	0 t I-270 on and off rai	53	165	140	7 0	36 41	189 at Great Falls Rd	48	41	0 26	5 2	22 21	189 at I-270 Ramps	43	55	31	23	54	0 189 at Wooton Pkwy	57	105	0 74	40	71 41	e Rd at Tower Oaks	000	50	70	0 0	33	iks Blvd at I-270 off r	0.0	0.0	12.1	6.8	10.4 4.4	41	2 65	16	118	46 43	d at I-270 NB on and 0	124	882	132	, 0
Volume 31- Shady Gro	1525	0 0 793	0 226	0 297	0 0	32-MD28		419	66	1560	1801	33-MD 28 at	216	15	216 278	930	1298 0	34- MD 1	14	18	414	677	15 853	18 35- MD	251	348	0 483	373	448	36-MD1	237 694	250	0 151	554	162 792	321 37- Montros	0 2555	888	315	1874 0	2684	38- Tower Oa 729	0 27	n 0 0	363	37	3	97	621 210	132	526 45	582 484 484	40- Rockledge Blv	338 858	354	458	307
Movement	NB Left NB Through	SB Left	SB Right EB Left	EB Through EB Right	WB Left WB Through	WB Right	NB U-Iurn NB Through	SB Left SR Through	SB Right EB Left	EB Right	WB Left WB Through	WB Right	NB Through	SE T	SB	EB Through EB Right	WBT	Hal RN	NB Through	SB Left SB Through	SB Right EB Left	EB Right	WB Left WB Through	WB Right	NB Left NB Through	SB Left	SB Right EB Left	EB Through EB Right	WB Left WB Through	WB Right	NB Through	SB Left	SB Right EB Left	EB Through EB Right	WB Left WB Through	WB Right	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through	EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left NB Through	NB Right SB Left	SB Right EB Left	EB Through EB Right	WB Left WB Through	NB Left	NB Through NB Right SB I off	SB Through SB Right	EB Through	EB Kignt WB Left
Approach LOS	В	⋖	t.	ш				0	2	۷	٩		Q	ı.		В	Q		۵	A		В	C		Q	ш		С	Q		۵	L	_	۵	Q		∢	п		4	O		O	∢	ω	c	а	U	,	י	ш	۵		ш	ш	В	
Approach Delay	16.1	7.6	9.	57.0				376	0.70	2.5	7.3		40.0	141.6		19.9	41.1		36.7	3.4		12.8	20.6		42.8	55.4		27.3	49.3		45.8	83.8	03:00	39.7	39.4		0.4	65.3		7.3	32.4		23.7	9.4	10.5		12.9	20.2		7.70	114.8	37.6		136.7	85.2	79.4	
Approach	NB	æ	on one	EB	WB		NB	SB	ar.	EB	WB		NB	SB		EB	WB		NB	SB		EB	WB		NB	SB		EB	WB		NB	8	9	EB	WB		NB	SB		EB	WB		NB	SB	EB	Ş	MB	NB	S	3	EB	WB		NB	SB	EB	
Intersection			31						32						33						34						35						36						37						38					39					ç	40	

Table D.15: PM Peak - No Build - Alternative Intersection Delay and Level of Service

Intersection LOS				۵						L.						U						C	1						U							∢						٩							۷						۵			
Intersection Delay				48.8						133.9						21.7						43.1	1						30.6							3.1						9.9							8.0						38.2			
SOT	O A	∢ <	₹	< < <	: V =	D A	Q	В	шш	шш	<u>.</u> .		. 0	В	A C	∢ ∢	4 4	шш	∢ .	A O	В	ъ В	E A	A E	:	d	B B	E) < u	ш	3 0 0) ∢	0 <	< < <	< < <	< <	4 4	< < <	4	: ∢ ∢	< < <	₹ ∢ •	∢ ∢ ∢	. ن ک	4 4	A	∢ ∢	В	A A	< < <	. A A	∢	шші	шшш	3 B T	- 8 V	- O	Q
Max Queue	268	0	000	0 0	0	733	1331	1331	2694 2694	2694	1436	2137	419	419	0 263	0	0	255		0 765	0 319	319 0	628 628	557	0	868	899	605	590	529	108	97	127			0 295	0	53	c	0 0		000	257	294	273	0	0 0	171	0	0 0	0 297	21	118	118	143	718	1112	1112
Ave. Queue	0 0	0 0	000	000	0 190	190	628	628	2560 2560	2560 597	599	1939	amps 131	131	0 64	0	0 0	43	amps	209	0 20	0 0	172	94	0 0	131	131	117	74	145	9 9	3 3	29			0 0 6	0 0	0 2 0	'amp	000		0 0	20	0 40		dw	0 0	39	0 0	000	0 21		18					
Delay at I-270 SB on and c	31	0 0	000	0 0	0	51	37 at Tuckerman Ln	75	167	212 72	153	215	270 NB on and off r	15	0 24	0	0 0	09	270 NB on and off r	48	0 28	14	69	62	0 0	7 at Rock Spring Dr	18	63	? 양	65	28 33	8 8 alvd at 1-270 NB off	45			0 0	0 0	0 11	Blvd at I-270 SB on I	0 0		0 0	0 0	22	3	lvd at I-2	0 0	55	2	0 0	0 4	1 90 at Burdette Rd	69	2/ 8/ 7/	112	20	129	35
Volume 11- Rockledge Blvd	342	0 0	000	000	0 351	883	42- MD 18 215	2288	203 1150	307	532	462 665 164	43- MD 187 at I- 564	2506	0 1284	0	0 0	09	44- MD 187 at I-2	0 2415	0 148	1197 0	652	180	0 0	45- MD 187	2181	21	173	50	7 1	36 47-Democracy BI	165			0 1190	0 0	2241	48- Democracy	0 0			1420	567	1839	49- Democracy B	0 0	184	72	0 0	0	184 50- MD 1	27	d 44 p	122	1303	13 2160	65
Movement	NB Left NB Through	NB Right	SB Through	EB Left EB Through	EB Right WB Left	WB Through WB Right	NB Left	_	SB Left SB Through	SB Right EB Left	EB Right	WB Through WB Right	NB Left	NB Through NB Right	SB Left SB Through	SB Right EB Left	EB Through EB Right	WB Left WB Through	WB Kight	NB Left NB Through	NB Right SB Left	SB Through SB Right	EB Left EB Through	EB Right WB Left	WB Right	NBLeff	NB Through NB Right	SB Left	SB Right	EB Leit EB Through	WB Left	WBRight	NB Left	NB Right	SB Through	EB Left EB Through	EB Right WB Left	WB Through WB Right	NRIeff	NB Through	SBLeft	SB Right	EB Lert EB Through	WB Left	WB Through WB Right	N	NB Through NB Right	SB	5	EB Through	WB Through	WB Right	NB Left NB Through	SB Left	SB Right FB Left	EB T EB	WB Left WB Through	WB Right
Approach LOS	v					Q		В	ш	·	-	ш		В	U			В		ш		В	ш				U	Q		Δ	ec	,	۵	5		<		۷					۷		۷			Q			<		В	c	2	С	٥	
Approach Delay	31.2					53.7		72.8	188.6		125.6	197.3		19.0	24.5			59.0		48.4		18.4	67.7				21.5	35.8		49.2	17.0	2	0 77	o i		1.3		6.0					5.3		7.3			40.2			3.9		76.5	35.7	23.7	28.3	44.2	
Approach	NB		SB	89	1	WB		NB	SB	í.	EB	WB		NB	SB		EB	WB		NB		SB	EB		WB		NB	SB	3	EB	WB.	1	2	2	SB	EB		WB		NB	5	9	EB	9	WB		NB	SB		EB	WB		NB	87	ags .	EB	WB	
Intersection		I		41						42					<u>ı</u>	43		ı				7	:	I				1	45		ı					47	1				1	48		1				1	49		1			ı	20			

Table D.15: PM Peak - No Build - Alternative Intersection Delay and Level of Service

S2 SB	9.8 73.8 10.8 32.1 32.1 34.3	ш « ш « ю	NB Through NB Right SB Left SB Through SB Right EB Left	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Y E Y Y Y Y Y		
	9.8 9.8 73.8 73.8 10.8 20.9 20.9		SB Left SB Through SB Right EB Left	0 0	0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 4 4 B		
	9.8 73.8 10.8 10.8 52.5 52.5 52.5 32.1 34.3		EB Left		0		99	В	10.7	۵
	3.5 3.5 5.2.5 5.2.5 20.9 34.3		EB Through	253	0 0		0 0	<	7:01	۵
	3.5 3.5 0.5 52.5 52.5 20.9 34.3		WB Left WB Through WB Right	0 1474 0	0 10		0 45 0			
	3.5 3.5 0.5 52.5 52.5 32.1 34.3		NB Left	52- MD 190 at 231	t I-270 SB off ramp	92	187	ш «		
S B B B B B B B B B B B B B B B B B B B	3.5 0.5 52.5 32.1 34.3		NB Through NB Right	0 0 0	0 0 0	0 0 0	0 0 0	4 4 4		
WB SB	3.5 10.8 0.5 52.5 32.1 32.1 34.3		SB Through SB Right	000	000	000		4 4 4	,	ć
WB	20.9 20.9 32.1 34.3		EB Left EB Through EB Right	0 1062 0	0 % 0	0 8 0	0 29	4 4 4	13.1	m
NB RB SB	9.5 52.5 32.1 32.1 34.3		WB Left WB Through WB Right	0 1661 0	0 0 0	23	0 472 0	X A B A		
	32.5 20.9 34.3	Ą	NB Left NB Through	53-MD 190 2 28 314	28 11 00 at Seven Locks Rd 28 1 314 0 0	0 0 0	0 0 0	4 4 4		
	32.1	Q	SB Left SB Through	364	52 53	120	113	4000		
	34.3	U	EB Through	27 800	32	95	34	200	26.9	U
	34.3	v	EB Right WB Left WB Through WB Right	45 257 920 701	32 77 18 5	95 129 129	434 564 564 564	У В В С		
		U		54- MD 124 at 0	0 0		0 0	4 4		
				1394	34	173 8	0 0 0	U		
WB	31.8	J		2020	32		0 0 0 0	X 4 U 4	32.8	U
			ے		0		0 0 0	4 4 4		
- WB	44.4	٥		2	0 0 0 44		0 0	4 4 0		
SB				0 0 0	0 0 0		0 0 0	4 4 4	Ç	í
EB	1.5	∢		0 1189 0	0 1 0		0	4 4 4	10.9	m
WB			7-6	0 0 0 0 Watkins Mill Rd at I-2	0 0 0 0 II Rd at I-270 SB off ramp/Parl	0 0 0 view Ave	0 0 0	4 4 4		
NB	92.1	ш	NB Left NB Through NB Right	144 0 331	54 0 108		646 0 646	D A F		
SB	47.2	Q		397 110 440	70 63 23		117	С	107 a	ц
EB	213.3	ч		920	213 155		0 245 245	A T T	5.501	-
WB	48.7	Q		91 455 0	82 42 0		319 317 0	T Q A		
NB	153.6	Ŀ		216 0 545 545	86 0 180 180 180 180 180 180 180 180 180 1		0 0 0 0 0 0 0	ц 4 п		
SB			SB Left SB Through SB Right	0 0 0	0 0 0		0 0 0	4 4 4		ı
EB	59.5	ш	EB Left EB Through EB Right	478 913 0	130 22 0		.42 .42 0	T O 4	101.5	-
WB	117.2	ш	WB Left WB Through WB Right	0 800 422	0 135 83	0 618 618	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A T T		
NB			NB Left NB Through NB Right	58- Watkins Mill F 0 0 0	8d at I-270 sB on rar 0 0		0 0 0	4 4 4		
SB			SB Left SB Through SB Right	0	0		0 0	4 4 4	7 9 6	C
EB	34.4	C	EB Left EB Through EB Right	0 1415 230	0 38 13		0 83 83	B D A		·
WB	13.4	В	WB Left WB Through	539	27		75	O A		

Table D.16: PM Peak - No Build - I-270 Vehicle Network Performance

	No Build	Alternative	% Change
	(Delay Total)	(Total Total)	70 Change
Total Delay	34,577,788	28,435,004	-18%
Average Delay per Vehicle	289	238	-18%
Total Travel Time	67,049,773	62,282,973	-7%
Vehicles (Arrived)	97,505	100,111	3%
Latent Demand	7,347	7,399	1%
Latent Delay	11,699,627	12,857,414	10%
Total Distance	490,466	512,495	4%
Average Speed	26	30	12%

Submitted to:

Appendix H

HSM Safety Analysis Summary

Submitted by:

GONCRETE Ch2M: Bruce & Merrilees

Appendix H: HSM Safety Analysis Summary

HIGHWAY SAFETY MANUAL ANALYSIS

The roadway improvements proposed by the CGI Team were evaluated using the quantitative methods for estimating change in crash frequency as described in the AASHTO Highway Safety Manual (HSM). Both the existing and proposed roadway conditions were modeled using the Enhanced Interchange Safety Analysis Tool (ISATe). The difference in the number of predicted crashes reflects the impact of the changes in geometry under the proposed improvement.

This appendix includes the detailed analysis output results for each improvement and a summary of the difference in predicted average annual crash frequency by crash severity for the present year (2015) and future year (2040).

Table: Predicted Average Crash Frequency - Existing (2015) No-Build

Total Crashes	Total	K	Α	В	С	PDO
Northbound						
NB1	127.50	0.56	1.51	10.32	22.70	92.41
NB2A	20.07	0.18	0.54	2.92	8.48	7.95
NB2B	12.92	0.05	0.14	1.01	2.37	9.35
NB3A	18.92	0.05	0.29	1.72	5.93	10.93
NB3B	13.94	0.09	0.25	1.47	3.68	8.45
NB4	67.51	0.41	1.10	5.76	10.52	49.71
NB5	16.71	0.10	0.26	1.43	2.72	12.20
NB7	5.53	0.03	0.09	0.49	0.97	3.94
Subtotal NB Existing/No-Build	283.09	1.47	4.18	25.13	57.37	194.94
Southbound						
SB1A	24.01	0.17	0.46	2.32	3.94	17.11
SB1B	24.01	0.17	0.46	2.32	3.94	17.11
SB2	16.62	0.11	0.30	1.53	2.73	11.96
SB5A	14.49	0.07	0.20	1.25	2.60	10.36
SB6	9.66	0.07	0.22	1.21	3.53	4.62
SB7	25.87	0.25	0.75	4.07	11.82	8.99
SB8	22.02	0.22	0.68	3.65	9.30	8.17
SB10	19.32	0.08	0.23	1.55	3.41	14.05
SB12	137.33	0.60	1.63	11.10	24.21	99.79
Subtotal SB Existing/No-Build	293.33	1.76	4.92	29.00	65.48	192.16
Total Existing/No-Build Crashes	576.42	3.23	9.11	54.13	122.85	387.10

Table: Predicted Average Crash Frequency - Concepts Existing (2015) Build

Total Crashes	Total	K	Α	В	С	PDO
Northbound						
NB1	118.94	0.62	1.48	10.37	22.42	84.04
NB2A	17.66	0.14	0.42	2.30	6.68	8.13
NB2B	13.84	0.06	0.15	1.10	2.55	9.97
NB3A	19.87	0.03	0.19	1.16	5.06	13.43
NB3B	12.40	0.07	0.21	1.23	3.07	7.82
NB4	66.00	0.49	1.16	6.16	10.99	47.21
NB5	16.85	0.12	0.27	1.52	2.80	
NB7	5.25	0.03	0.09	0.47	0.93	3.73
Subtotal NB Proposed	270.81	1.57	3.97	24.32	54.49	186.46
Southbound						
SB1A	23.93	0.17	0.46	2.34	3.98	16.97
SB1B	23.64	0.17	0.45	2.28	3.87	16.88
SB2	16.66	0.11	0.30	1.55	2.78	11.91
SB5A	13.88	0.07	0.19	1.16	2.43	10.03
SB6	7.27	0.05	0.14	0.76	2.21	4.11
SB7	14.30	0.10	0.32	1.71	4.98	7.19
SB8	16.57	0.13	0.39	2.13	6.19	7.73
SB10	16.52	0.08	0.22	1.51	3.32	
SB12	130.26	0.69	1.65	11.47	24.64	91.80
Subtotal SB Proposed	263.04	1.58	4.12	24.94	54.40	178.00
Total Proposed Crashes	533.85	3.15	8.09	49.26	108.89	364.46

Table: Predicted Average Annual Crash Frequency - Proposed Concepts Build to Existing No-Build Comparison (2015)

Total Crashes	Total	K	Α	В	С	PDO
Northbound						
NB1	-8.56	0.06	-0.03	0.05	-0.28	-8.37
NB2A	-2.41	-0.04	-0.11	-0.62	-1.81	0.17
NB2B	0.92	0.01	0.01	0.09	0.18	0.62
NB3A	0.95	-0.02	-0.10	-0.56	-0.86	2.50
NB3B	-1.54	-0.01	-0.04	-0.24	-0.61	
NB4	-1.51	0.07	0.05			
NB5	0.14	0.02	0.01	0.09	0.08	
NB7	-0.28	0.00	0.00	-0.02	-0.04	
Subtotal Difference NB	-12.28	0.10	-0.22	-0.81	-2.88	-8.48
Southbound						
SB1A	-0.08	0.00	0.00	0.02	0.03	-0.14
SB1B	-0.36	0.00	-0.01	-0.04	-0.07	-0.23
SB2	0.04	0.00	0.01	0.03	0.06	-0.05
SB5A	-0.61	0.00	-0.01	-0.08	-0.17	-0.33
SB6	-2.39	-0.03	-0.08	-0.45	-1.31	
SB7	-11.57	-0.14	-0.43	-2.36	-6.84	-1.80
SB8	-5.45	-0.10	-0.29	-1.51	-3.12	-0.44
SB10	-2.80	0.00	-0.01	-0.04		
SB12	-7.07	0.09	0.02	0.38	0.43	-7.98
Subtotal Difference SB	-30.29	-0.19	-0.80	-4.06	-11.08	-14.17
Total Difference Crashes	-42.57	-0.09	-1.02	-4.87	-13.95	-22.64

		Out	tput Summ	ary				
General Information)							
Project description:	I-270 @ MD 80 (SB 1	A, SB 1B) -	Existing (20	015) No-Bu	uild			
Analyst:	MLV	Date:	1/5/2017		Area type:		Urban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descrip								
Freeway segments	Segment crash data a	available?		No	First year of crash data:			
		Project-level crash data available			Last year o	f crash dat	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da		?	No	Last year o			
Ramp terminals	Segment crash data a			No	First year o			
	Project-level crash da	ta available	1?	No	Last year o	f crash dat	a:	
Estimated Crash Sta					-	_		
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		24.0	0.2		2.3	3.9	17.1
	req. during Study Period, cra-		24.0	0.2	0.5	2.3	3.9	17.1
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o		3		0.2		2.3	3.9	17.1
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp term		0		0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	A	В	С	PDO
Estimated number of	•	2015	24.0	0.2	0.5	2.3	3.9	17.1
the Study Period, crashes:		2016						
		2017						
		2018						
		2019						
		2020 2021						
		2021						
		2022						
		2023						
		2024						
	2026							
		2020						
		2028						
		2029						
		2030						
		2031						
		2032	1					
		2033						
		2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Cras	hes for Entire Facility	/						
Crash Type	Crash Type Category				er of Crash			
	,,	- 3 7	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0		0.0	0.0	0.0
	Right-angle crashes:		0.3	0.0		0.0	0.1	0.2
	Rear-end crashes:		10.9	0.1	0.2	1.1	1.9	7.6
	Sideswipe crashes:		3.7	0.0		0.3	0.5	2.9
	Other multiple-vehicle crashes:		0.4	0.0		0.0	0.1	0.2
Olin alla contati d	Total multiple-vehic	ie crashes:	15.4	0.1	0.3	1.5	2.5	11.0
Single vehicle	Crashes with animal:	i a a tu	0.1	0.0		0.0	0.0	0.1
	Crashes with fixed ob		6.2	0.0	0.1	0.6	1.0	4.4
	Crashes with other ob	•	1.0	0.0		0.0	0.1	0.9
	Crashes with parked		0.1	0.0		0.0	0.0	0.1
	Other single-vehicle of		1.2	0.0	0.0	0.2	0.3	0.6
	Total single-vehicle Total crasl		8.6 24.0	0.1	0.2 0.5	0.9 2.3	1.5 3.9	6.1 17.1
	i otal crasi	1 0 5.	24.0	0.2	0.5	∠.3	3.9	17.1

		Out	tput Summa	ary						
General Information										
Project description:	I-270 SB Entrance Ra	amp from MI	D 80 - SB 1	A Concept	Existing (20	015) Build				
	MLV	Date:	1/5/2017	*	Area type:		Urban			
First year of analysis:	2015									
Last year of analysis:	2015									
Crash Data Descripti	ion									
Freeway segments	Segment crash data a	available?		No	First year of crash data:					
	Project-level crash da	?	No		f crash dat					
Ramp segments	Segment crash data a		No		of crash dat					
	Project-level crash da		?	No	,	f crash dat				
Ramp terminals	Segment crash data a		_	No		of crash dat				
	Project-level crash da	ita available	?	No	Last year o	f crash dat	a:			
Estimated Crash Sta				- 14						
Crashes for Entire Fa			Total	K	Α	В	С	PDO		
Estimated number of crashe			23.9	0.2		2.3	4.0	17.0		
Estimated average crash fre			23.9	0.2	0.5	2.3	4.0	17.0		
Crashes by Facility (•	Nbr. Sites	Total	K	Α	В	C	PDO		
Freeway segments, cr		3		0.2		2.3	4.0	17.0		
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0		
Crossroad ramp termine Crashes for Entire For		Year	Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO		
		2015	23.9	N 0.2		В	4.0			
Estimated number of o	- U		23.9	0.2	0.5	2.3	4.0	17.0		
the Study Period, cras	siles.	2016 2017								
		2017								
		2019								
		2020								
		2021								
		2022								
		2023								
		2024								
		2025								
	2026									
		2027								
		2028								
		2029								
		2030								
		2031								
		2032								
		2033								
		2034								
		2035								
		2036								
2037										
Diotribution of Co	non for Entire Feetile	2038								
DISTRIBUTION OF CRAST	istribution of Crashes for Entire Facility				mated Number of Crashes During the Study Perio					
Crash Type	Crash Type Category		Total	K	A A	B B	C	PDO		
Multiple vehicle	Head-on crashes		0.1	0.0		0.0	0.0	0.0		
Multiple Venicie	Head-on crashes: Right-angle crashes:		0.1	0.0		0.0	0.0	0.0		
	Right-angle crashes:		11.0	0.0	0.0	1.1	1.9	7.7		
	Sideswipe crashes:		3.8	0.0		0.3	0.5	3.0		
	Other multiple-vehicle crashes:		0.4	0.0		0.0	0.1	0.2		
	Total multiple-vehicle crashes:		15.5	0.1	0.3	1.5	2.5	11.1		
Single vehicle	Crashes with animal:	01401100.	0.1	0.0		0.0	0.0	0.1		
Sgio volitoto	Crashes with fixed ob	iect:	6.0	0.0	0.0	0.6	1.0	4.2		
			1.0	0.0		0.0	0.1	0.8		
	Crashes with other object:			0.0		0.0	0.0	0.0		
	Crashes with parked vehicle:		0.11	(1.)1	().()	17.11	(1.11	U. I		
			0.1							
	Other single-vehicle of Total single-vehicle	rashes	1.1	0.0	0.0	0.2	0.0 0.3 1.5	0.1 0.6 5.8		

		Out	tput Summa	ary				
General Information								
Project description:	I-270 SB Exit Ramp to	o MD 80 - S	B 1B Conce	ept Existing	g (2015) Bui	ld		
Analyst:	MLV	Date:	1/5/2017		Area type:		Urban	
First year of analysis:								
Last year of analysis:	2015							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year of crash data:			
	Project-level crash da	ıta available	?	No	Last year o	f crash data	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash data	a:	
	Project-level crash da	ıta available	?	No	Last year o	f crash data	a:	
Ramp terminals	Segment crash data a			No	First year o	of crash data	a:	
	Project-level crash da	ıta available	?	No	Last year o	f crash data	a:	
Estimated Crash Sta	atistics							
Crashes for Entire F	acility		Total	K	Α	В	С	PDO
Estimated number of crash	es during Study Period, cras	hes:	23.6	0.2	0.4	2.3	3.9	16.9
	eq. during Study Period, cra	shes/yr:	23.6	0.2	0.4	2.3	3.9	16.9
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o	crashes:	3	23.6	0.2	0.4	2.3	3.9	16.9
Ramp segments, cras		0	0.0	0.0	0.0	0.0	0.0	0.0
Crossroad ramp term		0	0.0	0.0	0.0	0.0	0.0	0.0
Crashes for Entire F	acility by Year	Year	Total	K	Α	В	С	PDO
Estimated number of	crashes during	2015	23.6	0.2	0.4	2.3	3.9	16.9
the Study Period, cra-	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2023						
		2024						
		2025						
	2026							
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Cras	hes for Entire Facility	<u> </u>						
Crash Type	Crash Type Cat	egory			er of Crash			
	,,	-90.7	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0		0.0	0.0	0.0
	Right-angle crashes:		0.3	0.0		0.0	0.1	0.2
	Rear-end crashes:		10.9	0.1	0.2	1.1	1.9	7.6
	Sideswipe crashes:		3.7	0.0		0.3	0.5	2.9
	Other multiple-vehicle crashes:		0.4	0.0		0.0	0.1	0.2
	Total multiple-vehic	le crashes:	15.3	0.1	0.3	1.5	2.5	11.0
Single vehicle	Crashes with animal:		0.1	0.0		0.0	0.0	0.1
	Crashes with fixed ob		6.0	0.0	0.1	0.6	1.0	4.2
	Crashes with other of	,	1.0	0.0		0.0	0.1	0.8
	Crashes with parked		0.1	0.0		0.0	0.0	0.1
	Other single-vehicle of		1.1	0.0	0.0	0.2	0.3	0.6
	Total single-vehicle		8.3	0.1	0.2	0.8	1.4	5.9
	Total crasl	nes:	23.6	0.2	0.4	2.3	3.9	16.9

		Outp		ary				
General Information								
Project description:	I-270 @ MD 109 (SB:	2) - Existing	(2015) No-	Build				
Analyst:	MLV	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a		No	First year of	of crash dat	a:		
	Project-level crash da		?	No	•	of crash dat		
Ramp terminals	Segment crash data a		_	No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta				- 14				
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, crasl		16.6	0.1		1.5		12.0
	eq. during Study Period, cras		16.6	0.1	0.3	1.5	2.7	12.0
Crashes by Facility	•	Nbr. Sites	Total	K	A	В	C	PDO
Freeway segments, cr		4		0.1	0.3	1.5	2.7	12.0
Ramp segments, cras Crossroad ramp termi		0	0.0	0.0		0.0		0.0
Crashes for Entire F		Year	Total	K	A 0.0	B	C 0.0	PDO
Estimated number of	• •	2015	16.6	0.1	0.3	B 1.5	2.7	12.0
the Study Period, cras		2015	10.0	0.1	0.3	1.5	2.1	12.0
the Study Feriou, cras	ones.	2017						
		2017						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
	2026							
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
2037								
Distribution of Cross	nes for Entire Facility	2038						
		Fetima			er of Crash	es During	the Study	Period
Crash Type	Crash Type Category		Total	K	A	B	C	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
manapie voliteie	Right-angle crashes:		0.2	0.0		0.0		0.0
	Rear-end crashes:		7.9	0.1	0.1	0.7	1.3	5.6
	Sideswipe crashes:		2.6	0.0		0.2	0.3	2.0
	Other multiple-vehicle crashes:		0.3	0.0	0.0	0.0	0.1	0.2
	Total multiple-vehicle crashes:		11.0	0.1	0.2	1.0	1.8	7.9
Single vehicle	Crashes with animal:		0.1	0.0		0.0	0.0	0.1
	Crashes with fixed ob	ject:	4.1	0.0	0.1	0.4	0.7	2.9
	Crashes with other ob		0.6	0.0		0.0	0.1	0.6
	Crashes with parked v	•	0.1	0.0	0.0	0.0	0.0	0.1
	Other single-vehicle c		0.7	0.0	0.0	0.1	0.2	0.4
	Total single-vehicle		5.6	0.0		0.5	0.9	4.0
	Total crash		16.6	0.1	0.3	1.5	2.7	12.0

		Out	tput Summ	ary				
General Information								
Project description:	I-270 SB Entrance Ra	amp from MI	D 109 - SB	2 Concept	Existing (20)15) Build		
Analyst:	MLV	Date:	1/4/2017		Area type:		Urban	
First year of analysis:								
Last year of analysis:	2015							
Crash Data Descript								
Freeway segments	Segment crash data a	available?		No	First year of crash data:			
	Project-level crash da		?	No	Last year o	of crash data	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash data	a:	
	Project-level crash da		?	No	•	f crash data		
Ramp terminals	Segment crash data a		_	No	,	of crash data		
	Project-level crash da	ıta available	?	No	Last year o	f crash data	a:	
Estimated Crash Sta					-			
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		16.7	0.1		1.6	2.8	11.9
	eq. during Study Period, cra-		16.7	0.1	0.3	1.6	2.8	11.9
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o		4	16.7	0.1	0.3	1.6	2.8	11.9
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp term		0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	A	В	С	PDO
Estimated number of	•	2015	16.7	0.1	0.3	1.6	2.8	11.9
the Study Period, crashes:		2016						
		2017						
		2018 2019						
		2020 2021						
		2021						
		2022						
		2023						
		2025						
	2026							
<u> </u>		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Cras	hes for Entire Facility	<u> </u>			-			_
Crash Type	Crash Type Cat	egory			er of Crash			
	,	J. ,	Total	K	A	В	С	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0		0.0	0.0	0.0
	Right-angle crashes:		0.2	0.0		0.0	0.0	0.1
	Rear-end crashes:		7.9	0.1	0.1	0.7	1.3	5.6
	Sideswipe crashes:		2.7	0.0		0.2	0.3	2.1
	Other multiple-vehicle crashes:		0.3	0.0		0.0	0.0	0.2
Cinala veletel	Total multiple-vehic	ie crashes:	11.0	0.1	0.2	1.0	1.8	8.0
Single vehicle	Crashes with animal:	ioot	0.1	0.0		0.0	0.0	0.1
	Crashes with fixed ob		4.1	0.0	0.1	0.4	0.7	2.8
	Crashes with other ob	,	0.6	0.0		0.0	0.1	0.6
	Crashes with parked		0.1	0.0		0.0	0.0	0.1
	Other single-vehicle of		0.8	0.0		0.1	0.2	0.4
	Total single-vehicle Total crasl		5.6 16.7	0.0	0.1	0.6 1.6	1.0 2.8	3.9 11.9
	i otal crasi	1 0 5.	10.7	U. I	0.3	1.0	۷.8	11.9

Estimated number of crashes during Study Period, crashes: Estimated average crash freq. during Study Period, crashes/yr: Crashes by Facility Component Nbr. Sites Total Nbr. Sites Nbr.			Out	tput Summ	ary						
Analyst	neral Information										
First year of analysis: 2015	oject description:	I-270 @ I-370 (SB 5A)) - Existing	(2015) No-E	Build						
Last year of analysis: 2015 Segment crash data available? No First year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level c	alyst:	MLV	Date:	1/4/2017		Area type:		Urban			
Freeway segments Project-level crash data available? Ramp segments Segment crash data available? Roway segments Project-level crash data available? Ramp segments Segment crash data available? Roway segments Segment crash data available? Roway segments crashes during study Period, crashes: In total Korashes for Entire Facility Carshes by Facility Component Nbr. Sites Roway segments, crashes: In tal. South O.2 In.2 2.6 Crashes by Facility Component Nbr. Sites Roway segments, crashes: In tal. South O.2 In.2 2.6 Crashes by Facility Component Nbr. Sites Roway segments, crashes: In tal. South O.2 In.2 2.6 Crashes for Entire Facility by Year Year Total Crashes for Entire Facility by Year Year Total Roway segments, crashes In tal. South O.2 In.2 2.6 Crashes for Entire Facility by Year Year Total Crashes for Entire Facility by Year Year Total Crashes for Entire Facility by Year Year Crashes to In tal. South O.2 In.2 2.6 In tal. South O.3 In. So	st year of analysis:	2015									
Segment crash data available? No First year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No First year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Project-level crash data available? No Last year of crash data: Project-level crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level cra	st year of analysis:	2015									
Project-level crash data available? No Last year of crash data:	ash Data Descript	ion									
Ramp segments	eway segments	Segment crash data a	vailable?		No	First year of crash data:					
Project-level crash data available? No Last year of crash data:		Project-level crash da	?	No	Last year o	of crash dat	a:				
Ramp terminals	mp segments	Segment crash data a	•		No	First year of	of crash dat	ta:			
Project-level crash data available? No Last year of crash data:				?							
Stimated Crash Statistics Total K A B C Estimated number of crashes during Study Period, crashes: 14.5 0.1 0.2 1.2 2.6	mp terminals			_		,					
Crashes for Entire Facility Total K A B C Estimated number of crashes during Study Period, crashes:		,	ta available	?	No	Last year o	of crash dat	a:			
Estimated number of crashes during Study Period, crashes: Estimated average crash freq, during Study Period, crashesyly: Crashes by Facility Component Freeway segments, crashes: 1 14.5 0.1 0.2 1.2 2.6 Ramp segments, crashes: 0 0.0 0.0 0.0 0.0 0.0 0.0 Crossroad ramp terminals, crashes: 0 0.0 0.0 0.0 0.0 0.0 0.0 Crossroad ramp terminals, crashes: 0 0.0 0.0 0.0 0.0 0.0 0.0 Crossroad ramp terminals, crashes: 0 0.0 0.0 0.0 0.0 0.0 0.0 Crossroad ramp terminals, crashes: 0 0.0 0.0 0.0 0.0 0.0 0.0 Crossroad ramp terminals, crashes: 0 0.0 0.0 0.0 0.0 0.0 0.0 Crossroad ramp terminals, crashes: 0 0.0 0.0 0.0 0.0 0.0 0.0 Crossroad ramp terminals, crashes: 0 0.0 0.0 0.0 0.0 0.0 0.0 Crossroad ramp terminals, crashes: 0 0.0 0.0 0.0 0.0 0.0 0.0 Crossroad ramp terminals, crashes: 0 0.0 0.0 0.0 0.0 0.0 0.0 Crossroad ramp terminals, crashes: 14.5 0.1 0.2 1.2 2.6 I.2 2.6 I.2 2.6 I.2 2.6 I.2 2.6 2					14						
Estimated average crash freq. during Study Period, crashes/yr: 14.5									PDO		
Crashes by Facility Component Nbr. Sites Total K A B C Freeway segments, crashes: 1 14.5 0.1 0.2 1.2 2.6 Ramp segments, crashes: 0 0.0											
Freeway segments, crashes: 1				_		_		_	10.4		
Ramp segments, crashes:		•							PDO		
Crossroad ramp terminals, crashes:									10.4		
Crash Sor Entire Facility by Year Year Total K A B C F									0.0		
Estimated number of crashes during the Study Period, crashes: 2016			-						0.0 PDO		
the Study Period, crashes: 2016									10.4		
2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2031 2032 2033 2034 2035 2036 2037 2038 2036 2037 2038 2037 2038 2037 2038 2038 2037 2038 2037 2038 2038 2037 2038 2037 2038 2038 2037 2037 2038 2037		•		14.5	0.1	0.2	1.2	2.6	10.4		
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2031 2032 2033 2034 2035 2036 2037 2038 2037 2037 2038 2037 2038 2037 2038 2037 2038 2037 2038 2037	Study Period, Cras	siles.									
2019											
2020											
2021											
2022											
2023											
2024			_								
2025											
2026											
2028		202									
2029			2027								
2030			2028								
2031			2029								
2032			2030								
2033			2031								
2034 2035 2036 2037 2038 Distribution of Crashes for Entire Facility Crash Type Crash			2032								
2035 2036 2037 2038 Distribution of Crashes for Entire Facility Crash Type			2033								
2036 2037 2038 Distribution of Crashes for Entire Facility Crash Type Crash			2034								
2037 2038 Distribution of Crashes for Entire Facility Crash Type Crash Type Category Estimated Number of Crashes During the Study Per											
Distribution of Crashes for Entire Facility Crash Type Crash Type Crash Type Category Estimated Number of Crashes During the Study Per	2037										
Distribution of Crashes for Entire Facility Crash Type Crash Type Crash Type Category Estimated Number of Crashes During the Study Per											
Crash Type Crash Type Category Estimated Number of Crashes During the Study Per	otribution of Co	hoo for Entire Feetite	2038								
Crash Lyne Crash Lyne Category	·					time to d Number of Occasion Desires the Ottoba Desire					
	Crash Type	Crash Type Cate	egory	Total	tea Numb K	er of Crast	es During B	tne Study	Period		
Multiple vehicle Head-on crashes: 0.0 0.0 0.0 0.0 0.0 0.0	Iltiple vehicle	Head-on crashes:						_	0.0		
Right-angle crashes: 0.0 0.0 0.0 0.0 0.1	ividitiple venicie								0.0		
Rear-end crashes: 6.9 0.0 0.1 0.6 1.3									4.8		
Sideswipe crashes: 2.3 0.0 0.0 0.2 0.3									1.8		
		Other multiple-vehicle crashes:							0.2		
Total multiple-vehicle crashes: 9.7 0.1 0.1 0.8 1.7									6.9		
Single vehicle Crashes with animal: 0.1 0.0 0.0 0.0 0.0	nale vehicle	•	2 0.001100.						0.1		
Crashes with fixed object: 3.4 0.0 0.0 0.3 0.6	.5.0 10111010		iect:						2.5		
Crashes with other object: 0.5 0.0 0.0 0.0 0.0									0.5		
Crashes with parked vehicle: 0.1 0.0 0.0 0.0 0.0			•						0.0		
Other single-vehicle crashes 0.7 0.0 0.0 0.1 0.2									0.4		
Total single-vehicle crashes: 4.8 0.0 0.1 0.4 0.9									3.4		
Total crashes: 14.5 0.1 0.2 1.2 2.6											

		Outp		ary				
General Information								
Project description:	I-270 SB Exit Ramp	to I-370 - SB	5A Concep	t Existing	(2015) Build	d		
Analyst:	MLV	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2015	-						
Last year of analysis:								
Crash Data Descrip	tion							
Freeway segments	Segment crash data	available?		No	First year of crash data:			
, ,	Project-level crash of	data available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data available?			No	First year o	of crash dat	a:	
	Project-level crash of	data available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data	available?		No	First year of	of crash dat	a:	
	Project-level crash of	data available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta	atistics							
Crashes for Entire F	acility		Total	K	Α	В	С	PDO
Estimated number of crash	es during Study Period, cr	ashes:	13.9	0.1	0.2	1.2	2.4	10.0
Estimated average crash fr	eq. during Study Period, c	rashes/yr:	13.9	0.1	0.2	1.2	2.4	10.0
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o	rashes:	1	13.9	0.1	0.2	1.2	2.4	10.0
Ramp segments, cras	shes:	0	0.0	0.0	0.0	0.0	0.0	0.0
Crossroad ramp term	inals, crashes:	0	0.0	0.0	0.0	0.0	0.0	0.0
Crashes for Entire F	acility by Year	Year	Total	K	Α	В	C	PDO
Estimated number of	crashes during	2015	13.9	0.1	0.2	1.2	2.4	10.0
the Study Period, cra	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035			ļ			
		2036						
		2037						
Diotribution of C	hoo for Ertiro Es -!!!	2038						
Distribution of Cras	mated Number of Crashes During the Study Period							
Crash Type	Crash Type C	ategory						
			Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0		0.0	0.0	0.0
	Right-angle crashes:		0.2	0.0		0.0	0.1	0.1
	Rear-end crashes:		6.9	0.0		0.6	1.3	4.8
	Sideswipe crashes:		2.3	0.0		0.2	0.3	1.8
	Other multiple-vehicle crashes:		0.3	0.0		0.0	0.1	0.2
0: 1 1::	Total multiple-veh		9.7	0.1		0.8	1.7	6.9
Single vehicle	Crashes with anima		0.1	0.0		0.0	0.0	0.1
	Crashes with fixed of	•	3.0	0.0		0.2	0.5	2.2
	Crashes with other	•	0.5	0.0		0.0	0.0	0.4
	Crashes with parket		0.1	0.0		0.0	0.0	0.0
	Other single-vehicle		0.6	0.0		0.1	0.1	0.3
	Total single-vehicle crashes: Total crashes:		4.2 13.9	0.0 0.1		0.3 1.2	0.7 2.4	3.1 10.0
					. 02			

		Out	tput Summ	ary				
General Information								
	I-270 SB Slip Ramps	Between Sh	nady Grove	Rd and MI	O 28 (SB 6)	- Existing (2015) No-E	Build
	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descripti	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of crash data:			
	Project-level crash da	ta available	?	No	Last year o	f crash dat	a:	
Ramp segments	Segment crash data a		No	First year of	of crash dat	a:		
	Project-level crash da	ta available	?	No	Last year o	f crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year c	f crash dat	a:	
Estimated Crash Sta						_	_	
Crashes for Entire Fa			Total	K	Α	В	С	PDO
Estimated number of crashe			9.7	0.1		1.2	3.5	4.6
	eq. during Study Period, cras		9.7	0.1	0.2	1.2	3.5	4.6
Crashes by Facility (•	Nbr. Sites	Total	K	A	В	С	PDO
Freeway segments, cr		0		0.0		0.0	0.0	0.0
Ramp segments, cras Crossroad ramp termi		3		0.1	0.2	1.2	3.5	4.6
Crossroad ramp termi	,	Year	0.0 Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
							_	
Estimated number of o	0	2015	9.7	0.1	0.2	1.2	3.5	4.6
the Study Period, cras	ities.	2016 2017						
		2017						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
	2026							
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
	2037							
Distribution of Cuc-	nos for Entiro Essilit	2038						
יוטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	tion of Crashes for Entire Facility				er of Crash	os Durina	the Study	Pariod
Crash Type	Crash Type Category		Total	K	A A	B B	C	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.0	0.0
ividitiple venicie	Right-angle crashes:		0.1	0.0		0.0	0.0	0.0
	Rear-end crashes:		5.5	0.0	0.0	0.8	2.3	2.2
	Sideswipe crashes:		2.0	0.0		0.1	0.4	1.4
	Other multiple-vehicle crashes:		1.1	0.0	0.0	0.2	0.5	0.4
	Total multiple-vehicle crashes:		8.7	0.1	0.2	1.1	3.3	4.0
Single vehicle	Crashes with animal:		0.0	0.0		0.0	0.0	0.0
J = 1.4.5	Crashes with fixed ob	ect:	0.7	0.0	0.0	0.1	0.2	0.5
	Crashes with other ob		0.0	0.0		0.0	0.0	0.0
	Crashes with parked v	•	0.0	0.0		0.0	0.0	0.0
	Other single-vehicle c		0.2	0.0		0.0	0.1	0.1
	Total single-vehicle		0.9	0.0		0.1	0.3	0.6
	Total crash		9.7	0.1	0.2	1.2	3.5	4.6

		Outp		ary				
General Information								
Project description:	I-270 SB Slip Ramps	Between SI	hady Grove	Rd and MI	D 28 - SB 6	Concept E	xisting (201	5) Build
Analyst:	LW	Date:	1/4/2017		Area type:	· ·	Urban	<u>'</u>
First year of analysis:	2015	•	•					
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of crash data:			
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a		No	First year of	of crash dat	a:		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	•	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		7.3	0.0		0.8	2.2	4.1
	eq. during Study Period, cras		7.3	0.0	0.1	0.8	2.2	4.1
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		0		0.0		0.0	0.0	0.0
Ramp segments, cras		3		0.0		0.8	2.2	4.1
Crossroad ramp termi	,	0		0.0		0.0	0.0	0.0
Crashes for Entire F	• •	Year	Total	K	A	В	С	PDO
Estimated number of	•	2015	7.3	0.0	0.1	0.8	2.2	4.1
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019 2020						
		2020						
		2021						
		2022						
		2023						
		2025						
	202							
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
203								
		2038						
Distribution of Crasi	hes for Entire Facility	'						-
Crash Type	Crash Type Category				er of Crash			
.	7.	J. ,	Total	K	A	В	С	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.0	0.0		0.0	0.0	0.0
	Rear-end crashes:		3.9	0.0	0.1	0.5	1.4	2.0
	Sideswipe crashes:		1.5	0.0		0.1	0.3	1.2
	Other multiple-vehicle crashes:		0.7	0.0	0.0	0.1	0.3	0.4
Cinalo vobi-l-	Total multiple-vehicl	e crasnes:	6.3	0.0		0.7	2.0	3.6
Single vehicle	Crashes with animal:	inati	0.0	0.0		0.0	0.0	0.0
	Crashes with fixed ob		0.7	0.0	0.0	0.1	0.2	0.5
	Crashes with parked	•	0.0	0.0		0.0	0.0	0.0
	Crashes with parked v		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle c		0.2	0.0		0.0	0.1	0.1
	Total single-vehicle Total crash		0.9 7.3	0.0		0.1 0.8	0.3 2.2	0.6 4.1
	i Ulai Ulasi	103.	1.3	0.0	U. I	0.0	۷.۷	4.1

		Out	tput Summa	ary				
General Information	1							
Project description:	I-270 SB Local Lanes	Between M	1D 28 and M	1D 189 (SE	3 7) - Existin	ıg (2015) N	o-Build	
Analyst:	MLV	Date:	1/4/2017		Area type:		Urban	
First year of analysis:								
Last year of analysis:	2015							
Crash Data Descrip	tion							
Freeway segments	Segment crash data a	available?		No	First year of	of crash data	a:	
	Project-level crash da		?	No	Last year o	of crash data	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash data	a:	
	Project-level crash da		?	No		f crash data		
Ramp terminals	Segment crash data a			No	,	of crash data		
	Project-level crash da	ita available	?	No	Last year o	f crash data	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		25.9	0.2		4.1	11.8	9.0
	req. during Study Period, cra		25.9	0.2	_	4.1	11.8	9.0
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o		0		0.0		0.0	0.0	0.0
Ramp segments, cras		4		0.2		4.1	11.8	9.0
Crossroad ramp term		0 V aar		0.0		0.0	0.0	0.0
Crashes for Entire I		Year	Total	K	Α 0.7	В	C 44.0	PDO
Estimated number of	•	2015	25.9	0.2	0.7	4.1	11.8	9.0
the Study Period, cra	snes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Cras	hes for Entire Facility	/						
Crash Type	Crash Type Cat	egory			er of Crash			
	, ,		Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0		0.1	0.2	0.1
	Right-angle crashes: Rear-end crashes:		0.2	0.0		0.0	0.1	0.0
	Sideswipe crashes:		15.8	0.2		2.8 0.5	8.0 1.5	4.4
	Other multiple-vehicle	crachoo:	4.7 3.0	0.0		0.5	1.5	2.7 0.8
Single vehicle	Total multiple-vehic Crashes with animal:	ie crasnes:	24.1	0.2		3.9	11.3	8.0
Single vehicle	Crashes with fixed ob	viect.	0.0 1.4	0.0		0.0 0.1	0.0 0.4	0.0 0.9
	Crashes with other of		0.0	0.0		0.1	0.4	0.9
	Crashes with parked	,	0.0	0.0		0.0	0.0	0.0
			0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes Total single-vehicle crashes:		1.8	0.0		0.0	0.1	1.0
	Total crasl		25.9	0.0		4.1	11.8	9.0
	10141 01431		20.0	0.2	0.7	7.1	11.0	5.0

		Out	tput Summ	ary				
General Information								
Project description:	I-270 SB Local Lanes	Between M	ID 28 and M	1D 189 - SI	B 7 Concep	t Existing (2	2015) Build	
Analyst:	MLV	Date:	1/4/2017		Area type:	•	Urban	
First year of analysis:	2015	•						
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year c	of crash dat	a:	
Estimated Crash Sta						_		
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		14.3	0.1		1.7	5.0	7.2
	eq. during Study Period, cras		14.3	0.1	0.3	1.7	5.0	7.2
Crashes by Facility	•	Nbr. Sites	Total	K	A	В	С	PDO
Freeway segments, co		0		0.0		0.0	0.0	0.0
Ramp segments, cras Crossroad ramp termi		4	14.3 0.0	0.1	0.3	1.7	5.0	7.2
Crossroad ramp termi		Year	Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
							5.0	
Estimated number of on the Study Period, crass	•	2015	14.3	0.1	0.3	1.7	5.0	7.2
the Study Period, cras	siles.	2016 2017						
		2017						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037 2038						
Distribution of Crast	hes for Entire Facility							
			Estima	ted Numh	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.1	0.1
•	Right-angle crashes:		0.1	0.0	0.0	0.0	0.0	0.0
	Rear-end crashes:		7.8	0.1	0.2	1.1	3.1	3.4
	Sideswipe crashes:		2.9	0.0	0.0	0.2	0.6	2.1
	Other multiple-vehicle	crashes:	1.5	0.0	0.0	0.2	0.6	0.6
	Total multiple-vehicl	e crashes:	12.4	0.1	0.3	1.5	4.3	6.2
Single vehicle	Crashes with animal:		0.0	0.0	0.0	0.0	0.0	0.0
	Crashes with fixed ob		1.5	0.0	0.0	0.2	0.5	0.8
	Crashes with other ob		0.0	0.0		0.0	0.0	0.0
	Crashes with parked v		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes		0.4	0.0		0.1	0.2	0.1
	Total single-vehicle		1.9	0.0		0.2	0.6	1.0
	Total crash	nes:	14.3	0.1	0.3	1.7	5.0	7.2

		Out	tput Summa	ary				
General Information				•				
Project description:	I-270 SB Local Lanes	Between M	ID 189 and	Montrose I	Rd (SB 8) -	Existing (20	015) No-Bu	ild
Analyst:	MLV	Date:	1/4/2017		Area type:	,	Urban	
First year of analysis:	2015	•						
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	f crash dat	a:	
Ramp segments	Segment crash data a	egment crash data available? No First year of crash data:				a:		
	Project-level crash da	ta available	?	No	Last year o	f crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year c	f crash dat	a:	
Estimated Crash Sta						_	_	
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		22.0	0.2		3.6	9.3	8.2
	eq. during Study Period, cras		22.0	0.2	0.7	3.6	9.3	8.2
Crashes by Facility	•	Nbr. Sites	Total	K	A	В	С	PDO
Freeway segments, c		0		0.0		0.0	0.0	0.0
Ramp segments, cras		3	22.0	0.2		3.6	9.3	8.2
Crossroad ramp termi Crashes for Entire F		O Year	0.0 Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
	* *			0.2			_	
Estimated number of	•	2015	22.0	0.2	0.7	3.6	9.3	8.2
the Study Period, cras	siles.	2016 2017						
		2017						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037 2038						
Distribution of Crast	hes for Entire Facility							
			Estima	ted Numh	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0	0.0	0.1	0.1	0.1
•	Right-angle crashes:		0.2	0.0	0.0	0.0	0.1	0.0
	Rear-end crashes:		13.3	0.2	0.5	2.5	6.3	4.0
	Sideswipe crashes:		4.1	0.0	0.1	0.4	1.1	2.4
	Other multiple-vehicle	crashes:	2.6	0.0	0.1	0.5	1.2	0.7
	Total multiple-vehicl	e crashes:	20.5	0.2	0.7	3.5	8.9	7.2
Single vehicle	Crashes with animal:		0.0	0.0	0.0	0.0	0.0	0.0
	Crashes with fixed ob	ject:	1.2	0.0	0.0	0.1	0.3	0.8
	Crashes with other ob	•	0.0	0.0		0.0	0.0	0.0
	Crashes with parked v		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes		0.3	0.0		0.0	0.1	0.1
	Total single-vehicle		1.6	0.0		0.2	0.4	0.9
	Total crash	nes:	22.0	0.2	0.7	3.6	9.3	8.2

		Ou	tput Summ	ary				
General Information								
	I-270 SB Local Lanes	Between M	1D 189 and	Montrose I	Rd - SB 8 C	oncept Exi	sting (2015) Build
	MLV	Date:	1/4/2017		Area type:		Urban	•
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No		of crash dat		
	Project-level crash da	ta available	?	No	Last year c	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire Fa	-		Total	K	Α	В	С	PDO
	es during Study Period, cras		16.6	0.1		2.1	6.2	7.7
	eq. during Study Period, cras		16.6	0.1	0.4	2.1	6.2	7.7
Crashes by Facility (•	Nbr. Sites	Total	K	A	В	С	PDO
Freeway segments, cr		0		0.0		0.0	0.0	0.0
Ramp segments, cras Crossroad ramp termi		3		0.1	0.4	2.1	6.2	7.7
		Year	Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
Crashes for Entire Fa Estimated number of o	• •	2015	16.6	0.1	0.4	2.1	6.2	7.7
the Study Period, cras	J	2015	10.0	0.1	0.4	2.1	6.2	1.1
the Study Period, Clas	siles.	2016						
		2017						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037 2038						
Distribution of Crash	nes for Entire Facility							l
			Estima	ted Numh	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.2	0.0	0.0	0.0	0.1	0.1
•	Right-angle crashes:		0.1	0.0	0.0	0.0	0.1	0.0
	Rear-end crashes:		9.4	0.1	0.3	1.4	4.0	3.7
	Sideswipe crashes:		3.3	0.0	0.0	0.3	0.7	2.3
	Other multiple-vehicle	crashes:	1.8	0.0	0.0	0.3	0.8	0.7
	Total multiple-vehicl	e crashes:	14.9	0.1	0.4	2.0	5.7	6.8
Single vehicle	Crashes with animal:		0.0	0.0	0.0	0.0	0.0	0.0
	Crashes with fixed ob	ject:	1.3	0.0	0.0	0.1	0.4	0.8
	Crashes with other ob	•	0.0	0.0		0.0	0.0	0.0
	Crashes with parked v		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes		0.3	0.0		0.0	0.1	0.1
	Total single-vehicle		1.7	0.0		0.2	0.5	1.0
	Total crash	nes:	16.6	0.1	0.4	2.1	6.2	7.7

		Out	tput Summ	ary				
General Information								
Project description:	I-270 SB West Spur a	t Merge wit	h I-495 Out	er Loop (SI	B 10) - Exis	ting (2015)	No-Build	
Analyst:	MLV	Date:	1/4/2017		Area type:	,	Urban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		19.3	0.1		1.5	3.4	14.1
	eq. during Study Period, cras		19.3	0.1	0.2	1.5	3.4	14.1
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		3		0.1	0.2	1.5	3.4	14.1
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp termi	,	0		0.0		0.0	0.0	0.0
Crashes for Entire F	• •	Year	Total	K	Α	В	С	PDO
Estimated number of		2015	19.3	0.1	0.2	1.5	3.4	14.1
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019 2020						
		2020						
		2021						
		2022						
		2023						
		2024						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						-
		2038						
Distribution of Crasi	hes for Entire Facility	·						
Crash Type	Crash Type Cat	egory			er of Crash			
	7.	,	Total	K	A	В	С	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.3	0.0		0.0	0.1	0.2
	Rear-end crashes:		9.5	0.0	0.1	0.8	1.7	6.8
	Sideswipe crashes:	orook ss:	3.3	0.0		0.2	0.4	2.6
	Other multiple-vehicle		0.3	0.0	0.0	0.0	0.1	0.2
Cinalo vahi-i-	Total multiple-vehicl	e crasnes:	13.4	0.1	0.2	1.0	2.3	9.9
Single vehicle	Crashes with animal:	inati	0.1	0.0		0.0	0.0	0.1
	Crashes with fixed ob		4.2	0.0	0.1	0.4	0.8	3.0
	Crashes with other ob	•	0.7	0.0		0.0	0.1	0.6
	Crashes with parked v		0.1	0.0		0.0	0.0	0.1
	Other single-vehicle crashes		0.8	0.0		0.1	0.2	0.4
	Total single-vehicle Total crash		5.9 19.3	0.0	0.1	0.5 1.5	1.1 3.4	4.2 14.1
	i otai crasi	ICO.	19.3	U. I	0.2	1.5	ა.4	14.1

		Out	tput Summ	ary				
General Information								
	I-270 SB West Spur a	t Merge wit	h I-495 Oute	er Loop - S	B 10 Conce	ept Existing	(2015) Bui	ld
Analyst:	MLV	Date:	1/4/2017		Area type:		Ùrban	
First year of analysis:	2015	•						
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year c	of crash dat	a:	
Estimated Crash Sta						_		
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, crast		16.5	0.1		1.5	3.3	11.4
	eq. during Study Period, cras		16.5	0.1	0.2	1.5	3.3	11.4
Crashes by Facility	•	Nbr. Sites	Total	K	A	В	С	PDO
Freeway segments, cr		3		0.1	0.2	1.5	3.3	11.4
Ramp segments, cras Crossroad ramp termi		0		0.0		0.0	0.0	0.0
	,	Year	0.0 Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
Crashes for Entire For Estimated number of the control of the cont	• •	2015	1 ota 1	K 0.1	A 0.2	В	3.3	
the Study Period, cras			16.5	0.1	0.2	1.5	3.3	11.4
the Study Period, Cras	siles.	2016 2017						
		2017						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037 2038						
Distribution of Crast	nes for Entire Facility							
			Estima	ted Numh	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cate	egory	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
•	Right-angle crashes:		0.3	0.0	0.0	0.0	0.1	0.2
	Rear-end crashes:		8.3	0.0	0.1	0.8	1.7	5.7
	Sideswipe crashes:		3.0	0.0	0.0	0.2	0.4	2.3
	Other multiple-vehicle	crashes:	0.3	0.0	0.0	0.0	0.1	0.2
	Total multiple-vehicl	e crashes:	11.9	0.1	0.2	1.0	2.3	8.4
Single vehicle	Crashes with animal:		0.1	0.0	0.0	0.0	0.0	0.1
	Crashes with fixed obj	ject:	3.3	0.0	0.0	0.3	0.7	2.1
	Crashes with other ob	•	0.5	0.0		0.0	0.1	0.5
	Crashes with parked v		0.1	0.0		0.0	0.0	0.0
	Other single-vehicle crashes		0.7	0.0		0.1	0.2	0.3
	Total single-vehicle		4.6	0.0		0.5	1.0	3.0
	Total crash	nes:	16.5	0.1	0.2	1.5	3.3	11.4

		Out	tput Summa	ary				
General Information				•				
Project description:	I-270 SB West Spur B	etween MD	189 and D	emocracy	Blvd (SB 12) - Existing	(2015) No-	Build
Analyst:	MLV, LW	Date:	1/4/2017		Area type:		Ùrban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da		?	No	Last year o	f crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da		?	No	•	f crash dat		
Ramp terminals	Segment crash data a		_	No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	f crash dat	a:	
Estimated Crash Sta				.,		_		
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		137.3	0.6		11.1	24.2	99.8
	eq. during Study Period, cras		137.3	0.6	1.6	11.1	24.2	99.8
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		16	137.3	0.6		11.1	24.2	99.8
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termi Crashes for Entire F		Year	Total	0.0 K	0.0 A	0.0 B	C	0.0 PDO
	• •	2015	137.3	0.6	1.6	11.1	24.2	99.8
Estimated number of the Study Period, cras	•	2015	131.3	0.6	1.6	11.1	24.2	99.8
ine Study Period, Cras	DI 100.	2016						
		2017						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
Distribution of Cros	hes for Entire Facility	2038						
PISHIDUHUH UI CIASI			Fetima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	B	C	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0	0.0	0.1	0.1	0.1
	Right-angle crashes:		2.0	0.0		0.2	0.5	1.2
	Rear-end crashes:		66.5	0.3	0.8	5.7	12.4	47.2
	Sideswipe crashes:		23.0	0.1	0.2	1.4	3.0	18.3
	Other multiple-vehicle	crashes:	2.4	0.0	0.0	0.2	0.5	1.6
	Total multiple-vehicl		94.2	0.4	1.1	7.6	16.6	68.5
Single vehicle	Crashes with animal:		0.7	0.0		0.0	0.0	0.7
	Crashes with fixed ob	ject:	30.9	0.1	0.4	2.5	5.5	22.4
	Crashes with other ob		5.0	0.0	0.0	0.2	0.4	4.4
	Crashes with parked v	/ehicle:	0.7	0.0		0.1	0.1	0.5
	Other single-vehicle c	rashes	5.8	0.0	0.1	0.7	1.6	3.3
	Total single-vehicle	crashes:	43.1	0.2	0.5	3.5	7.6	31.3
	Total crash	nes:	137.3	0.6	1.6	11.1	24.2	99.8

		Out	tput Summa	ary				
General Information								
Project description:	I-270 SB West Spur B	Between MD	189 and D	emocracy	Blvd - SB 1:	2 Concept I	Existing (20	15) Build
Analyst:	MLV, LW	Date:	1/4/2017		Area type:	•	Urban	•
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year of crash data:			
Ramp segments	Segment crash data a	egment crash data available? No First year of crash data:				a:		
	Project-level crash da		?	No	•	f crash dat		
Ramp terminals	Segment crash data a		_	No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year c	f crash dat	a:	
Estimated Crash Sta				- 14				
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		130.3	0.7		11.5	24.6	91.8
	eq. during Study Period, cras		130.3	0.7	1.7	11.5	24.6	91.8
Crashes by Facility	•	Nbr. Sites	Total	K	Α	B	С	PDO
Freeway segments, c		16		0.7	1.7	11.5	24.6	91.8
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp termi Crashes for Entire F		Year	Total	0.0 K	0.0 A	0.0 B	C	0.0 PDO
			130.3				_	91.8
Estimated number of the Study Period, cras	•	2015 2016	130.3	0.7	1.7	11.5	24.6	91.8
ine Study Period, Cras	511 0 5.	2016						
		2017						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
Distribution of Con-	has for Entire Essilia	2038						
บเอนามนนบท บา CfaSi	hes for Entire Facility	1	Fetimo	tad Numb	er of Crash	os Durina	the Study	Pariod
Crash Type	Crash Type Cat	egory	Total	K	A A	B B	C	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0	0.0	0.1	0.1	0.1
	Right-angle crashes:		1.9	0.0		0.1	0.5	1.1
	Rear-end crashes:		60.5	0.3	0.8	5.6	12.0	41.8
	Sideswipe crashes:		20.8	0.1	0.2	1.3	2.9	16.3
	Other multiple-vehicle	crashes:	2.2	0.0	0.0	0.2	0.5	1.4
	Total multiple-vehicl		85.6	0.4		7.4	16.0	60.7
Single vehicle	Crashes with animal:		0.7	0.0		0.0	0.0	0.7
g = 1 · · · · ·	Crashes with fixed ob	ject:	32.0	0.2	0.4	2.9	6.3	22.2
	Crashes with other ob		5.1	0.0		0.2	0.5	4.4
	Crashes with parked v	,	0.7	0.0		0.1	0.1	0.5
	Other single-vehicle crashes		6.1	0.1	0.1	0.8	1.8	3.3
	Total single-vehicle crashes:		44.6	0.2	0.6	4.1	8.7	31.1
	Total crash		130.3	0.7	1.7	11.5	24.6	91.8

		Out	tput Summa	ary				
General Information)							
Project description:	I-270 NB West Spur	Between De	mocracy Blv	d and MD	189 (NB 1)	- Existing ((2015) No-E	Build
Analyst:	MLV	Date:	1/4/2017		Area type:		Urban	
First year of analysis:								
Last year of analysis:	2015							
Crash Data Descrip	tion							
Freeway segments	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash da	ata available	?	No	Last year o	f crash data	a:	
Ramp segments	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash da	ata available	?	No	Last year o	f crash data	a:	
Ramp terminals	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash da	ata available	?	No	Last year o	f crash data	a:	
Estimated Crash Sta	atistics							
Crashes for Entire F	acility		Total	K	Α	В	С	PDO
Estimated number of crash	nes during Study Period, cra	shes:	127.5	0.6	1.5	10.3	22.7	92.4
Estimated average crash fr	req. during Study Period, cra	ashes/yr:	127.5	0.6	1.5	10.3	22.7	92.4
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o	crashes:	12	127.5	0.6	1.5	10.3	22.7	92.4
Ramp segments, cras		0	0.0	0.0	0.0	0.0	0.0	0.0
Crossroad ramp term		0	0.0	0.0	0.0	0.0	0.0	0.0
Crashes for Entire F	acility by Year	Year	Total	K	Α	В	С	PDO
Estimated number of		2015	127.5	0.6	1.5	10.3	22.7	92.4
the Study Period, cra	•	2016						
, ,		2017						
		2018						
		2019						
		2020						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Cras	hes for Entire Facilit	<u> </u>						
Crash Type	Crash Type Ca	tegory			er of Crash			
	Orasii Type Ca	logory	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0	0.0	0.1	0.1	0.1
	Right-angle crashes:		1.9	0.0		0.2	0.5	1.1
	Rear-end crashes:		61.3	0.3		5.2	11.5	43.4
	Sideswipe crashes:		21.1	0.1	0.2	1.3	2.8	16.8
	Other multiple-vehicle	e crashes:	2.2	0.0	0.0	0.2	0.5	1.5
	Total multiple-vehic	cle crashes:	86.8	0.4	1.0	7.0	15.4	63.0
Single vehicle	Crashes with animal:		0.7	0.0	0.0	0.0	0.0	0.6
	Crashes with fixed of	oject:	29.2	0.1	0.4	2.4	5.3	21.0
	Crashes with other o	bject:	4.7	0.0	0.0	0.2	0.4	4.1
	Crashes with parked	vehicle:	0.6	0.0	0.0	0.0	0.1	0.5
	Other single-vehicle crashes		5.5	0.0	0.1	0.7	1.5	3.1
	Total single-vehicle crashes:		40.7	0.2		3.3	7.3	29.4
	Total cras		127.5	0.6	1.5	10.3	22.7	92.4

		Out	tput Summ	ary				
General Information	1							
Project description:	I-270 NB West Spur B	Between De	mocracy Blv	vd and MD	189 - NB 1	Concept E	xisting (201	5) Build
Analyst:	MLV	Date:	1/4/2017		Area type:		Urban	
First year of analysis								
Last year of analysis:	2015							
Crash Data Descrip	tion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash data	a:	
	Project-level crash da		?	No	Last year o	f crash data	a:	
Ramp segments	Segment crash data a		No	First year o	of crash data	a:		
	Project-level crash da	ıta available	?	No	Last year o	f crash data	a:	
Ramp terminals	Segment crash data a			No	,	of crash data		
	Project-level crash da	ıta available	?	No	Last year o	f crash data	a:	
Estimated Crash St	atistics							
Crashes for Entire I	Facility		Total	K	Α	В	С	PDO
Estimated number of crash	nes during Study Period, cras	shes:	118.9	0.6	1.5	10.4	22.4	84.0
	req. during Study Period, cra	shes/yr:	118.9	0.6	1.5	10.4	22.4	84.0
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, of		12	118.9	0.6	1.5	10.4	22.4	84.0
Ramp segments, cra		0		0.0		0.0	0.0	0.0
Crossroad ramp term		0		0.0		0.0	0.0	0.0
Crashes for Entire I		Year	Total	K	Α	В	С	PDO
Estimated number of	•	2015	118.9	0.6	1.5	10.4	22.4	84.0
the Study Period, cra	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
Distribution of Cros	has for Entire Escilit	2038						
ייטווטעוטוו טו Cras	thes for Entire Facility	<u>'</u>	Ectimo	tad Numb	er of Crash	oe Durina	the Study	Pariod
Crash Type	Crash Type Cat	egory	Total	K	A A	B B	C	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0	0.0	0.1	0.1	0.1
ividitiple verilide	Right-angle crashes:		1.7	0.0		0.1	0.1	1.0
	Rear-end crashes:		55.6	0.0		5.1	11.1	38.3
	Sideswipe crashes:		19.0	0.3	0.7	1.2	2.7	14.9
	Other multiple-vehicle	crashes.	2.0	0.0	0.2	0.2	0.5	1.3
	Total multiple-vehic		78.6	0.0	1.0	6.8	14.8	55.6
Single vehicle	Crashes with animal:	ie crasties.	0.7	0.4		0.0	0.0	0.6
onigie verille	Crashes with fixed ob	viect:	28.9	0.0	0.0	2.6	5.5	20.3
	Crashes with other of		4.6	0.2		0.2	0.4	4.0
	Crashes with parked	,	0.6	0.0		0.2	0.4	0.5
			5.5	0.0	0.0	0.1	1.6	3.0
	Other single-vehicle crashes Total single-vehicle crashes:		40.3	0.0		3.6	7.7	28.4
	Total cras		118.9	0.2		10.4	22.4	84.0
	i otai otas	100.	110.9	0.0	1.0	10.4	44.4	U 7 .U

		Ou	tput Summ	ary				
General Information								
Project description:	I-270 NB Local Lanes	Between N	1D 189 and	MD 28 (NE	3 2A) - Exis	ting (2015)	No-Build	
Analyst:	LW	Date:	1/4/2017	,	Area type:	<u> </u>	Urban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	available?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	egment crash data available? No First year of crash data:				a:		
	Project-level crash da	ta available	?	No	Last year of crash data:			
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		20.1	0.2		2.9	8.5	8.0
	eq. during Study Period, cras		20.1	0.2	0.5	2.9	8.5	8.0
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		0		0.0		0.0	0.0	0.0
Ramp segments, cras		3		0.2		2.9	8.5	8.0
Crossroad ramp termi	,	0		0.0		0.0		0.0
Crashes for Entire F	• •	Year	Total	K	A	В	С	PDO
Estimated number of	· ·	2015	20.1	0.2	0.5	2.9	8.5	8.0
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019 2020						
		2020						
		2021						
		2022						
		2023						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Crasi	hes for Entire Facility	· ·						
Crash Type	Crash Type Cat	egory			er of Crash			
.	J.		Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.2	0.0	0.0	0.0	0.1	0.1
	Right-angle crashes:		0.2	0.0		0.0	0.1	0.0
	Rear-end crashes:		12.1	0.1	0.4	2.0	5.7	3.9
	Sideswipe crashes:	orookssi	3.9	0.0		0.4	1.0	2.4
	Other multiple-vehicle		2.3	0.0	0.1	0.4	1.1	0.7
Cinalo vobi-l-	Total multiple-vehicl	e crasnes:	18.6	0.2	0.5	2.8	8.1	7.1
Single vehicle	Crashes with animal:	inati	0.0	0.0		0.0	0.0	0.0
	Crashes with fixed ob		1.1	0.0	0.0	0.1	0.3	0.7
	Crashes with parked	•	0.0	0.0		0.0	0.0	0.0
	Crashes with parked vehicle:		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes Total single-vehicle crashes:		0.2	0.0		0.0	0.1	0.1
	Total single-venicle		1.4 20.1	0.0		0.1 2.9	0.4 8.5	0.9 8.0
	i Utai Ulasi	100.	۷٠.۱	0.2	0.5	2.9	0.5	0.0

		Out	tput Summ	ary				
General Information				•				
Project description:	I-270 NB Local Lanes	Between M	/ID 189 and	MD 28 - N	B 2A Conce	ept Existing	(2015) Bui	ld
Analyst:	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2015	•	•					
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year of crash data:			
Ramp segments	Segment crash data available? No First year of crash data:				a:			
	Project-level crash da	ta available	?	No	Last year of crash data:			
Ramp terminals	Segment crash data a			No		of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		17.7	0.1		2.3	6.7	8.1
	eq. during Study Period, cras		17.7	0.1	_	2.3	6.7	8.1
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		0		0.0		0.0	0.0	0.0
Ramp segments, cras		3		0.1		2.3	6.7	8.1
Crossroad ramp termi	,	0		0.0		0.0		0.0
Crashes for Entire F	• •	Year	Total	K	Α	В	С	PDO
Estimated number of	•	2015	17.7	0.1	0.4	2.3	6.7	8.1
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019 2020						
		2020						
		2021						
		2022						
		2023						
		2024						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Crasi	hes for Entire Facility	·						
Crash Type	Crash Type Cat	egory			er of Crash			
	J.	J.,	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.2	0.0		0.0	0.1	0.1
	Right-angle crashes:		0.1	0.0		0.0	0.1	0.0
	Rear-end crashes:		10.1	0.1	0.3	1.5	4.3	3.9
	Sideswipe crashes:	orook ss:	3.5	0.0		0.3	0.8	2.4
	Other multiple-vehicle		1.9	0.0		0.3	0.9	0.7
Cinalo vahi-i-	Total multiple-vehicl	e crasnes:	15.9	0.1	0.4	2.1	6.1	7.1
Single vehicle	Crashes with animal:	inati	0.0	0.0		0.0	0.0	0.0
	Crashes with fixed ob		1.4	0.0	0.0	0.1	0.4	0.8
	Crashes with parked	•	0.0	0.0		0.0	0.0	0.0
	Crashes with parked v		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes Total single-vehicle crashes:		0.3	0.0		0.0	0.1	0.1
	Total single-venicle		1.8 17.7	0.0		0.2 2.3	0.5 6.7	1.0 8.1
	i Utai Ulasi	103.	11.1	0.1	0.4	۷.3	0.7	0.1

Estimated average crash freq. during Study Period, crashesy)r. 12.9 0.1 0.1 1.0 2.4 9.9			Out	tput Summ	ary				
Analyst: W Date: 1/4/2017 Area type: Urban	General Information								
Manalysts: UW Date: 1/4/2017 Area type: Urban	Project description:	I-270 NB Express Lan	es at MD 2	8 Interchan	ge (NB 2B)	- Existing ((2015) No-E	Build	
Last year of analysis: 2015									
Priceway segments Segment crash data available? No Last year of crash data:		2015							
Segment crash data available?	, ,								
Project-level crash data available? No Last year of crash data:	Crash Data Descript	ion							
Ramp segments Segment crash data available? No First year of crash data: Project-level crash data available? No Last year of crash data:	Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
Project-level crash data available? No Last year of crash data:		Project-level crash da	ta available	?		Last year o	of crash dat	a:	
Ramp terminals Segment crash data available? No First year of crash data:	Ramp segments	Segment crash data a	vailable?		No	•			
Project-level crash data available? No Last year of crash data Estimated Crash Statistics				?					
Estimated Crash Statistics Total K A B C PDO	Ramp terminals			_		,			
Total K		.,	ta available	?	No	Last year o	of crash dat	a:	
Estimated number of crashes during Study Period, crashes: 12.9									
Estimated average crash freq. during Study Period, crashesyr. 12.9 0.1 0.1 1.0 2.4 9.9									
Stribution of Crashes for Entire Facility Crash Sy Facility Component Nbr. Sites Total K									9.4
Freeway segments, crashes: 5 12.9 0.1 0.1 1.0 2.4 9.8				_		_	_		9.4
Ramp segments, crashes:		•							
Crossroad ramp terminals, crashes:	,								9.4
Crashes for Entire Facility by Year Year Total K A B C PDO									0.0
Estimated number of crashes during the Study Period, crashes: 2016		,	-						0.0
the Study Period, crashes: 2016		• •							
2017 2018		•		12.9	0.1	0.1	1.0	2.4	9.4
2018	the Study Period, Clas	siles.							
2019									
2020									
2021									
2022									
2023									
2024			_						
2025									
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2034 2035 2036 2037 2038 2038 2037 2038									
2028			2026						
2029 2030 2031 2032 2033 2033 2034 2035 2036 2037 2038 2037 2038 2037 2038 2038 2037 2038			2027						
2030			2028						
2031			2029						
2032			2030						
2033			2031						
2034 2035 2036 2037 2038 2038 2037 2038 2038 2038 2037 2038 2038 2038 2037 2038			2032						
Distribution of Crashes for Entire Facility Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PDO			2033						
Distribution of Crashes for Entire Facility Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PDO									
Distribution of Crashes for Entire Facility Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PDO									
Distribution of Crashes for Entire Facility Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PDO									
Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PDO									
Estimated Number of Crashes During the Study Period Total K A B C PDO Multiple vehicle Head-on crashes: 0.0	Diotribution of Co	non for Entire Feetite							
Total K A B C PDO	DISTRIBUTION OF CRASE	ies for Entire Facility	•	Eatings	tad Numb	or of Crost	os Durina	the Ctuder	Dorical
Head-on crashes: 0.0	Crash Type	Crash Type Cate	egory						
Right-angle crashes:	Multiple vehicle	Head-on crashes:						_	0.0
Rear-end crashes: 6.3 0.0 0.1 0.5 1.2 4. Sideswipe crashes: 2.2 0.0 0.0 0.1 0.3 1. Other multiple-vehicle crashes: 0.2 0.0 0.0 0.0 0.0 0.0 Total multiple-vehicle crashes: 8.9 0.0 0.1 0.7 1.6 6. Single vehicle Crashes with animal: 0.1 0.0 0.0 0.0 0.0 0.0 Crashes with fixed object: 2.9 0.0 0.0 0.2 0.5 2. Crashes with other object: 0.5 0.0 0.0 0.0 0.0 0.0 Crashes with other object: 0.5 0.0 0.0 0.0 0.0 0.0 Crashes with other object: 0.5 0.0 0.0 0.0 0.0 0.0 Crashes with other object: 0.5 0.0 0.0 0.0 0.0 Crashes with other object: 0.5 0.0 0.0 0.0 0.0 Crashes with other object: 0.5 0.0 0.0 0.0 0.0 Crashes with other object: 0.5 0.0 Crashes with other	•								0.0
Sideswipe crashes:		•							4.5
Other multiple-vehicle crashes: 0.2 0.0									1.7
Total multiple-vehicle crashes: 8.9 0.0 0.1 0.7 1.6 6.		•	crashes:						0.2
Single vehicle Crashes with animal: 0.1 0.0									6.5
Crashes with fixed object: 2.9 0.0 0.0 0.2 0.5 2. Crashes with other object: 0.5 0.0 0.0 0.0 0.0 0.0 0.0	Single vehicle		C GIGGIIGG.						0.3
Crashes with other object: 0.5 0.0 0.0 0.0 0.0 0.0 0.0	Sgio voliloio		iect:						2.1
, , , , , , , , , , , , , , , , , , , ,									0.4
				0.1			0.0	0.0	0.0
·		·							0.3
		<u> </u>							2.9
Total crashes: 12.9 0.1 0.1 1.0 2.4 9.									9.4

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB Express Lan	es at MD 2	8 Interchan	ge - NB 2B	Concept E	xisting (201	15) Build	
Analyst:	LW	Date:	1/4/2017		Area type:		Úrban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descripti	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire Fa			Total	K	Α	В	С	PDO
Estimated number of crashe			13.8	0.1		1.1	2.6	10.0
	eq. during Study Period, cras		13.8	0.1	0.2	1.1	2.6	10.0
Crashes by Facility (•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, cr		5	13.8	0.1	0.2	1.1	2.6	10.0
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termi	,	0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire Fa		Year	Total	K	Α	В	С	PDO
Estimated number of o	- U	2015	13.8	0.1	0.2	1.1	2.6	10.0
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024 2025						
		2026 2027						
		2028 2029						
		2029						
		2030						
		2031						
		2032						
		2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Crash	nes for Entire Facility	,			•			
Crash Type	Crash Type Cate	ogory,	Estima	ted Numb	er of Crash	es During	the Study	Period
	Grasii Type Cat	egury	Total	K	Α	В	С	PDO
•	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.2	0.0	0.0	0.0	0.1	0.1
	Rear-end crashes:		6.6	0.0	0.1	0.6	1.3	4.7
	Sideswipe crashes:		2.3	0.0		0.1	0.3	1.8
	Other multiple-vehicle	crashes:	0.2	0.0	0.0	0.0	0.1	0.2
	Total multiple-vehicl	e crashes:	9.4	0.0	0.1	0.7	1.7	6.8
Single vehicle	Crashes with animal:		0.1	0.0	0.0	0.0	0.0	0.1
	Crashes with fixed obj	ject:	3.2	0.0	0.0	0.3	0.6	2.2
	Crashes with other ob	ject:	0.5	0.0	0.0	0.0	0.0	0.4
	Crashes with parked v	/ehicle:	0.1	0.0		0.0	0.0	0.1
	Other single-vehicle crashes		0.6	0.0	0.0	0.1	0.2	0.3
	Total single-vehicle		4.4	0.0		0.4	0.8	3.1
· · · · · · · · · · · · · · · · · · ·	Total crash	nes:	13.8	0.1	0.2	1.1	2.6	10.0

		Out	put Summ	ary				
General Information				•				
Project description:	I-270 NB Entrance Ra	mp from NB S	Shady Grove	Rd - Loop	Ramp (NB 3	BA) - Existing	g (2015) No-	Build
Analyst:	KEB		1/4/2017		Area type:		Urban	
First year of analysis:	2015	•						
Last year of analysis:	2015							
Crash Data Descrip	tion							
Freeway segments	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash da		?	No	Last year o	f crash data	a:	
Ramp segments	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash da	ata available	?	No	Last year o	f crash data	a:	
Ramp terminals	Segment crash data			No	First year o	of crash data	a:	
	Project-level crash da	ata available	?	No	Last year o	f crash data	a:	
Estimated Crash St	atistics							
Crashes for Entire I	acility		Total	K	Α	В	С	PDO
Estimated number of crash	nes during Study Period, cra	shes:	19.0	0.0	0.3	1.7	6.0	11.0
Estimated average crash for	req. during Study Period, cra	ashes/yr:	19.0	0.0	0.3	1.7	6.0	11.0
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o	crashes:	0	0.0	0.0	0.0	0.0	0.0	0.0
Ramp segments, cra	shes:	4	6.7	0.0	0.1	0.8	1.6	4.2
Crossroad ramp term		1	12.2	0.0	0.2	1.0	4.4	6.7
Crashes for Entire I	acility by Year	Year	Total	K	Α	В	С	PDO
Estimated number of		2015	19.0	0.0	0.3	1.7	6.0	11.0
the Study Period, cra	-	2016						
·		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Cras	hes for Entire Facilit	у	_					
Crash Type	Crash Type Ca	tegory			er of Crash			
			Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0		0.0	0.1	0.1
	Right-angle crashes:		2.9	0.0		0.3	1.1	1.5
	Rear-end crashes:		9.2	0.0		0.8	3.3	4.9
	Sideswipe crashes:	,	2.1	0.0		0.1	0.3	1.7
	Other multiple-vehicle		0.6	0.0		0.1	0.2	0.4
	Total multiple-vehic		15.0	0.0	0.2	1.3	5.0	8.5
Single vehicle	Crashes with animal:		0.0	0.0		0.0	0.0	0.0
	Crashes with fixed of	•	3.1	0.0	0.1	0.3	0.7	2.0
	Crashes with other o	,	0.1	0.0		0.0	0.0	0.1
	Crashes with parked		0.1	0.0		0.0	0.0	0.0
	Other single-vehicle crashes		0.7	0.0		0.1	0.3	0.3
	Total single-vehicle		3.9	0.0		0.5	0.9	2.4
	Total cras	hes.	19.0	0.0	0.3	1.7	6.0	11.0

		Out	tput Summ	ary				
General Information	n			•				
Project description:	I-270 NB Entrance Rar	mp from NB S	Shady Grove	Rd - Loop	Ramp - NB	3A Concept	Existing (20	15) Build
Analyst:	KEB		1/4/2017		Area type:		Urban	·
First year of analysis	: 2015							
Last year of analysis	: 2015							
Crash Data Descrip	otion							
Freeway segments	Segment crash data	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ata available	?	No	Last year of crash data:			
Ramp segments	Segment crash data	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ata available	?	No	Last year o	f crash dat	a:	
Ramp terminals	Segment crash data			No	First year o	of crash dat	a:	
	Project-level crash da	ata available	?	No	Last year o	f crash dat	a:	
Estimated Crash St								
Crashes for Entire			Total	K	Α	В	С	PDO
Estimated number of crasi	hes during Study Period, cras	shes:	19.9	0.0		1.2	5.1	13.4
	freq. during Study Period, cra	shes/yr:	19.9	0.0	_	1.2	5.1	13.4
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments,		0	0.0	0.0		0.0	0.0	0.0
Ramp segments, cra		6	3.9	0.0		0.4	1.0	2.5
Crossroad ramp tern		1	15.9	0.0		0.7	4.1	11.0
Crashes for Entire		Year	Total	K	Α	В	С	PDO
Estimated number of	•	2015	19.9	0.0	0.2	1.2	5.1	13.4
the Study Period, cra	ashes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035 2036						
		2036						
		2037						
Distribution of Cras	shes for Entire Facility							
			Fetima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Car	tegory	Total	K	A	B	C	PDO
Multiple vehicle	Head-on crashes:		0.2	0.0		0.0	0.1	0.1
	Right-angle crashes:		3.7	0.0		0.0	1.1	2.4
	Rear-end crashes:		10.7	0.0		0.2	3.0	6.9
	Sideswipe crashes:		2.5	0.0		0.0	0.3	2.2
	Other multiple-vehicle	e crashes:	0.6	0.0		0.0	0.1	0.4
	Total multiple-vehic		17.7	0.0		1.0	4.5	12.0
Single vehicle	Crashes with animal:	01401100.	0.0	0.0		0.0	0.0	0.0
Single verilois	Crashes with fixed ob	niect.	1.7	0.0		0.0	0.0	1.2
	Crashes with other of		0.1	0.0		0.0	0.4	0.0
	Crashes with parked	,	0.0	0.0		0.0	0.0	0.0
			0.4	0.0		0.0	0.0	0.0
	Other single-vehicle crashes Total single-vehicle crashes:		2.2	0.0		0.1	0.1	1.4
	Total cras		19.9	0.0		1.2	5.1	13.4
	101010183		10.0	0.0	0.2	1.2	0.1	10.7

		Ou	tput Summ	ary				
General Information								
Project description:	I-270 NB Slip Ramp to	Express L	anes South	of I-370 (N	NB 3B) - Exi	sting (2015) No-Build	
Analyst:	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
Estimated number of crash	es during Study Period, cras	hes:	13.9	0.1		1.5	3.7	8.5
	eq. during Study Period, cras	shes/yr:	13.9	0.1		1.5	3.7	8.5
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		2		0.0		0.6	1.2	4.8
Ramp segments, cras		3		0.1		0.8	2.4	3.7
Crossroad ramp termi		0		0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	Α	В	С	PDO
Estimated number of		2015	13.9	0.1	0.3	1.5	3.7	8.5
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
Distribution of Cros	has for Entire Escilit	2038						
ייטווטענטוו טו Crasi	hes for Entire Facility		Ectimo	tad Numb	er of Crash	oe Durina	the Study	Dariad
Crash Type	Crash Type Cat	egory	Total	K	A	B B	C	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0		0.0	0.0	0.0
ividitiple verticle	Right-angle crashes:		0.1	0.0		0.0	0.0	0.0
			7.0		0.0		2.2	
	Rear-end crashes: Sideswipe crashes:		2.6	0.1		0.8 0.2	0.4	3.8 1.9
	Other multiple-vehicle	crachee.	0.9	0.0		0.2	0.4	0.4
	•							
Single vehicle	Total multiple-vehicl	e crasnes:	10.7	0.1	0.2	1.2	3.0	6.3
Single venicle	Crashes with animal:	ioot:	0.0	0.0		0.0	0.0	0.0
	Crashes with fixed ob		2.3	0.0	0.0	0.2	0.5	1.6
	Crashes with parked	•	0.3	0.0		0.0	0.0	0.3
	Crashes with parked v		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes Total single-vehicle crashes:		0.5	0.0		0.1	0.2	0.2
	Total single-venicle		3.2 13.9	0.0		0.3 1.5	0.7 3.7	2.2 8.5
	i otai crasi	ICO.	13.9	U. I	0.3	1.5	ა./	0.5

		Ou	tput Summ	ary				
General Information								
Project description:	I-270 NB Slip Ramp to	o Express L	anes South	of I-370 -	NB 3B Cond	cept Existin	g (2015) Bı	uild
Analyst:	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
, ,	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta	atistics							
Crashes for Entire F	acility		Total	K	Α	В	C	PDO
Estimated number of crash	es during Study Period, cras	hes:	12.4	0.1	0.2	1.2	3.1	7.8
Estimated average crash from	eq. during Study Period, cras	shes/yr:	12.4	0.1	0.2	1.2	3.1	7.8
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	C	PDO
Freeway segments, c	rashes:	2	6.3	0.0	0.1	0.6	1.1	4.5
Ramp segments, cras		2	6.1	0.0	0.1	0.7	1.9	3.3
Crossroad ramp termi		0		0.0		0.0	0.0	0.0
Crashes for Entire F	acility by Year	Year	Total	K	Α	В	С	PDO
Estimated number of	crashes during	2015	12.4	0.1	0.2	1.2	3.1	7.8
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
Distribution of Cros	has for Entire Escilit	2038						
ייטווטענטוו טו Crasi	hes for Entire Facility		Ectimo	tad Numb	er of Crash	oe Durina	the Study	Dariad
Crash Type	Crash Type Cat	egory	Total	K	er of Crash	B B	C C	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.0	0.0
ividitiple verticle	Right-angle crashes:		0.1	0.0		0.0	0.0	0.0
					0.0	0.0	1.7	
	Rear-end crashes: Sideswipe crashes:		5.8 2.1	0.0		0.7	0.3	3.2 1.6
	Other multiple-vehicle	crachee.	0.7	0.0	0.0	0.1	0.3	0.3
Single vehicle	Total multiple-vehicl	e crasnes:	8.8	0.1	0.2	0.9	2.4	5.3
Single venicle	Crashes with animal:	ioot:	0.1	0.0		0.0	0.0	0.0
	Crashes with fixed ob		2.6	0.0	0.0	0.2	0.5	1.9
	Crashes with parked	•	0.3	0.0		0.0	0.0	0.3
	Crashes with parked v		0.1	0.0		0.0	0.0	0.0
	Other single-vehicle crashes Total single-vehicle crashes:		0.5	0.0		0.1	0.1	0.3
	Total single-venicle Total crash		3.6 12.4	0.0	0.1	0.3 1.2	0.7 3.1	2.5 7.8
	i otal crasr	IES.	12.4	0.1	0.2	1.2	3.1	7.8

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB Entrance Ra	mp from M	D 124 / Loc	al Lanes (N	NB 4) - Exis	ting (2015)	No-Build	
Analyst:	LW	Date:	1/4/2017	· ·	Area type:		Urban	
First year of analysis:	2015	•						
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	ıvailable?		No	First year o	of crash data	a:	
	Project-level crash da	ta available	?	No	Last year o	f crash data	a:	
Ramp segments	Segment crash data a	vailable?		No	First year o	of crash data	a:	
	Project-level crash da	ta available	?	No	Last year o	f crash data	a:	
Ramp terminals	Segment crash data a	vailable?		No	First year o	of crash data	a:	
	Project-level crash da	ta available	?	No	Last year o	f crash data	a:	
Estimated Crash Sta	ntistics							
Crashes for Entire F	acility		Total	K	Α	В	C	PDO
Estimated number of crashe	es during Study Period, cras	hes:	67.5	0.4	1.1	5.8	10.5	49.7
	eq. during Study Period, cras	shes/yr:	67.5	0.4	1.1	5.8	10.5	49.7
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		6	67.5	0.4		5.8	10.5	49.7
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termi		0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire F	• •	Year	Total	K	Α	В	С	PDO
Estimated number of		2015	67.5	0.4	1.1	5.8	10.5	49.7
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033 2034						
		2034						
		2035						
		2037						
		2038						
Distribution of Crasi	hes for Entire Facility				I			
			Estima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.2	0.0	0.0	0.0	0.1	0.1
,	Right-angle crashes:		1.1	0.0		0.1	0.2	0.7
	Rear-end crashes:		35.9	0.2	0.6	3.3	6.1	25.5
	Sideswipe crashes:		12.1	0.1	0.2	0.8	1.5	9.6
	Other multiple-vehicle	crashes:	1.3	0.0	0.0	0.1	0.2	0.9
	Total multiple-vehicl		50.6	0.3	0.9	4.5	8.2	36.8
Single vehicle	Crashes with animal:		0.3	0.0		0.0	0.0	0.3
	Crashes with fixed ob	ject:	12.2	0.1	0.2	0.9	1.7	9.3
	Crashes with other ob		2.0	0.0		0.1	0.1	1.8
	Crashes with parked v		0.3	0.0		0.0	0.0	0.2
	Other single-vehicle c		2.2	0.0	0.1	0.3	0.5	1.4
	Total single-vehicle		16.9	0.1	0.2	1.3	2.4	12.9
	Total crash		67.5	0.4		5.8	10.5	49.7

		Out	tput Summa	ary				
General Information								
Project description:	I-270 NB Entrance Ra	mp from M	D 124 / Loca	al Lanes -	NB 4 Conce	ept Existing	(2015) Bui	ld
Analyst:	LW	Date:	1/4/2017		Area type:	Ĭ	Ùrban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No		of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire Fa			Total	K	Α	В	С	PDO
Estimated number of crashe	es during Study Period, crast	hes:	66.0	0.5		6.2	11.0	47.2
	eq. during Study Period, cras	shes/yr:	66.0	0.5	1.2	6.2	11.0	47.2
Crashes by Facility (Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, cr		6		0.5		6.2	11.0	47.2
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp termi	,	0		0.0		0.0	0.0	0.0
Crashes for Entire Fa	• •	Year	Total	K	Α	В	С	PDO
Estimated number of o		2015	66.0	0.5	1.2	6.2	11.0	47.2
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033 2034						
		2034						
		2035						
		2037						
		2038						
Distribution of Crash	nes for Entire Facility				I			
			Estima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cate	egory	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.2	0.0	0.0	0.0	0.1	0.1
•	Right-angle crashes:		1.0	0.0		0.1	0.2	0.6
	Rear-end crashes:		33.3	0.3	0.6	3.4	6.0	23.0
	Sideswipe crashes:		11.2	0.1	0.2	0.8	1.5	8.7
	Other multiple-vehicle	crashes:	1.2	0.0	0.0	0.1	0.2	0.8
	Total multiple-vehicl		46.8	0.4		4.5	8.0	33.1
Single vehicle	Crashes with animal:		0.3	0.0		0.0	0.0	0.3
	Crashes with fixed ob	ject:	13.8	0.1	0.2	1.2	2.1	10.1
	Crashes with other ob		2.2	0.0		0.1	0.2	1.9
	Crashes with parked v		0.3	0.0		0.0	0.0	0.2
	Other single-vehicle crashes		2.5	0.0	0.1	0.3	0.6	1.5
	Total single-vehicle crashes:		19.2	0.1	0.3	1.7	3.0	14.1
	Total crash		66.0	0.5		6.2	11.0	47.2

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB from MD 121	1 to MD 109	(NB 5) - E	xisting (20°	15) No-Build	t		
Analyst:	LW	Date:	1/4/2017	- '	Area type:		Urban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year c	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire Fa			Total	K	Α	В	С	PDO
	es during Study Period, crasl		16.7	0.1		1.4	2.7	12.2
	eq. during Study Period, cras		16.7	0.1		1.4	2.7	12.2
Crashes by Facility (•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, cr		4		0.1		1.4	2.7	12.2
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termi	,	0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	Α	В	С	PDO
Estimated number of o		2015	16.7	0.1	0.3	1.4	2.7	12.2
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024 2025						
		2026 2027						
		2028 2029						
		2030						
		2030						
		2032						
		2032						
		2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Crast	nes for Entire Facility							
Crack Type	Crack Tuna Cat	ogori/	Estima	ted Numb	er of Crash	es During	the Study	Period
Crash Type	Crash Type Cate	egory	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.2	0.0	0.0	0.0	0.1	0.1
	Rear-end crashes:		7.6	0.1	0.1	0.7	1.4	5.3
	Sideswipe crashes:		2.6	0.0	0.0	0.2	0.3	2.0
	Other multiple-vehicle	crashes:	0.3	0.0	0.0	0.0	0.1	0.2
	Total multiple-vehicl	e crashes:	10.8	0.1	0.2	1.0	1.9	7.7
Single vehicle	Crashes with animal:		0.1	0.0	0.0	0.0	0.0	0.1
	Crashes with fixed obj	ject:	4.3	0.0	0.1	0.3	0.6	3.2
	Crashes with other ob	ject:	0.7	0.0	0.0	0.0	0.0	0.6
	Crashes with parked v	/ehicle:	0.1	0.0		0.0	0.0	0.1
	Other single-vehicle crashes		0.8	0.0	0.0	0.1	0.2	0.5
	Total single-vehicle		5.9	0.0		0.4	0.8	4.5
	Total crash	nes:	16.7	0.1	0.3	1.4	2.7	12.2

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB from MD 12	1 to MD 109	9 - NB 5 Co	ncept Exist	ing (2015) I	Build		
Analyst:	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No		of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta	atistics							
Crashes for Entire F	acility		Total	K	Α	В	С	PDO
Estimated number of crash	es during Study Period, cras	hes:	16.9	0.1	0.3	1.5	2.8	12.1
	eq. during Study Period, cras	shes/yr:	16.9	0.1	0.3	1.5	2.8	12.1
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c	rashes:	4	16.9	0.1	0.3	1.5	2.8	12.1
Ramp segments, cras		0	0.0	0.0		0.0		0.0
Crossroad ramp termi		0	0.0	0.0		0.0		0.0
Crashes for Entire F		Year	Total	K	Α	В	С	PDO
Estimated number of		2015	16.9	0.1	0.3	1.5	2.8	12.1
the Study Period, cras	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035						
		2036						
		2037						
Distribution of Cros	has for Entire Escilit	2038						
ייטווטענטוו טו Crasi	hes for Entire Facility	·	Ectimo	tad Numb	er of Crash	oe Durina	the Study	Dorical
Crash Type	Crash Type Cat	egory	Total	K	er of Crasi	B B	C C	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0		0.0	0.0	0.0
ividitiple verticle	Right-angle crashes:		0.0	0.0		0.0		0.0
			7.5		0.0		1.4	
	Rear-end crashes: Sideswipe crashes:		2.6	0.1		0.8 0.2	0.3	5.1 2.0
	Other multiple-vehicle	crachee.	0.3	0.0		0.2	0.3	0.2
Single vehicle	Total multiple-vehicl	e crasnes:	10.6	0.1	0.2	1.0	1.9	7.4
Single venicle	Crashes with animal:	ioot:	0.1	0.0		0.0	0.0	0.1
	Crashes with fixed ob		4.5	0.0	0.1	0.3	0.6	3.4
	Crashes with parked		0.7	0.0		0.0	0.0	0.7
	Crashes with parked		0.1	0.0		0.0	0.0	0.1
	Other single-vehicle crashes		0.8	0.0		0.1	0.2	0.5
	Total single-vehicle		6.2	0.0		0.5	0.9	4.7
	Total crash	IUS.	16.9	0.1	0.3	1.5	2.8	12.1

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB at MD 118 Ir	nterchange	(NB 7) - Ex	isting (201	5) No-Build			
Analyst:	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis:								
Last year of analysis:	2015							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	Last year of crash data:		
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
Estimated number of crash	es during Study Period, cras	hes:	5.5	0.0		0.5	1.0	3.9
	eq. during Study Period, cras	shes/yr:	5.5	0.0	_	0.5	1.0	3.9
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o		1		0.0		0.5	1.0	3.9
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp term	,	0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire F	• •	Year	Total	K	Α	В	С	PDO
Estimated number of		2015	5.5	0.0	0.1	0.5	1.0	3.9
the Study Period, cra	shes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033						
		2034						
		2035 2036						
		2037 2038						
Distribution of Cras	hes for Entire Facility				<u> </u>			l
			Fetima	ted Numb	er of Crash	es During	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	B	C	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0		0.0	0.0	0.0
	Right-angle crashes:		0.0	0.0		0.0	0.0	0.0
	Rear-end crashes:		2.9	0.0		0.3	0.5	2.0
	Sideswipe crashes:		1.0	0.0		0.1	0.1	0.8
	Other multiple-vehicle	crashes:	0.1	0.0		0.0	0.0	0.1
	Total multiple-vehicle		4.1	0.0		0.4	0.7	2.9
Single vehicle	Crashes with animal:	C GIGGIIGG.	0.0	0.0		0.0	0.0	0.0
on gio vonidio	Crashes with fixed ob	iect·	1.0	0.0	0.0	0.0	0.0	0.8
	Crashes with other ob		0.2	0.0		0.0	0.2	0.0
	Crashes with parked	•	0.2	0.0		0.0	0.0	0.1
			0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes Total single-vehicle crashes:		1.4	0.0		0.0	0.1	1.0
	Total crash		5.5	0.0		0.1	1.0	3.9
	1 3 (4) (183)		0.0	0.0	0.1	0.0	1.0	0.0

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB at MD 118 I	nterchange	- NB 7 Cond	cept Existir	ng (2015) B	uild		
	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2015							
Last year of analysis:	2015							
Crash Data Descripti	ion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
, -	Project-level crash da	ata available	?	No	Last year o	f crash data	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	f crash data	a:	
Ramp terminals	Segment crash data a			No	First year of	of crash dat	a:	
	Project-level crash da	ıta available	?	No	Last year o	f crash data	a:	
Estimated Crash Sta	tistics							
Crashes for Entire Fa	acility		Total	K	Α	В	С	PDO
Estimated number of crashe	es during Study Period, cras	shes:	5.2	0.0	0.1	0.5	0.9	3.7
Estimated average crash fre		shes/yr:	5.2	0.0	0.1	0.5	0.9	3.7
Crashes by Facility (Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, cr	ashes:	1	5.2	0.0	0.1	0.5	0.9	3.7
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termin		0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire Fa	• •	Year	Total	K	Α	В	С	PDO
Estimated number of o	•	2015	5.2	0.0	0.1	0.5	0.9	3.7
the Study Period, cras	hes:	2016						
		2017						
		2018						
		2019						
		2020						
		2021						
		2022						
		2023						
		2024						
		2025						
		2026						
		2027						
		2028						
		2029						
		2030						
		2031						
		2032						
		2033 2034						
		2035						
		2036						
		2037						
		2038						
Distribution of Crash	nes for Entire Facility				I			
			Estima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.1	0.0		0.0	0.0	0.1
	Rear-end crashes:		2.8	0.0	0.0	0.3	0.5	2.0
	Sideswipe crashes:		0.9	0.0		0.1	0.1	0.7
	Other multiple-vehicle	crashes:	0.1	0.0	0.0	0.0	0.0	0.1
	Total multiple-vehic		3.9	0.0	0.1	0.3	0.7	2.8
Single vehicle	Crashes with animal:		0.0	0.0		0.0	0.0	0.0
	Crashes with fixed ob	ject:	1.0	0.0	0.0	0.1	0.2	0.7
	Crashes with other ob	,	0.2	0.0		0.0	0.0	0.1
		•	0.0	0.0		0.0	0.0	0.0
ļ	Crashes with parked vehicle: Other single-vehicle crashes		0.2	0.0		0.0	0.1	0.1
	Total single-vehicle crashes:							
ŀ	Total single-vehicle	crashes:	1.3	0.0	0.0	0.1	0.2	0.9

Table: Predicted Average Crash Frequency - Future (2040) No-Build

Total Crashes	Total	K	Α	В	С	PDO
Northbound						
NB1	148.17	0.63	1.70	11.68	25.68	108.47
NB2A	24.63	0.23	0.71	3.87	11.23	8.58
NB2B	15.04	0.06	0.16	1.15	2.70	10.98
NB3A	31.89	0.18	0.70	3.96	12.06	15.00
NB3B	16.90	0.12	0.34	1.92	4.92	9.60
NB4	84.84	0.50	1.35	7.02	12.59	63.38
NB5	21.22	0.12	0.32	1.76	3.29	15.73
NB7	6.83	0.04	0.11	0.61	1.19	4.89
Subtotal NB Existing/No-Build	349.53	1.89	5.39	31.96	73.66	236.63
Southbound						
SB1A	29.40	0.21	0.55	2.80	4.66	21.18
SB1B	29.40	0.21	0.55	2.80	4.66	21.18
SB2	20.40	0.13	0.36	1.84	3.23	14.84
SB5A	16.74	0.08	0.23	1.41	2.91	12.11
SB6	11.56	0.09	0.29	1.56	4.54	5.07
SB7	33.17	0.34	1.03	5.61	16.29	9.91
SB8	28.59	0.32	0.96	5.14	13.10	9.07
SB10	22.01	0.09	0.25	1.73	3.76	16.18
SB12	156.98	0.67	1.82	12.36	26.93	115.20
Subtotal SB Existing/No-Build	348.24	2.15	6.04	35.25	80.07	224.73
Total Existing/No-Build Crashes	697.77	4.04	11.43	67.21	153.73	461.36

Table: Predicted Average Crash Frequency - Concepts Future (2040) Build

Total Crashes	Total	K	Α	В	С	PDO
Northbound						
NB1	136.15	0.70	1.66	11.61	25.01	97.17
NB2A	20.99	0.18	0.54	2.94	8.52	8.82
NB2B	16.16	0.07	0.17	1.25	2.91	11.76
NB3A	28.76	0.14	0.51	2.89	9.30	15.93
NB3B	14.85	0.09	0.27	1.57	4.00	8.91
NB4	82.35	0.59	1.40	7.46	13.07	59.83
NB5	21.34	0.15	0.33	1.87	3.38	
NB7	6.38	0.04	0.10	0.58	1.13	4.53
Subtotal NB Proposed	326.99	1.96	4.99	30.17	67.31	222.55
Southbound						
SB1A	29.22	0.21	0.56	2.83	4.71	20.90
SB1B	28.91	0.20	0.54	2.74	4.57	20.85
SB2	20.34	0.14	0.37	1.88	3.31	14.64
SB5A	16.08	0.08	0.22	1.32	2.72	11.74
SB6	7.55	0.05	0.15	0.81	2.35	4.20
SB7	16.70	0.13	0.39	2.12	6.15	7.91
SB8	20.65	0.18	0.53	2.89	8.39	8.65
SB10	18.63	0.09	0.25	1.69	3.66	12.95
SB12	147.82	0.77	1.84	12.75	27.20	105.28
Subtotal SB Proposed	305.90	1.84	4.83	29.03	63.07	207.12
Total Proposed Crashes	632.88	3.81	9.82	59.21	130.38	429.67

Table: Predicted Average Annual Crash Frequency - Proposed Concepts Build to Future No-Build Comparison (2040)

Total Crashes	Total	K	Α	В	С	PDO
Northbound						
NB1	-12.02	0.07	-0.05	-0.06	-0.68	-11.30
NB2A	-3.64	-0.06	-0.17	-0.93	-2.71	0.23
NB2B	1.12	0.01	0.01	0.11	0.21	0.78
NB3A	-3.13	-0.04	-0.19	-1.07	-2.76	0.93
NB3B	-2.05	-0.02	-0.06	-0.35	-0.93	-0.69
NB4	-2.49	0.09	0.06	0.44	0.48	-3.55
NB5	0.12	0.03	0.01	0.11	0.10	
NB7	-0.45	0.00	-0.01	-0.03		
Subtotal Difference NB	-22.54	0.07	-0.40	-1.79	-6.35	-14.08
Southbound						
SB1A	-0.18	0.00	0.01	0.03	0.05	-0.28
SB1B	-0.49	0.00	-0.01	-0.05	-0.09	-0.34
SB2	-0.06	0.00	0.01	0.04	0.09	-0.20
SB5A	-0.66	-0.01	-0.01	-0.09	-0.18	-0.37
SB6	-4.01	-0.05	-0.14	-0.76	-2.19	
SB7	-16.48	-0.21	-0.64	-3.49	-10.14	-1.99
SB8	-7.94	-0.14	-0.43	-2.25	-4.71	-0.42
SB10	-3.38	0.00	-0.01	-0.04	-0.10	
SB12	-9.16	0.10	0.02	0.39		
Subtotal Difference SB	-42.34	-0.31	-1.21	-6.22	-17.00	-17.61
Total Difference Crashes	-64.89	-0.23	-1.61	-8.00	-23.35	-31.69

		Out	tput Summ	ary				
General Information								
Project description:	I-270 @ MD 80 (SB 1	A, SB 1B) -	Future (204	10) No-Buil	d			
Analyst:	MLV	Date:	1/5/2017		Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	available?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta	atistics							
Crashes for Entire F	acility		Total	K	Α	В	C	PDO
Estimated number of crash	es during Study Period, cras	hes:	29.4	0.2	0.5	2.8	4.7	21.2
	eq. during Study Period, cras	shes/yr:	29.4	0.2	0.5	2.8	4.7	21.2
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c	rashes:	3		0.2	0.5	2.8	4.7	21.2
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp term		0		0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	Α	В	С	PDO
Estimated number of		2040	29.4	0.2	0.5	2.8	4.7	21.2
the Study Period, cras	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060 2061						
		2062 2063						
Distribution of Crass	hes for Entire Facility				<u> </u>			
			Fetima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	B	C	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.0	0.0
Manapio voniole	Right-angle crashes:		0.1	0.0		0.0	0.0	0.0
	Rear-end crashes:		13.8	0.0	0.0	1.4	2.3	9.8
	Sideswipe crashes:		4.8	0.0		0.3	0.6	3.8
	Other multiple-vehicle	crashes:	0.5	0.0	0.0	0.3	0.0	0.3
	Total multiple-vehic		19.5	0.0	0.0	1.8	3.0	14.1
Single vehicle	Crashes with animal:	o orasilos.	0.2	0.0		0.0	0.0	0.1
onigie verilole	Crashes with fixed ob	iect·	7.1	0.0	0.0	0.0	1.2	5.1
	Crashes with other ob		1.2	0.0		0.1	0.1	1.0
	Crashes with parked	,	0.1	0.0		0.0	0.0	0.1
	Other single-vehicle of		1.3	0.0		0.0	0.0	0.1
	Total single-vehicle		9.9	0.0	0.0	1.0	1.6	7.0
	Total crash		29.4	0.1	0.5	2.8	4.7	21.2
	1010101831		20.7	0.2	0.0	2.0	7.7	21.2

		Out	tput Summ	ary				
General Information				-				
Project description:	I-270 SB Entrance Ra	mp from M	D 80 - SB 1.	A Concept	Future (204	10) Build		
	MLV	Date:	1/5/2017	•	Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da		?	No		f crash data		
Ramp segments	Segment crash data a	vailable?		No		of crash dat		
	Project-level crash da		?	No		f crash dat		
Ramp terminals	Segment crash data a		_	No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year c	f crash dat	a:	
Estimated Crash Sta						_		
Crashes for Entire Fa	-		Total	K	Α	В	С	PDO
	es during Study Period, cras		29.2	0.2		2.8	4.7	20.9
	eq. during Study Period, cras		29.2	0.2	0.6	2.8	4.7	20.9
Crashes by Facility (•	Nbr. Sites	Total	K	A	В	C	PDO
Freeway segments, cr		3		0.2		2.8	4.7	20.9
Ramp segments, cras Crossroad ramp termi		0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	A 0.0	B	C	PDO
Estimated number of		2040	29.2	0.2	0.6	2.8	4.7	
the Study Period, cras		2040	29.2	0.2	0.0	2.0	4.7	20.9
the Study Feriod, cras	ones.	2041						
		2042						
		2043						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062 2063						
Distribution of Crash	nes for Entire Escilitu							
			Fetima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A A	B B	C	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.0	0.0
•	Right-angle crashes:		0.4	0.0		0.1	0.1	0.3
	Rear-end crashes:		13.8	0.1	0.3	1.4	2.3	9.7
	Sideswipe crashes:		4.8	0.0		0.3	0.6	3.8
	Other multiple-vehicle	crashes:	0.5	0.0	0.0	0.1	0.1	0.3
	Total multiple-vehicl		19.5	0.1	0.4	1.8	3.1	14.1
Single vehicle	Crashes with animal:		0.1	0.0		0.0	0.0	0.1
Ĭ	Crashes with fixed ob	ject:	6.9	0.1	0.1	0.7	1.2	4.9
	Crashes with other ob		1.1	0.0	0.0	0.1	0.1	1.0
	Crashes with parked v	/ehicle:	0.1	0.0		0.0	0.0	0.1
	Other single-vehicle c	rashes	1.3	0.0	0.0	0.2	0.3	0.7
	Total single-vehicle	crashes:	9.7	0.1	0.2	1.0	1.6	6.8
	Total crash	nes:	29.2	0.2	0.6	2.8	4.7	20.9

		Out	tput Summa	ary				
General Information				-				
Project description:	I-270 SB Exit Ramp to	MD 80 - S	B 1B Conce	ept Future	(2040) Build			
Analyst:	MLV	Date:	1/5/2017		Area type:		Urban	
First year of analysis:								
Last year of analysis:	2040							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	f crash dat	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da		?	No	•	f crash dat		
Ramp terminals	Segment crash data a		_	No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year c	f crash dat	a:	
Estimated Crash Sta				.,		_		
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		28.9	0.2		2.7	4.6	20.8
	eq. during Study Period, cras		28.9	0.2	0.5	2.7	4.6	20.8
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		3		0.2		2.7	4.6	20.8
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp term Crashes for Entire F		Year	0.0 Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
Estimated number of		2040		N 0.2			_	
			28.9	0.2	0.5	2.7	4.6	20.8
the Study Period, cras	siles.	2041 2042						
		2042						
		2043						
		2044						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
טוstribution of Cras	hes for Entire Facility	,	F .:	(I.N		D	the Ot 1	Dania i
Crash Type	Crash Type Cat	egory			er of Crash	es During B	the Study C	
Multiple vehicle	Head-on araches		Total 0.1	K	A	0.0	0.0	PDO 0.0
ividitiple verticle	Head-on crashes: Right-angle crashes:		0.1	0.0		0.0	0.0	0.0
	Rear-end crashes:		13.7	0.0	0.0	1.4	2.3	9.7
	Sideswipe crashes:		4.7	0.0		0.3	0.6	3.7
	Other multiple-vehicle	crashes.	0.5	0.0	0.0	0.3	0.0	0.3
	Total multiple-vehicle		19.3	0.0	0.0	1.8	3.0	14.0
Single vehicle	Crashes with animal:	o orasilos.	0.2	0.0		0.0	0.0	0.1
Single veriles	Crashes with fixed ob	iect·	6.9	0.0	0.0	0.0	1.1	4.9
	Crashes with other ob		1.1	0.0		0.1	0.1	1.0
	Crashes with parked	,	0.1	0.0		0.0	0.0	0.1
	Other single-vehicle of		1.3	0.0		0.0	0.0	0.1
	Total single-vehicle		9.6	0.0	0.0	0.2	1.6	6.8
	Total crash		28.9	0.1	0.5	2.7	4.6	20.8
	. 5.2. 51461		_0.0	J.L	5.0	,	0	_0.0

		Out	tput Summ	ary				
General Information								
Project description:	I-270 @ MD 109 (SB	2) - Future		Build				
Analyst:	MLV	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	available?		No	First year of	of crash dat	a:	
, ,	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No		of crash dat		
Ramp terminals	Segment crash data a	available?		No	First year o	of crash dat	a:	
· '	Project-level crash da		?	No		of crash dat		
Estimated Crash Sta	ntistics							
Crashes for Entire F	acility		Total	К	Α	В	С	PDO
	es during Study Period, cras	hes:	20.4	0.1	0.4	1.8	3.2	14.8
	eq. during Study Period, cras		20.4	0.1	0.4	1.8	3.2	14.8
Crashes by Facility		Nbr. Sites	Total	K	A	В	C	PDO
Freeway segments, c		4		0.1	0.4	1.8	3.2	14.8
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp termi		0		0.0		0.0	0.0	0.0
Crashes for Entire F	,	Year	Total	K 0.0	Α	В	C 0.0	PDO
Estimated number of		2040	20.4	0.1	0.4	1.8	3.2	14.8
the Study Period, cras	· ·	2040	20.4	0.1	0.4	1.0	0.2	14.0
the Olday i enou, cras	511C3.	2041						
		2042						
		2043						
		2045						
		2046						
		2047						
		2048						
		2049						
		2049						
		2051 2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
Distribution of Crasi	has for Entire Essilia	2063						
ויטווטמוטוו טו Crasi	les for Entire Facility	•	Eating	tod Numb	er of Crash	oc Durin -	the Ctud.	Dorica
Crash Type	Crash Type Cat	egory	Total	K	er of Crasi	B B	C C	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
ividitiple verticle	Right-angle crashes:		0.0	0.0		0.0	0.0	0.0
	Rear-end crashes:		9.9					
	Sideswipe crashes:		3.3	0.1	0.2	0.9	1.6 0.4	7.1 2.6
	•	craches						
	Other multiple-vehicle		0.3	0.0		0.0	0.1	0.2
Cinalo vobi-l-	Total multiple-vehic	e crasnes:	13.9	0.1	0.2	1.2	2.2	10.2
Single vehicle	Crashes with animal:	!4.	0.1	0.0	0.0	0.0	0.0	0.1
	Crashes with fixed ob		4.7	0.0		0.4	0.8	3.4
	Crashes with other ob		0.7	0.0		0.0	0.1	0.6
	Crashes with parked		0.1	0.0		0.0	0.0	0.1
	Other single-vehicle of		0.9	0.0		0.1	0.2	0.5
	Total single-vehicle		6.5	0.0		0.6	1.1	4.7
	Total crash	nes:	20.4	0.1	0.4	1.8	3.2	14.8

		Out	tput Summ	ary				
General Information								
Project description:	I-270 SB Entrance Ra	mp from MI	D 109 - SB	2 Concept	Future (204	I0) Build		
Analyst:	MLV	Date:	1/4/2017		Area type:	,	Urban	
First year of analysis:	2040	<u> </u>						
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		20.3	0.1		1.9	3.3	14.6
	eq. during Study Period, cras		20.3	0.1	0.4	1.9	3.3	14.6
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		4		0.1	0.4	1.9	3.3	14.6
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termi	,	0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire F	• •	Year	Total	K	A	В	С	PDO
Estimated number of	•	2040	20.3	0.1	0.4	1.9	3.3	14.6
the Study Period, cras	shes:	2041						
		2042						
		2043 2044						
		2044						
		2045						
		2046						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062					-	-
		2063						
Distribution of Crasi	hes for Entire Facility	·						
Crash Type	Crash Type Cat	egory			er of Crash			
.	7.	<i>-</i> ,	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.3	0.0		0.0	0.1	0.2
	Rear-end crashes:		9.8	0.1	0.2	0.9	1.6	7.0
	Sideswipe crashes:	orook ss:	3.3	0.0		0.2	0.4	2.6
	Other multiple-vehicle		0.3	0.0	0.0	0.0	0.1	0.2
Cinalo vobi-l-	Total multiple-vehicl	e crasnes:	13.8	0.1	0.2	1.2	2.2	10.1
Single vehicle	Crashes with animal:	inati	0.1	0.0		0.0	0.0	0.1
	Crashes with fixed ob		4.7	0.0	0.1	0.5	0.8	3.3
	Crashes with parked		0.8	0.0		0.0	0.1	0.6
	Crashes with parked v		0.1	0.0		0.0	0.0	0.1
	Other single-vehicle c		0.9	0.0		0.1	0.2	0.5
	Total single-vehicle Total crash		6.5 20.3	0.0	0.1	0.6 1.9	1.1 3.3	4.6 14.6
	i Utai Ulasi	103.	20.3	0.1	0.4	1.9	ა.ა	14.0

		Out	tput Summ	ary				
General Information	1			•				
Project description:	I-270 @ I-370 (SB 5A	(2 ruture (2	2040) No-Bu	uild				
Analyst:	MLV		1/4/2017		Area type:		Urban	
First year of analysis:	2040						•	
Last year of analysis:	2040							
Crash Data Descrip	tion							
Freeway segments	Segment crash data	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ata available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ata available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data			No	First year o			
	Project-level crash da	ata available	?	No	Last year o	of crash dat	a:	
Estimated Crash St								
Crashes for Entire I			Total	K	Α	В	С	PDO
Estimated number of crash	nes during Study Period, cras	shes:	16.7	0.1		1.4		12.1
	req. during Study Period, cra	shes/yr:	16.7	0.1	0.2	1.4	2.9	12.1
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o		1	16.7	0.1	0.2	1.4	2.9	12.1
Ramp segments, cra		0	0.0	0.0		0.0		0.0
Crossroad ramp term		0	0.0	0.0		0.0		0.0
Crashes for Entire I		Year	Total	K	Α	В	С	PDO
Estimated number of	-	2040	16.7	0.1	0.2	1.4	2.9	12.1
the Study Period, cra	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058 2059						
		2060						
		2060						
		2062						
		2062						
Distribution of Cras	hes for Entire Facility				I		l l	
			Estima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Car	tegory	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.2	0.0	0.0	0.0	0.1	0.1
	Rear-end crashes:		8.1	0.0		0.7	1.5	5.7
	Sideswipe crashes:		2.8	0.0	0.0	0.2	0.4	2.2
	Other multiple-vehicle	e crashes:	0.3	0.0	0.0	0.0	0.1	0.2
	Total multiple-vehic	le crashes:	11.5	0.1	0.2	1.0	2.0	8.3
Single vehicle	Crashes with animal:		0.1	0.0	0.0	0.0	0.0	0.1
Ĭ	Crashes with fixed ob	ject:	3.8	0.0	0.1	0.3	0.7	2.7
	Crashes with other of		0.6	0.0		0.0	0.0	0.5
	Crashes with parked	vehicle:	0.1	0.0	0.0	0.0	0.0	0.1
	Other single-vehicle	crashes	0.7	0.0	0.0	0.1	0.2	0.4
	Total single-vehicle		5.2	0.0		0.4	0.9	3.8
	Total cras		16.7	0.1	0.2	1.4	2.9	12.1

		Out	tput Summ	ary				
General Information	1			•				
Project description:	I-270 SB Exit Ramp to	o I-370 - SB	5A Concep	ot Future (2	.040) Build			
Analyst:	MLV	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash data	a:	
	Project-level crash da	ıta available	?	No	Last year c	of crash data	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash data	a:	
, -	Project-level crash da	ıta available	?	No	Last year o	of crash data	a:	
Ramp terminals	Segment crash data a	available?		No	First year o	of crash data	a:	
	Project-level crash da	ıta available	?	No	Last year c	of crash data	a:	
Estimated Crash Sta	atistics							
Crashes for Entire F	acility		Total	K	Α	В	С	PDO
Estimated number of crash	es during Study Period, cras	hes:	16.1	0.1	0.2	1.3	2.7	11.7
	eq. during Study Period, cra-		16.1	0.1	0.2	1.3	2.7	11.7
Crashes by Facility		Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c	•	1	16.1	0.1	0.2	1.3	2.7	11.7
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp term		0		0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	Α	B	C	PDO
Estimated number of		2040	16.1	0.1	0.2	1.3	2.7	11.7
	•	2040	16.1	0.1	0.2	1.3	2.1	11.7
the Study Period, cras	siles.	2041						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Cras	hes for Entire Facility	,				!		
			Estima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.2	0.0		0.0	0.1	0.1
	Rear-end crashes:		8.1	0.0		0.7	1.5	5.7
	Sideswipe crashes:		2.8	0.0	0.0	0.2	0.4	2.2
	Other multiple-vehicle	crashes.	0.3	0.0		0.0	0.1	0.2
	Total multiple-vehic		11.5	0.0	0.0	1.0	2.0	8.3
Single vehicle	Crashes with animal:	io oradilos.	0.1	0.0		0.0	0.0	0.3
onigie verilde	Crashes with fixed ob	iect:	3.3	0.0		0.0	0.0	2.5
	Crashes with other ob		0.5	0.0		0.3	0.5	
	Crashes with parked			0.0			0.0	0.5
			0.1			0.0		0.1
	Other single-vehicle of		0.6	0.0		0.1	0.2	0.4
	Total single-vehicle		4.6	0.0		0.4	0.7	3.4
	Total crash	IUS.	16.1	0.1	0.2	1.3	2.7	11.7

		Out	tput Summ	ary				
General Information	1							
Project description:	I-270 SB Slip Ramps	Between Sh	nady Grove	Rd and MI	D 28 (SB 6)	- Future (20	040) No-Bu	ild
Analyst:	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis	: 2040							
Last year of analysis:	2040							
Crash Data Descrip	tion							
Freeway segments	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash da	ata available	?	No	Last year o	f crash data	a:	
Ramp segments	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash da	ata available	?	No	Last year o	f crash data	a:	
Ramp terminals	Segment crash data			No	,	of crash data		
	Project-level crash da	ata available	?	No	Last year o	f crash data	a:	
Estimated Crash St								
Crashes for Entire I			Total	K	Α	В	С	PDO
	nes during Study Period, cras		11.6	0.1		1.6	4.5	5.1
	req. during Study Period, cra		11.6	0.1	0.3	1.6	4.5	5.1
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o		0		0.0		0.0	0.0	0.0
Ramp segments, cra		3		0.1	0.3	1.6	4.5	5.1
Crossroad ramp term		0		0.0		0.0	0.0	0.0
Crashes for Entire I		Year	Total	K	Α	В	С	PDO
Estimated number of	•	2040	11.6	0.1	0.3	1.6	4.5	5.1
the Study Period, cra	shes:	2041						
		2042						
		2043						
		2044						
		2045 2046						
		2046						
		2047						
		2048						
		2049						
		2050						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058	1					
		2059	1					
		2060						
		2061						
		2062						
		2063						
Distribution of Cras	hes for Entire Facility	/						
Crash Type	Crash Type Cat	tegory			er of Crash			
	1	5 1	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.1	0.0
	Right-angle crashes:		0.1	0.0		0.0	0.0	0.0
	Rear-end crashes:		6.8	0.1	0.2	1.0	3.0	2.5
	Sideswipe crashes:	1	2.3	0.0		0.2	0.6	1.5
	Other multiple-vehicle		1.3	0.0		0.2	0.6	0.5
Oin ala contri d	Total multiple-vehic	ie crashes:	10.6	0.1	0.3	1.5	4.3	4.5
Single vehicle	Crashes with animal:		0.0	0.0		0.0	0.0	0.0
	Crashes with fixed ob	,	0.8	0.0	0.0	0.1	0.2	0.5
	Crashes with other of		0.0	0.0		0.0	0.0	0.0
	Crashes with parked		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle		0.2	0.0		0.0	0.1	0.1
	Total single-vehicle Total cras		1.0 11.6	0.0	0.0	0.1 1.6	0.3 4.5	0.6 5.1
	าบเลา เกลร	11 0 5.	11.0	U. I	0.3	1.0	4.5	5.1

		Out	tput Summ	ary				
General Information								
	I-270 SB Slips Ramps	Between S	Shady Grove	e Rd and M	1D 28 - SB	6 Concept I	uture (204	0) Build
Analyst:	LW	Date:	1/4/2017		Area type:	·	Urban	,
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	available?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	available?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		7.6	0.0		0.8	2.3	4.2
	eq. during Study Period, cras		7.6	0.0	0.1	0.8	2.3	4.2
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, ci		0		0.0		0.0	0.0	0.0
Ramp segments, cras		3		0.0		0.8	2.3	4.2
Crossroad ramp termi		0		0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	Α	В	С	PDO
Estimated number of		2040	7.6	0.0	0.1	0.8	2.3	4.2
the Study Period, cras	shes:	2041						
		2042						
		2043 2044						
		2044						
		2045						
		2046						
		2047						
		2049						
		2049						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Crast	hes for Entire Facility	'						
Crash Type	Crash Type Cat	egory			er of Crash			
-	7.	J. ,	Total	K	A	В	С	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.0	0.0		0.0	0.0	0.0
	Rear-end crashes:		4.1	0.0	0.1	0.5	1.5	2.0
	Sideswipe crashes:	orook	1.6	0.0		0.1	0.3	1.2
	Other multiple-vehicle		0.8	0.0	0.0	0.1	0.3	0.4
Cinala vahi-l-	Total multiple-vehicl	e crasnes:	6.6	0.0		0.7	2.1	3.6
Single vehicle	Crashes with animal:	inat	0.0	0.0		0.0	0.0	0.0
	Crashes with fixed ob		0.7	0.0	0.0	0.1	0.2	0.5
	Crashes with other ob	,	0.0	0.0		0.0	0.0	0.0
	Crashes with parked v		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle c		0.2	0.0		0.0	0.1	0.1
	Total single-vehicle		0.9 7.6	0.0		0.1 0.8	0.3 2.3	0.6 4.2
	Total crash	IC9.	0.1	0.0	0.1	0.8	2.3	4.2

		Out	tput Summ	ary				
General Information								
Project description:	I-270 SB Local Lanes	Between M	1D 28 and M	1D 189 (SE	3 7) - Future	(2040) No	-Build	
Analyst:	MLV	Date:	1/4/2017	•	Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year of crash data:			
,g	Project-level crash da	ta available	?	No	Last year of crash data:			
Ramp segments	Segment crash data a		No	First year of crash data:				
	Project-level crash da	?	No	Last year of crash data:				
Ramp terminals	Segment crash data a		No	First year of crash data:				
	Project-level crash da	?	No	Last year of crash data:				
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
Estimated number of crashes during Study Period, crashes:			33.2	0.3		5.6	16.3	9.9
	eq. during Study Period, cras		33.2	0.3	1.0	5.6	16.3	9.9
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		0		0.0		0.0	0.0	0.0
Ramp segments, cras		4		0.3		5.6	16.3	9.9
Crossroad ramp termi	,	0		0.0		0.0	0.0	0.0
Crashes for Entire F	• •	Year	Total	K	Α	В	С	PDO
Estimated number of	•	2040	33.2	0.3	1.0	5.6	16.3	9.9
the Study Period, cras	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046 2047						
2048 2049 2050 2051 2052 2053 2054		_						
		2055						
		2056						
2057								
2058 2059 2059			i					
			i					
		2060						
		2061						
		2062						
		2063						
Distribution of Crasi	hes for Entire Facility							
Crash Type	Crash Type Cat	egory			er of Crash			
.	,, o ,		Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.4	0.0	0.0	0.1	0.2	0.1
	Right-angle crashes:		0.3	0.0		0.1	0.2	0.0
	Rear-end crashes:		20.7	0.2	0.7	3.8	11.1	4.8
	Sideswipe crashes:		5.9	0.0		0.7	2.0	3.0
	Other multiple-vehicle		4.0	0.0	0.1	0.8	2.2	0.9
	Total multiple-vehicle crashes:		31.3	0.3	1.0	5.4	15.7	8.8
Single vehicle	Crashes with animal:		0.0	0.0		0.0	0.0	0.0
	Crashes with other object:		1.5	0.0	0.0	0.1	0.4	0.9
	Crashes with other object:		0.0	0.0		0.0	0.0	0.0
	Crashes with parked vehicle:		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes		0.3	0.0		0.0	0.1	0.1
Total single-vehicle crashes: Total crashes:			1.9	0.0		0.2	0.5	1.1
	ICS.	33.2	0.3	1.0	5.6	16.3	9.9	

		Out	tput Summ	ary				
General Information								
Project description:	I-270 SB Local Lanes	Between M	ID 28 and M	1D 189 - SI	B 7 Concep	t Future (20	040) Build	
Analyst:	MLV	anes Between MD 28 and MD 189 - SB 7 Concept Future (2040) Build Date: 1/4/2017 Area type: Urban						
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of crash data:			
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a		No	First year of crash data:				
	Project-level crash da	?	No	Last year of crash data:				
Ramp terminals	Segment crash data a		No	First year of crash data:				
	Project-level crash da	?	No	Last year of crash data:				
Estimated Crash Sta						_		
Crashes for Entire F	-		Total	K	Α	В	С	PDO
Estimated number of crashes during Study Period, crashes:			16.7	0.1		2.1	6.1	7.9
	eq. during Study Period, cras		16.7	0.1	0.4	2.1	6.1	7.9
Crashes by Facility	•	Nbr. Sites	Total	K	A	В	С	PDO
Freeway segments, cr		0		0.0		0.0	0.0	0.0
Ramp segments, cras Crossroad ramp termi		4	16.7 0.0	0.1	0.4	2.1	6.1	7.9
Crossroad ramp termi		Year	Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
		2040	1 ota i 16.7	K 0.1	A 0.4	<u>в</u>	6.1	
Estimated number of o	J		16.7	0.1	0.4	2.1	6.1	7.9
the Study Period, cras	siles.	2041 2042						
		2042						
		2043						
		2045						
		2046						
		2047						
		2048						
2049 2050 2051 2052 2053 2054 2055								
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
2056 2057								
		2058						
		2059						
		2060						
		2061						
		2062 2063						
Distribution of Crast	nes for Entire Facility							
			Estima	ted Numh	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Category		Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.2	0.0	0.0	0.0	0.1	0.1
	Right-angle crashes:		0.1	0.0	0.0	0.0	0.1	0.0
	Rear-end crashes:		9.3	0.1	0.2	1.3	3.9	3.8
	Sideswipe crashes:		3.3	0.0	0.0	0.2	0.7	2.3
	Other multiple-vehicle	crashes:	1.8	0.0	0.0	0.3	0.8	0.7
	Total multiple-vehicle crashes:		14.7	0.1	0.3	1.9	5.5	6.8
Single vehicle	Crashes with animal:		0.0	0.0	0.0	0.0	0.0	0.0
	Crashes with fixed object:		1.6	0.0	0.0	0.2	0.5	0.9
	Crashes with other object:		0.0	0.0	0.0	0.0	0.0	0.0
	Crashes with parked vehicle:		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes		0.4	0.0	0.0	0.1	0.2	0.1
	Total single-vehicle crashes: Total crashes:		2.0	0.0		0.2	0.7	1.1
	16.7	0.1	0.4	2.1	6.1	7.9		

		Out	tput Summa	ary				
General Information				•				
Project description:	I-270 SB Local Lanes	Between M	ID 189 and I	Montrose I	Rd (SB 8) -	Future (204	10) No-Build	1
Analyst:	MLV	Date:	1/4/2017		Area type:	,	Úrban	
First year of analysis:	2040	•						
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	available?		No	First year of crash data:			
	Project-level crash da	ta available	?	No	Last year o	f crash data	a:	
Ramp segments	Ramp segments Segment crash data available?			No	First year of	of crash dat	a:	
	Project-level crash da	?	No	Last year o	f crash data	a:		
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ıta available	?	No	Last year c	f crash data	a:	
Estimated Crash Sta							_	
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		22.0	0.2		3.6	9.3	8.2
	eq. during Study Period, cras		22.0	0.2	0.7	3.6	9.3	8.2
Crashes by Facility	•	Nbr. Sites	Total	K	A	В	С	PDO
Freeway segments, cr		0		0.0		0.0	0.0	0.0
Ramp segments, crashes: Crossroad ramp terminals, crashes:		3	22.0	0.2		3.6	9.3	8.2
Crossroad ramp termi		Year	0.0 Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
		2040					_	
Estimated number of o			22.0	0.2	0.7	3.6	9.3	8.2
the Study Period, cras	siles.	2041 2042						
		2042						
		2043						
		2044						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
Distribution of Crost	has for Entire Essilia	2063						
יוטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטטט	hes for Entire Facility	1	Fetimo	tad Numb	er of Crash	os Durina	the Study	Pariod
Crash Type	Crash Type Cat	egory	Total	K	A A	B B	C	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0	0.0	0.1	0.1	0.1
	Right-angle crashes:		0.2	0.0		0.0	0.1	0.0
	Rear-end crashes:		13.3	0.0	0.5	2.5	6.3	4.0
	Sideswipe crashes:		4.1	0.0		0.4	1.1	2.4
	Other multiple-vehicle	crashes:	2.6	0.0	0.1	0.5	1.2	0.7
	Total multiple-vehic		20.5	0.2	0.7	3.5	8.9	7.2
Single vehicle	Crashes with animal:		0.0	0.0		0.0	0.0	0.0
g = 1.0.0	Crashes with fixed ob	ject:	1.2	0.0	0.0	0.1	0.3	0.8
	Crashes with other ob	•	0.0	0.0		0.0	0.0	0.0
	Crashes with parked	•	0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes		0.3	0.0		0.0	0.1	0.1
	Total single-vehicle crashes:		1.6	0.0		0.2	0.4	0.9
	Total crash		22.0	0.2	0.7	3.6	9.3	8.2

		Out	tput Summa	ary				
General Information								
Project description:	I-270 SB Local Lanes	Between M	1D 189 and	Montrose I	Rd - SB 8 C	oncept Fut	ure (2040)	Build
Analyst:	MLV	Date:	1/5/2017		Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	available?		No	First year of	of crash dat	a:		
	Project-level crash da	?	No	Last year o	of crash dat	a:		
Ramp terminals		Segment crash data available?			,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		20.6	0.2		2.9	8.4	8.7
	eq. during Study Period, cras		20.6	0.2	0.5	2.9	8.4	8.7
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, crashes:		0		0.0		0.0	0.0	0.0
Ramp segments, crashes:		3		0.2		2.9	8.4	8.7
Crossroad ramp termi		0		0.0		0.0		0.0
Crashes for Entire F		Year	Total	K	Α	В	С	PDO
Estimated number of	•	2040	20.6	0.2	0.5	2.9	8.4	8.7
the Study Period, cras	shes:	2041						
		2042						
		2043 2044						
		2044						
		2045						
		2046						
		2047						
		2049						
		2049						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Crasi	hes for Entire Facility	'			-			-
Crash Type	Crash Type Cat	egory			er of Crash			
.		J. ,	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.2	0.0		0.0	0.1	0.1
	Right-angle crashes:		0.2	0.0		0.0	0.1	0.0
	Rear-end crashes:		12.1	0.1	0.4	1.9	5.5	4.2
	Sideswipe crashes:	orook	4.0	0.0		0.3	1.0	2.5
	Other multiple-vehicle		2.3	0.0		0.4	1.1	0.8
Cinala veletele	Total multiple-vehic	e crashes:	18.8	0.2		2.7	7.8	7.6
Single vehicle	Crashes with animal:	inat	0.0	0.0		0.0	0.0	0.0
	Crashes with sther ob		1.4	0.0	0.0	0.1	0.4	0.9
	Crashes with parked	,	0.0	0.0		0.0	0.0	0.0
	Crashes with parked vehicle:		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes Total single-vehicle crashes:		0.3	0.0		0.0	0.1	0.1
			1.8 20.6	0.0		0.2 2.9	0.6 8.4	1.0 8.7
	Total crash	IC3.	20.0	0.2	0.5	2.9	0.4	0.7

		Out	tput Summ	ary				
General Information				•				
Project description:	I-270 SB West Spur a	t Merge wit	h I-495 Oute	er Loop (SI	B 10) - Futu	re (2040) N	lo-Build	
Analyst:	MLV	Date:	1/4/2017		Area type:	, ,	Urban	
First year of analysis:	2040	•						
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments Segment crash data available?				No	First year of	of crash dat	a:	
	Project-level crash da	?	No	Last year o	of crash dat	a:		
Ramp terminals	Segment crash data a		No	,	of crash dat			
	Project-level crash da	?	No	Last year c	of crash dat	a:		
Estimated Crash Sta						_		
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		22.0	0.1		1.7	3.8	16.2
	eq. during Study Period, cras		22.0	0.1		1.7	3.8	16.2
Crashes by Facility	•	Nbr. Sites	Total	K	A	В	С	PDO
Freeway segments, c		3		0.1		1.7	3.8	16.2
Ramp segments, crashes: Crossroad ramp terminals, crashes:		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termi		Year	0.0 Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
	* *							
Estimated number of	•	2040	22.0	0.1	0.3	1.7	3.8	16.2
the Study Period, cras	siles.	2041 2042						
		2042						
		2043						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062 2063						
Distribution of Crast	hes for Entire Facility				<u> </u>			
			Estima	ted Numh	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.0	0.0
,	Right-angle crashes:		0.3	0.0	0.0	0.0	0.1	0.2
	Rear-end crashes:		11.0	0.0	0.1	0.9	1.9	8.0
	Sideswipe crashes:		3.8	0.0	0.0	0.2	0.5	3.1
	Other multiple-vehicle	crashes:	0.4	0.0	0.0	0.0	0.1	0.3
	Total multiple-vehicl	e crashes:	15.6	0.1	0.2	1.2	2.6	11.6
Single vehicle	Crashes with animal:		0.1	0.0	0.0	0.0	0.0	0.1
	Crashes with fixed ob	ject:	4.6	0.0	0.1	0.4	0.9	3.3
	Crashes with other ob	•	0.7	0.0		0.0	0.1	0.6
	Crashes with parked v		0.1	0.0		0.0	0.0	0.1
	Other single-vehicle crashes		0.9	0.0		0.1	0.2	0.5
	Total single-vehicle		6.4	0.0		0.5	1.2	4.5
	Total crash	nes:	22.0	0.1	0.3	1.7	3.8	16.2

		Out	tput Summ	ary				
General Information								
Project description:	I-270 SB West Spur a	t Merge wit	h I-495 Oute	er Loop - S	B 10 Conce	ept Future (2040) Build	
Analyst:	MLV	Date:	1/4/2017		Area type:	•	Urban	
First year of analysis:	2040	•						
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of crash data:			
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments Segment crash data available				No	First year of	of crash dat	a:	
	Project-level crash da	?	No	Last year o	of crash dat	a:		
Ramp terminals	Segment crash data a		No	,	of crash dat			
	Project-level crash da	?	No	Last year c	of crash dat	a:		
Estimated Crash Sta						_		
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		18.6	0.1		1.7	3.7	12.9
	eq. during Study Period, cras		18.6	0.1	0.2	1.7	3.7	12.9
Crashes by Facility	•	Nbr. Sites	Total	K	A	В	C	PDO
Freeway segments, cr		3		0.1	0.2	1.7	3.7	12.9
Ramp segments, crashes: Crossroad ramp terminals, crashes:		0		0.0		0.0	0.0	0.0
		Year	0.0 Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
Crashes for Entire For Estimated number of the control of the cont		2040	1 ota 1	K 0.1	A 0.2	В 1.7	3.7	12.9
the Study Period, cras			18.6	0.1	0.2	1.7	3.7	12.9
the Study Period, cras	siles.	2041 2042						
		2042						
		2043						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062 2063						
Distribution of Crast	hes for Entire Facility				<u> </u>			
			Estima	ted Numh	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	В	C	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
•	Right-angle crashes:		0.3	0.0	0.0	0.0	0.1	0.2
	Rear-end crashes:		9.5	0.0	0.1	0.9	1.9	6.5
	Sideswipe crashes:		3.4	0.0	0.0	0.2	0.5	2.7
	Other multiple-vehicle	crashes:	0.3	0.0	0.0	0.0	0.1	0.2
	Total multiple-vehicl	e crashes:	13.6	0.1	0.2	1.2	2.6	9.7
Single vehicle	Crashes with animal:		0.1	0.0	0.0	0.0	0.0	0.1
	Crashes with fixed ob	ject:	3.6	0.0	0.1	0.4	0.8	2.3
	Crashes with other ob	•	0.6	0.0		0.0	0.1	0.5
	Crashes with parked v	/ehicle:	0.1	0.0		0.0	0.0	0.1
	Other single-vehicle c		0.7	0.0		0.1	0.2	0.3
	Total single-vehicle		5.0	0.0		0.5	1.1	3.3
	Total crash	nes:	18.6	0.1	0.2	1.7	3.7	12.9

		Out	tput Summa	ary				
General Information	1			-				
Project description:	I-270 SB West Spur B	Between MD	189 and D	emocracy	Blvd (SB 12) - Future (2	2040) No-B	uild
Analyst:	MLV, LW	Date:	1/5/2017		Area type:		Urban	
First year of analysis:								
Last year of analysis:	2040							
Crash Data Descrip	tion							
Freeway segments	Segment crash data	available?		No	First year o	f crash dat	a:	
	Project-level crash da		?	No	Last year o	f crash data	a:	
Ramp segments	Segment crash data		No	First year o	f crash dat	a:		
	Project-level crash da	?	No	•	f crash data			
Ramp terminals	Segment crash data			No	First year o			
	Project-level crash da	?	No	Last year o	f crash data	a:		
Estimated Crash St						-		
Crashes for Entire I			Total	K	Α	В	С	PDO
	nes during Study Period, cras		157.0	0.7		12.4	26.9	115.2
	req. during Study Period, cra	_	157.0	0.7	1.8	12.4	26.9	115.2
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o		16	157.0	0.7	1.8	12.4	26.9	115.2
Ramp segments, cra		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp term		0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire I		Year	Total	K	Α	В	С	PDO
Estimated number of	•	2040	157.0	0.7	1.8	12.4	26.9	115.2
the Study Period, cra	shes:	2041						
		2042						
		2043 2044						
		2045 2046						
		2046						
		2047						
		2040						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Cras	hes for Entire Facility	/						
Crash Type	Crash Type Cat	tegory			er of Crash			
		J. ,	Total	K	A	В	С	PDO
Multiple vehicle	Head-on crashes:		0.4	0.0	0.0	0.1	0.1	0.2
	Right-angle crashes:		2.4	0.0		0.3	0.6	1.5
	Rear-end crashes:		78.0	0.4	1.0	6.5	14.2	56.0
	Sideswipe crashes:	orook sa:	27.1	0.1	0.2	1.6	3.4	21.8
	Other multiple-vehicle		2.8	0.0	0.0	0.3	0.6	1.9
Cinale vehi-l-	Total multiple-vehic	ie crasnes:	110.6	0.5	1.3	8.6	18.9	81.4
Single vehicle	Crashes with animal:	oio ot:	0.8	0.0		0.0	0.0	0.7
	Crashes with fixed ob	•	33.3	0.1	0.4	2.7	5.8	24.2
	Crashes with other of	,	5.4	0.0		0.2	0.4	4.8
	Other single vehicle		0.7	0.0		0.1	0.1	0.5
	Other single-vehicle crashes Total single-vehicle crashes:		6.2	0.0	0.1	0.8	1.7 g 1	3.6
	Total single-venicle		46.4 157.0	0.2	0.5 1.8	3.7 12.4	8.1 26.9	33.8 115.2
	าบเลา เกลร	1100.	107.0	0.7	1.0	12.4	20.9	110.2

		Out	tput Summa	ary				
General Information			•	•				
Project description:	I-270 SB West Spur	Between MD	189 and D	emocracy	Blvd - SB 12	2 Concept F	uture (204	0) Build
Analyst:	MLV, LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis	2040							
Last year of analysis:	2040							
Crash Data Descrip	tion							
Freeway segments	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash d	ata available	?	No	Last year o	of crash data	a:	
Ramp segments	,			No	First year o	of crash data	a:	
	Project-level crash d	?	No	Last year o	of crash data	a:		
Ramp terminals	Segment crash data		No	First year o	of crash data	a:		
	Project-level crash d	?	No	Last year o	of crash data	a:		
Estimated Crash St	atistics							
Crashes for Entire I	Facility		Total	K	Α	В	С	PDO
Estimated number of crash	nes during Study Period, cra	shes:	147.8	0.8	1.8	12.7	27.2	105.3
Estimated average crash f	req. during Study Period, cra	ashes/yr:	147.8	0.8	1.8	12.7	27.2	105.3
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o	crashes:	16	147.8	0.8	1.8	12.7	27.2	105.3
Ramp segments, cra	shes:	0	0.0	0.0	0.0	0.0	0.0	0.0
Crossroad ramp term		0	0.0	0.0	0.0	0.0	0.0	0.0
Crashes for Entire I	Facility by Year	Year	Total	K	Α	В	С	PDO
Estimated number of	crashes during	2040	147.8	0.8	1.8	12.7	27.2	105.3
the Study Period, cra	•	2041						
		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Cras	hes for Entire Facilit	У						
Crash Type	Crash Type Ca	tegory			er of Crash			
	,,	- 3 - 1	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.4	0.0		0.1	0.1	0.1
	Right-angle crashes:		2.2	0.0		0.3	0.6	1.3
	Rear-end crashes:		70.4	0.4		6.3	13.5	49.3
	Sideswipe crashes:		24.3	0.1		1.5	3.3	19.2
	Other multiple-vehicl		2.5	0.0		0.3	0.5	1.7
	Total multiple-vehic		99.8	0.5		8.4	18.0	71.6
Single vehicle	Crashes with animal		0.8	0.0		0.0	0.0	0.7
	Crashes with fixed o	•	34.5	0.2		3.1	6.6	24.1
	Crashes with other o	,	5.5	0.0		0.2	0.5	4.7
	Crashes with parked		0.7	0.0		0.1	0.1	0.5
	Other single-vehicle		6.6	0.1	0.1	0.9	1.9	3.6
	Total single-vehicle		48.1	0.3		4.3	9.2	33.7
	Total cras	choc.	147.8	0.8	1.8	12.7	27.2	105.3

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB West Spur E	Between De	mocracy Blv	d and MD	189 (NB 1)	- Future (2	040) No-Bu	uild
Analyst:	MLV	Date:	1/4/2017		Area type:		Urban	
First year of analysis:								
Last year of analysis:								
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	f crash dat	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	?	No	Last year o	f crash dat	a:		
Ramp terminals		egment crash data available?			,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	f crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
Estimated number of crash	es during Study Period, cras	hes:	148.2	0.6		11.7	25.7	108.5
	eq. during Study Period, cras	shes/yr:	148.2	0.6	1.7	11.7	25.7	108.5
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		12		0.6		11.7	25.7	108.5
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp term	•	0		0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	Α	В	С	PDO
Estimated number of	0	2040	148.2	0.6	1.7	11.7	25.7	108.5
the Study Period, cras	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060 2061						
		2061						
		2062						
Distribution of Crass	hes for Entire Facility							
			Fetima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	B	C	PDO
Multiple vehicle	Head-on crashes:		0.4	0.0	0.0	0.1	0.1	0.2
	Right-angle crashes:		2.2	0.0		0.1	0.5	1.4
	Rear-end crashes:		73.3	0.0	0.0	6.1	13.4	52.7
	Sideswipe crashes:		25.3	0.1	0.2	1.5	3.2	20.4
	Other multiple-vehicle	crashes:	2.7	0.0	0.0	0.2	0.5	1.8
	Total multiple-vehic		103.9	0.4		8.1	17.8	76.4
Single vehicle	Crashes with animal:	01401100.	0.7	0.0		0.0	0.0	0.7
on gio voniole	Crashes with fixed ob	iect·	31.7	0.0	0.0	2.6	5.7	23.0
	Crashes with other ob		5.1	0.0		0.2	0.4	4.5
	Crashes with parked	,	0.7	0.0		0.2	0.4	0.5
	Other single-vehicle of		6.0	0.0		0.7	1.6	3.4
	Total single-vehicle crashes:		44.2	0.0	0.1	3.6	7.8	32.1
	Total crash		148.2	0.6		11.7	25.7	108.5
	1010101831		170.2	0.0	1.7	1 1.7	20.1	100.0

		Out	tput Summa	ary				
General Information								
Project description:	I-270 NB West Spur	Between De	mocracy Blv	d and MD	189 - NB 1	Concept Fu	uture (2040) Build
Analyst:	MLV	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	tion							
Freeway segments	Segment crash data	available?		No	First year o	of crash data	a:	
, ,	Project-level crash d	ata available	?	No	Last year o	of crash data	a:	
Ramp segments	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash d	ata available	?	No	Last year o	of crash data	a:	
Ramp terminals	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash d	ata available	?	No	Last year o	of crash data	a:	
Estimated Crash Sta	atistics							
Crashes for Entire F	acility		Total	K	Α	В	С	PDO
Estimated number of crash	es during Study Period, cra	ishes:	136.1	0.7	1.7	11.6	25.0	97.2
Estimated average crash from	eq. during Study Period, cr	ashes/yr:	136.1	0.7	1.7	11.6	25.0	97.2
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c	rashes:	12	136.1	0.7	1.7	11.6	25.0	97.2
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termi		0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire F	acility by Year	Year	Total	K	Α	В	С	PDO
Estimated number of		2040	136.1	0.7	1.7	11.6	25.0	97.2
the Study Period, cras	0	2041		<u> </u>			_5.5	
,,		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Crasi	hes for Entire Facilit	ty	,					
Crook Turns	Crock Time O	togor:	Estima	ted Numb	er of Crash	es During	the Study	Period
Crash Type	Crash Type Ca	itegory	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0	0.0	0.1	0.1	0.1
•	Right-angle crashes:	:	2.0	0.0	0.0	0.2	0.5	1.2
	Rear-end crashes:		65.4	0.4		5.9	12.7	45.7
	Sideswipe crashes:		22.4	0.1		1.4	3.0	17.7
	Other multiple-vehic	e crashes:	2.4	0.0		0.2	0.5	1.6
			92.5	0.5		7.8	16.9	66.3
	Total multiple-vehi					0.0	0.0	0.7
Single vehicle	Total multiple-vehi		0.7	().()				
Single vehicle	Crashes with animal		0.7 31.3	0.0				
Single vehicle	Crashes with animal Crashes with fixed o	bject:	31.3	0.2	0.4	2.7	5.9	22.1
Single vehicle	Crashes with animal Crashes with fixed o Crashes with other of	bject: bject:	31.3 5.0	0.2 0.0	0.4 0.0	2.7 0.2	5.9 0.4	22.1 4.3
Single vehicle	Crashes with animal Crashes with fixed o Crashes with other o Crashes with parked	bject: bject: vehicle:	31.3 5.0 0.7	0.2 0.0 0.0	0.4 0.0 0.0	2.7 0.2 0.1	5.9 0.4 0.1	22.1 4.3 0.5
Single vehicle	Crashes with animal Crashes with fixed o Crashes with other o Crashes with parked Other single-vehicle	bject: bject: vehicle: crashes	31.3 5.0 0.7 5.9	0.2 0.0 0.0 0.0	0.4 0.0 0.0 0.1	2.7 0.2 0.1 0.8	5.9 0.4 0.1 1.7	22.1 4.3 0.5 3.3
Single vehicle	Crashes with animal Crashes with fixed o Crashes with other o Crashes with parked	bject: bject: bject: vehicle: crashes crashes:	31.3 5.0 0.7	0.2 0.0 0.0	0.4 0.0 0.0 0.1	2.7 0.2 0.1	5.9 0.4 0.1	22.1 4.3 0.5

		Out	tput Summ	ary				
General Information				•				
Project description:	I-270 NB Local Lanes	Betweeen	MD 189 and	d MD 28 (N	IB 2A) - Fut	ure (2040)	No-Build	
Analyst:	LW	Date:	1/4/2017		Area type:	` ,	Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	available?		No	First year of crash data:			
	Project-level crash da	ta available	?	No	Last year o	f crash dat	a:	
Ramp segments	np segments Segment crash data available?			No	First year of	of crash dat	a:	
	Project-level crash da	?	No	Last year o	f crash dat	a:		
Ramp terminals	Segment crash data a		No	,	of crash dat			
	Project-level crash da	ta available	?	No	Last year c	f crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		24.6	0.2		3.9	11.2	8.6
	eq. during Study Period, cras		24.6	0.2	0.7	3.9	11.2	8.6
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		0		0.0		0.0	0.0	0.0
Ramp segments, crashes:		3		0.2		3.9	11.2	8.6
Crossroad ramp termi		0		0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	Α	В	С	PDO
Estimated number of	•	2040	24.6	0.2	0.7	3.9	11.2	8.6
the Study Period, cras	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046 2047						
		2047						
		2048						
		2049						
		2050						
		2051						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058	i					
		2059	i					
		2060						
		2061						
		2062						
		2063						
Distribution of Crasi	hes for Entire Facility	·						
Crash Type	Crash Type Cat	egory			er of Crash			
.	7.	- 3 7	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0	0.0	0.1	0.2	0.1
	Right-angle crashes:		0.2	0.0		0.0	0.1	0.0
	Rear-end crashes:		15.2	0.2	0.5	2.6	7.7	4.2
	Sideswipe crashes:		4.6	0.0		0.5	1.4	2.6
	Other multiple-vehicle		2.9	0.0	0.1	0.5	1.5	0.8
0. 1 1	Total multiple-vehicl	e crashes:	23.1	0.2	0.7	3.7	10.8	7.6
Single vehicle	Crashes with animal:	! 4.	0.0	0.0		0.0	0.0	0.0
	Crashes with fixed ob		1.2	0.0	0.0	0.1	0.3	0.8
	Crashes with other ob	,	0.0	0.0		0.0	0.0	0.0
	Crashes with parked vehicle:		0.0	0.0		0.0	0.0	0.0
	Other single-vehicle crashes Total single-vehicle crashes:		0.3	0.0		0.0	0.1	0.1
	Total single-vehicle Total crash		1.5 24.6	0.0		0.1 3.9	0.4 11.2	0.9 8.6
	i otai crasi	IC9.	24.0	0.2	0.7	ა.9	11.2	0.0

Estimated number of crashes during Study Period, crashesy: Estimated average crash free, during Study Period, crashesy: Statimated average crash free, during Study Period, crashesy: Crashs by Facility Component			Out	tput Summa	ary				
Analyst: W	General Information	1			,				
Egistimated number of crashes during study Period, crashes: 3 21.0 0.2 0.5 2.9 8.5	Project description:	I-270 NB Local Lane	s Between M	1D 189 and	MD 28 - N	B 2A Conce	pt Future (2	2040) Build	
Last year of analysis: Z040	Analyst:	LW	Date:	1/4/2017		Area type:		Urban	
Segment crash data available? No First year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No First year of crash data: Project-level crash data available? No First year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data available? No Last year of crash data: Project-level crash data: Project-level crash data available? No Last year of crash data: Project-level data: Project-lev	First year of analysis	: 2040							
	Last year of analysis:	2040							
Project-level crash data a wailable?	Crash Data Descrip	tion							
Ramp segments Segment crash data available? No First year of crash data: Project-level crash data available? No Last year of crash data:	Freeway segments	Segment crash data	available?		No	First year o	of crash data	a:	
Project-level crash data available?		Project-level crash d	ata available	?	No	Last year o	of crash data	a:	
Ramp terminals Segment crash data available? No First year of crash data: Project-level crash data available? No Last year of crash data:	Ramp segments	Segment crash data	available?		No	First year o	of crash data	a:	
Project-level crash data available?		Project-level crash data available			No	Last year o	f crash data	a:	
Estimated Crash Statistics Total K	Ramp terminals			No	,				
Total K		.,	?	No	Last year o	f crash data	a:		
Estimated number of crashes during Study Period, crashes: 21.0 0.2 0.5 2.9 8.5									
Estimated average crash freq, during Study Period, crashesyr:	Crashes for Entire I	Facility		Total	K	Α	В	С	PDO
Crashes by Facility Component Nbr. Sites Total K A B C PDice	Estimated number of crash	nes during Study Period, cra	shes:	21.0	0.2	0.5	2.9	8.5	8.8
Freeway segments, crashes:			ashes/yr:	21.0		0.5	_		8.8
Ramp segments, crashes: 3	Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Crossroad ramp terminals, crashes:	Freeway segments, o	crashes:			0.0	0.0	0.0	0.0	0.0
Crashes for Entire Facility by Year 2040 21.0 0.2 0.5 2.9 8.5	. ,								8.8
Estimated number of crashes during the Study Period, crashes: 2040			-						0.0
the Study Period, crashes: 2041								_	PDO
2042 2043		•		21.0	0.2	0.5	2.9	8.5	8.8
2043	the Study Period, cra	shes:							
2044 2045									
2045									
2046									
2047									
2048									
2049									
2050									
2051									
2052									
2053									
2054 2055 2056 2057 2057 2058 2059 2060 2061 2062 2063									
2055 2056 2057 2058 2059 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060 2061 2062 2063 2060									
2056 2057 2058 2059 2060 2061 2061 2062 2063 2059 2060 2061 2062 2063 2059 2060 2061 2062 2063 2059 2063 2063 2059 2063									
2057									
2058 2059 2060 2061 2062 2063 2063 2063 2063 2064 2065 2063 2065 2063 2065 2063 2065 2063 2065 2063 2065 2063 2065 2065 2065									
Distribution of Crashes for Entire Facility Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PD0									
Distribution of Crashes for Entire Facility Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PDI									
Distribution of Crashes for Entire Facility Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PD0									
Distribution of Crashes for Entire Facility Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PD6									
Distribution of Crashes for Entire Facility Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PD6									
Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Total K A B C PD6									
Crash Type Crash Type Category Estimated Number of Crashes During the Study Period Multiple vehicle Head-on crashes: 0.2 0.0 0.0 0.0 0.1 Right-angle crashes: 0.2 0.0 0.0 0.0 0.1 Rear-end crashes: 12.3 0.1 0.4 1.9 5.6 Sideswipe crashes: 4.1 0.0 0.1 0.4 1.0 Other multiple-vehicle crashes: 2.4 0.0 0.1 0.4 1.1 Total multiple-vehicle crashes: 19.1 0.2 0.5 2.7 8.0 Single vehicle Crashes with animal: 0.0 0.0 0.0 0.0 0.0 Crashes with fixed object: 1.5 0.0 0.0 0.0 0.0 0.0 Crashes with other object: 0.0 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.1	Distribution of Cras	hes for Entire Facilit							
Total K A B C PDo			_	Estima	ted Numh	er of Crash	es Durina	the Study	Period
Head-on crashes:	Crash Type	Crash Type Ca	tegory						PDO
Right-angle crashes:	Multiple vehicle	Head-on crashes:							0.1
Rear-end crashes: 12.3 0.1 0.4 1.9 5.6 Sideswipe crashes: 4.1 0.0 0.1 0.4 1.0 Other multiple-vehicle crashes: 2.4 0.0 0.1 0.4 1.1 Total multiple-vehicle crashes: 19.1 0.2 0.5 2.7 8.0 Single vehicle Crashes with animal: 0.0 0.0 0.0 0.0 0.0 Crashes with fixed object: 1.5 0.0 0.0 0.1 0.4 Crashes with other object: 0.0 0.0 0.0 0.0 0.0 Crashes with parked vehicle: 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.1									0.0
Sideswipe crashes:									4.3
Other multiple-vehicle crashes: 2.4 0.0 0.1 0.4 1.1 Total multiple-vehicle crashes: 19.1 0.2 0.5 2.7 8.0 Single vehicle Crashes with animal: 0.0 0.0 0.0 0.0 0.0 0.0 Crashes with fixed object: 1.5 0.0 0.0 0.1 0.4 Crashes with other object: 0.0 0.0 0.0 0.0 0.0 0.0 Crashes with parked vehicle: 0.0 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.1 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.1 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.									2.6
Total multiple-vehicle crashes: 19.1 0.2 0.5 2.7 8.0			e crashes:						0.8
Crashes with animal: 0.0 0.0 0.0 0.0 Crashes with fixed object: 1.5 0.0 0.0 0.1 0.4 Crashes with other object: 0.0 0.0 0.0 0.0 0.0 Crashes with parked vehicle: 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.1									7.8
Crashes with fixed object: 1.5 0.0 0.0 0.1 0.4 Crashes with other object: 0.0 0.0 0.0 0.0 0.0 Crashes with parked vehicle: 0.0 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.1	Single vehicle	· · · · · · · · · · · · · · · · · · ·							0.0
Crashes with other object: 0.0 0.0 0.0 0.0 Crashes with parked vehicle: 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.1	g.0 70111010								0.0
Crashes with parked vehicle: 0.0 0.0 0.0 0.0 Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.1			•						0.0
Other single-vehicle crashes 0.3 0.0 0.0 0.0 0.1			,						0.0
		·							0.1
				1.9	0.0		0.2	0.6	1.1
Total crashes: 21.0 0.2 0.5 2.9 8.5									8.8

		Out	tput Summ	ary				
General Information				-				
Project description:	I-270 NB Express Lar	nes at MD 2	8 Interchan	ge (NB 2B)) - Future (2	040) No-Bu	uild	
Analyst:	LW	Date:	1/4/2017	· · · · · · · · · · · · · · · · · · ·	Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	available?		No	First year of crash data:			
	Project-level crash da	ıta available	?	No	Last year o	of crash dat	a:	
Ramp segments				No	First year of	of crash dat	a:	
	Project-level crash da	?	No		of crash dat			
Ramp terminals	Segment crash data a	_	No		of crash dat			
	Project-level crash da	?	No	Last year o	of crash dat	a:		
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		15.0	0.1		1.1	2.7	
	eq. during Study Period, cras		15.0	0.1	_	1.1	2.7	11.0
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	C	PDO
Freeway segments, crashes:		5		0.1		1.1	2.7	11.0
Ramp segments, crashes: Crossroad ramp terminals, crashes:		0		0.0		0.0		0.0
	,	Year	Total	0.0 K	0.0 A	0.0 B	C 0.0	0.0 PDO
Crashes for Entire F Estimated number of		2040		K 0.1		В 1.1	2.7	_
			15.0	0.1	0.2	1.1	2.7	11.0
the Study Period, cras	siles.	2041						
		2042						
		2043						
		2044						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
Diotribution of C	han for Entire Feetite	2063						
DISTRIBUTION OF CRASI	hes for Entire Facility	'	Eatim -	tod Numb	er of Crash	oc Durin -	the Ctual.	Dorical
Crash Type	Crash Type Cat	egory	Total	tea Numb K	er of Crast	B B	tne Study	Period
Multiple vehicle	Head-on crashes:		0.0	0.0		0.0	0.0	0.0
Manupio vollidio	Right-angle crashes:		0.0	0.0		0.0		0.0
	Rear-end crashes:		7.6	0.0		0.6	1.4	5.4
	Sideswipe crashes:		2.6	0.0		0.0	0.3	2.1
	Other multiple-vehicle	crashes:	0.3	0.0		0.0	0.0	0.2
	Total multiple-vehic		10.7	0.0		0.8	1.9	7.8
Single vehicle	Crashes with animal:		0.1	0.0		0.0	0.0	0.1
g.oo.o	Crashes with fixed ob	iect:	3.1	0.0	0.0	0.0	0.6	2.3
	Crashes with other ob	•	0.5	0.0		0.0	0.0	0.4
	Crashes with parked	•	0.1	0.0		0.0	0.0	0.0
	Other single-vehicle crashes		0.6	0.0		0.1	0.2	0.3
	Total single-vehicle crashes:		4.4	0.0		0.3	0.8	
	Total crash		15.0	0.1		1.1	2.7	11.0

		Out	tput Summ	ary				
General Information	1			,				
Project description:	I-270 NB Express Lar	nes at MD 2	8 Interchan	ge - NB 2B	Concept F	uture (2040) Build	
Analyst:	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis:								
Last year of analysis:	2040							
Crash Data Descrip	tion							
Freeway segments	Segment crash data a	available?		No	First year of crash data:			
	Project-level crash da		?	No	Last year o	of crash data	a:	
Ramp segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da		?	No	•	f crash dat		
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ita available	?	No	Last year o	f crash dat	a:	
Estimated Crash Sta					-			
Crashes for Entire F			Total	K	Α	В	С	PDO
	nes during Study Period, cras		16.2	0.1		1.3	2.9	11.8
	req. during Study Period, cra		16.2	0.1	0.2	1.3	2.9	11.8
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o		5		0.1	0.2	1.3	2.9	11.8
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp term		0		0.0		0.0	0.0	0.0
Crashes for Entire I		Year	Total	K	A	В	С	PDO
Estimated number of	•	2040	16.2	0.1	0.2	1.3	2.9	11.8
the Study Period, cra	shes:	2041						
		2042						
		2043 2044						
		2044						
		2045						
		2046						
		2047						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Cras	hes for Entire Facility	/						
Crash Type	Crash Type Cat	egory			er of Crash			
	7.	5 7	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0		0.0	0.0	0.0
	Right-angle crashes:		0.2	0.0		0.0	0.1	0.2
	Rear-end crashes:		8.0	0.0		0.6	1.5	5.7
	Sideswipe crashes:	1	2.8	0.0		0.2	0.4	2.2
	Other multiple-vehicle		0.3	0.0		0.0	0.1	0.2
Oin als costs 1	Total multiple-vehic	ie crashes:	11.3	0.0	0.1	0.9	2.0	8.3
Single vehicle	Crashes with animal:	14-	0.1	0.0		0.0	0.0	0.1
	Crashes with fixed ob		3.5	0.0	0.0	0.3	0.7	2.5
	Crashes with other of	,	0.6	0.0		0.0	0.0	0.5
	Crashes with parked		0.1	0.0		0.0	0.0	0.1
	Other single-vehicle crashes Total single-vehicle crashes:		0.7	0.0		0.1	0.2	0.4
			4.8 16.2	0.0	0.1 0.2	0.4 1.3	0.9 2.9	3.4 11.8
	Total cras	11 0 5.	10.2	U. I	0.2	1.3	2.9	11.8

		Out	tput Summ	ary				
General Information				•				
Project description:	I-270 NB Entrance Ra	amp from NI	B Shady Gr	ove Rd - Lo	oop Ramp (NB 3A) - F	uture (2040) No-Build
Analyst:	KEB	Date:	1/5/2017		Area type:		Urban	
First year of analysis:								
Last year of analysis:								
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	available?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire F			Total	K	Α	В	С	PDO
Estimated number of crash	es during Study Period, cras	hes:	31.9	0.2		4.0	12.1	15.0
	eq. during Study Period, cras		31.9	0.2	0.7	4.0	12.1	15.0
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o		0		0.0		0.0	0.0	0.0
Ramp segments, cras		4		0.2		2.9	7.3	8.1
Crossroad ramp term	,	1	13.0	0.0		1.1	4.8	6.9
Crashes for Entire F	• •	Year	Total	K	Α	В	С	PDO
Estimated number of	•	2040	31.9	0.2	0.7	4.0	12.1	15.0
the Study Period, cra	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060 2061						
		2061						
		2062						
Distribution of Cras	hes for Entire Facility				<u> </u>			
			Fetima	ted Numb	er of Crash	es Durina	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	B	C	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0	0.0	0.0	0.1	0.1
	Right-angle crashes:		3.2	0.0		0.3	1.3	1.6
	Rear-end crashes:		17.2	0.0	0.1	2.3	7.5	6.9
	Sideswipe crashes:		4.4	0.0		0.4	1.0	2.9
	Other multiple-vehicle	crashes:	2.1	0.0	0.1	0.3	0.9	0.7
	Total multiple-vehic		27.2	0.0	0.6	3.4	10.9	12.1
Single vehicle	Crashes with animal:	01401100.	0.0	0.2		0.0	0.0	0.0
onigio vonidio	Crashes with fixed ob	iect·	3.7	0.0	0.0	0.0	0.0	2.4
	Crashes with other ob		0.1	0.0		0.4	0.0	0.1
	Crashes with parked	,	0.1	0.0		0.0	0.0	0.0
	Other single-vehicle of		0.1	0.0		0.0	0.0	0.0
	Total single-vehicle		4.7	0.0		0.1	1.2	2.9
	Total crash		31.9	0.0		4.0	12.1	15.0
	1010101831		01.0	0.2	0.1	7.0	14.1	10.0

		Out	put Summa	ary				
General Information			<u>. </u>					
Project description:	I-270 NB Entrance Ra	amp from NB S	Shady Grove	Rd - Loop	Ramp - NB 3	3A Concept	Future (204	0) Build
Analyst:	KEB	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	: 2040							
Last year of analysis:	: 2040							
Crash Data Descrip	tion							
Freeway segments	Segment crash data	available?		No	First year o	of crash data	a:	
	Project-level crash of	lata available	?	No	Last year o	f crash data	a:	
Ramp segments	Segment crash data	available?		No	First year o	f crash dat	a:	
	Project-level crash of	lata available	?	No	Last year o	f crash data	a:	
Ramp terminals	Segment crash data	available?		No	First year o	f crash dat	a:	
	Project-level crash of	lata available	?	No	Last year o	f crash data	a:	
Estimated Crash St	atistics							
Crashes for Entire I	Facility		Total	K	Α	В	С	PDO
Estimated number of crash	nes during Study Period, cra	ashes:	28.8	0.1	0.5	2.9	9.3	15.9
Estimated average crash for	req. during Study Period, cr	rashes/yr:	28.8	0.1	0.5	2.9	9.3	15.9
Crashes by Facility	Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, o	crashes:	0	0.0	0.0	0.0	0.0	0.0	0.0
Ramp segments, cra		6	14.9	0.1	0.4	2.2	5.7	6.4
Crossroad ramp term		1	13.9	0.0	0.1	0.7	3.6	9.5
Crashes for Entire I	Facility by Year	Year	Total	K	Α	В	С	PDO
Estimated number of		2040	28.8	0.1	0.5	2.9	9.3	15.9
the Study Period, cra	0	2041				-		
		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
İ		2061						
İ		2062						
İ		2063						
Distribution of Cras	hes for Entire Facili	ty						
Crack Tune	Crach Tune Co	atogor:	Estima	ted Numb	er of Crash	es During	the Study	Period
Crash Type	Crash Type Ca	ategory	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.3	0.0	0.0	0.0	0.1	0.1
	Right-angle crashes	:	3.3	0.0	0.0	0.2	1.0	2.1
	Rear-end crashes:		16.2	0.1	0.3	1.8	5.9	8.1
	Sideswipe crashes:		4.4	0.0		0.3	0.8	3.2
	Other multiple-vehic	le crashes:	1.8	0.0	0.1	0.3	0.8	0.7
	Total multiple-vehi	cle crashes:	26.0	0.1	0.5	2.6	8.6	14.2
Single vehicle	Crashes with anima		0.0	0.0	0.0	0.0	0.0	0.0
1			2.1	0.0	0.0	0.2	0.5	1.4
1	Crashes with fixed of							
	Crashes with fixed of Crashes with other of	object:	0.1	0.0	0.0	0.0	0.0	0.0
			0.1	0.0	0.0	0.0	0.0	0.0
	Crashes with other of	d vehicle:						
	Crashes with other of Crashes with parked	vehicle: crashes	0.0	0.0	0.0	0.0	0.0	0.0

		Ou	tput Summ	ary				
General Information								
Project description:	I-270 NB Slip Ramp to	Express L	anes South	of I-370 (N	NB 3B) - Fut	ture (2040)	No-Build	
Analyst:	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta	tistics							
Crashes for Entire F	acility		Total	K	Α	В	C	PDO
Estimated number of crashe	es during Study Period, cras	hes:	16.9	0.1	0.3	1.9	4.9	9.6
	eq. during Study Period, cras	shes/yr:	16.9	0.1	0.3	1.9	4.9	9.6
Crashes by Facility (Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, co	rashes:	2		0.0	0.1	0.7	1.4	5.4
Ramp segments, cras		3		0.1	0.2	1.2	3.6	4.2
Crossroad ramp termi		0		0.0		0.0	0.0	0.0
Crashes for Entire F	• •	Year	Total	K	Α	В	С	PDO
Estimated number of	crashes during	2040	16.9	0.1	0.3	1.9	4.9	9.6
the Study Period, cras	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
Distribute 10		2063						
Distribution of Crasi	nes for Entire Facility	'					41 6: 1	.
Crash Type	Crash Type Cat	egory			er of Crash			
-	,,		Total	K	Α	В	C	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.1	0.0
	Right-angle crashes:		0.2	0.0		0.0	0.1	0.1
	Rear-end crashes:		8.9	0.1	0.2	1.2	3.0	4.4
	Sideswipe crashes:	aua ak :	3.1	0.0		0.2	0.6	2.2
	Other multiple-vehicle		1.1	0.0	0.0	0.2	0.5	0.4
0. 1 1	Total multiple-vehicl	e crashes:	13.4	0.1	0.3	1.6	4.2	7.2
Single vehicle	Crashes with animal:		0.0	0.0		0.0	0.0	0.0
	Crashes with fixed ob		2.5	0.0	0.0	0.2	0.5	1.7
	Crashes with other ob	•	0.3	0.0		0.0	0.0	0.3
	Crashes with parked v		0.1	0.0		0.0	0.0	0.0
	Other single-vehicle c		0.5	0.0		0.1	0.2	0.3
	Total single-vehicle		3.5	0.0		0.3	0.7	2.4
	Total crash	ies:	16.9	0.1	0.3	1.9	4.9	9.6

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB Slip Ramp to	Express L	anes South	of I-370 -	NB 3B Cond	cept Future	(2040) Bui	ld
Analyst:	LW	Date:	1/4/2017		Area type:		Ùrban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
, ,	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta	tistics							
Crashes for Entire Fa	acility		Total	K	Α	В	С	PDO
Estimated number of crashe	es during Study Period, crasl	hes:	14.8	0.1	0.3	1.6	4.0	8.9
Estimated average crash fre	eq. during Study Period, cras	shes/yr:	14.8	0.1	0.3	1.6	4.0	8.9
Crashes by Facility (Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, cr	ashes:	2	7.1	0.0	0.1	0.6	1.2	5.1
Ramp segments, cras		2	7.7	0.1	0.2	1.0	2.8	3.8
Crossroad ramp termi	nals, crashes:	0	0.0	0.0	0.0	0.0	0.0	0.0
Crashes for Entire Fa	acility by Year	Year	Total	K	Α	В	С	PDO
Estimated number of o	crashes during	2040	14.8	0.1	0.3	1.6	4.0	8.9
the Study Period, cras	shes:	2041						
•		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Crast	nes for Entire Facility							
Crash Type	Crash Type Cate	egory			er of Crash			
	, ,	-g-, y	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.1	0.0		0.0	0.0	0.1
	Rear-end crashes:		7.2	0.1	0.2	0.9	2.4	3.8
	Sideswipe crashes:		2.5	0.0		0.2	0.5	1.9
	Other multiple-vehicle		0.9	0.0	0.0	0.1	0.4	0.4
	Total multiple-vehicl	e crashes:	11.0	0.1	0.2	1.2	3.3	6.2
Single vehicle	Crashes with animal:		0.1	0.0	0.0	0.0	0.0	0.1
	Crashes with fixed obj	ject:	2.8	0.0	0.0	0.2	0.5	2.0
	Crashes with other ob	ject:	0.4	0.0	0.0	0.0	0.0	0.3
	Crashes with parked v	/ehicle:	0.1	0.0		0.0	0.0	0.0
	Other single-vehicle c	rashes	0.5	0.0	0.0	0.1	0.2	0.3
	Total single-vehicle		3.9	0.0		0.3	0.7	2.8
	Total crash	nes:	14.8	0.1	0.3	1.6	4.0	8.9

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB Entrance Ra	mp from M	D 124 / Loc	al Lanes (N	NB 4) - Futu	re (2040) N	lo-Build	
Analyst:	LW	Date:	1/4/2017		Area type:	,	Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash data	a:	
Ramp segments	Segment crash data a	vailable?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash data	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash data	a:	
Estimated Crash Sta								
Crashes for Entire F	-		Total	K	Α	В	С	PDO
	es during Study Period, cras		84.8	0.5		7.0	12.6	63.4
	eq. during Study Period, cras		84.8	0.5	1.3	7.0	12.6	63.4
Crashes by Facility (•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, ci		6	84.8	0.5		7.0	12.6	63.4
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termi		0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	Α	В	С	PDO
Estimated number of	J	2040	84.8	0.5	1.3	7.0	12.6	63.4
the Study Period, cras	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051 2052						
		2052						
		2053						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Crasl	nes for Entire Facility	,						
Crack Type	Crack Tuna Cat	ogori/	Estima	ted Numb	er of Crash	es During	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.2	0.0	0.0	0.0	0.1	0.1
	Right-angle crashes:		1.4	0.0	0.0	0.2	0.3	0.9
	Rear-end crashes:		46.4	0.3	0.8	4.2	7.5	33.6
	Sideswipe crashes:		15.8	0.1	0.2	1.0	1.8	12.7
	Other multiple-vehicle	crashes:	1.7	0.0	0.0	0.2	0.3	1.2
	Total multiple-vehicl	e crashes:	65.5	0.4	1.1	5.6	10.0	48.5
Single vehicle	Crashes with animal:		0.3	0.0	0.0	0.0	0.0	0.3
	Crashes with fixed ob	ject:	13.9	0.1	0.2	1.0	1.9	10.7
	Crashes with other ob	ject:	2.3	0.0	0.0	0.1	0.1	2.1
	Crashes with parked v	/ehicle:	0.3	0.0		0.0	0.0	0.2
	Other single-vehicle c	rashes	2.5	0.0	0.1	0.3	0.5	1.6
	Total single-vehicle		19.3	0.1	0.3	1.4	2.6	14.9
	Total crash	nes:	84.8	0.5	1.3	7.0	12.6	63.4

		Out	tput Summa	ary				
General Information				-				
Project description:	I-270 NB Entrance R	amp from M	D 124 / Loca	al Lanes -	NB 4 Conce	ept Future (2040) Build	
Analyst:	LW	Date:	1/4/2017		Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Description	on							
Freeway segments	Segment crash data	available?		No	First year o	of crash dat	a:	
	Project-level crash da		?	No No		f crash dat		
Ramp segments	Segment crash data	gment crash data available?			First year o	of crash dat	a:	
	Project-level crash da		?	No	,	f crash dat		
	Segment crash data		_	No	,	of crash dat		
	Project-level crash da	ata available	?	No	Last year o	f crash dat	a:	
Estimated Crash Stat				.,		_		
Crashes for Entire Fa			Total	K	Α	В	С	PDO
Estimated number of crashes			82.4	0.6		7.5	13.1	59.8
Estimated average crash free			82.4	0.6		7.5	13.1	59.8
Crashes by Facility C	•	Nbr. Sites	Total	K	Α	B 7.5	C 10.1	PDO
Freeway segments, cra		6	82.4	0.6		7.5	13.1	59.8
Ramp segments, crash		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termin	,	Year	0.0 Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
Crashes for Entire Fa Estimated number of c		2040					_	
			82.4	0.6	1.4	7.5	13.1	59.8
the Study Period, crash	nes:	2041						
		2042						
		2043						
		2044						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
Diotribution of Cre-1	oo for Entire Feetile	2063						
Distribution of Crash	es for Entire Facility	<i>y</i>	Estimat	tod Numb	er of Crash	oc Durin -	the Study	Dorical
Crash Type	Crash Type Ca	tegory	Total	K	A A	B B	C	PDO
Multiple vehicle	Head-on crashes:		0.2	0.0		0.0	0.1	0.1
<u></u>	Right-angle crashes:		1.3	0.0		0.0	0.1	0.1
_	Rear-end crashes:		42.9	0.0		4.2	7.4	30.2
	Sideswipe crashes:		14.5	0.3		1.0	1.8	11.4
	Other multiple-vehicle	e crashes:	1.6	0.0		0.2	0.3	1.0
ŀ	Total multiple-vehic		60.5	0.4		5.6	9.8	43.6
Single vehicle	Crashes with animal:		0.4	0.0		0.0	0.0	0.4
_	Crashes with fixed ob		15.7	0.0	0.0	1.3	2.3	11.7
	Crashes with other of	•	2.5	0.0		0.1	0.2	2.2
	Crashes with parked	•	0.3	0.0		0.0	0.0	0.2
	Other single-vehicle		2.9	0.0		0.4	0.7	1.7
	•							
<u> </u>	Total single-vehicle	crashes:	21.8	0.1	0.3	1.8	3.2	16.3

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB from MD 12	1 to MD 109	(NB 5) - F	uture (2040) No-Build			
Analyst:	LW	Date:	1/5/2017		Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No		of crash dat		
	Project-level crash da		?	No	,	of crash dat		
Ramp terminals	Segment crash data a		_	No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year c	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire Fa	-		Total	K	Α	В	С	PDO
	es during Study Period, cras		21.2	0.1		1.8	3.3	15.7
	eq. during Study Period, cras		21.2	0.1		1.8	3.3	15.7
Crashes by Facility (•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, cr		4		0.1		1.8	3.3	15.7
Ramp segments, cras Crossroad ramp termi		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termi Crashes for Entire Fa		Year	Total	0.0 K	0.0 A	0.0 B	0.0 C	0.0 PDO
Estimated number of		2040	21.2	0.1		<u>в</u> 1.8	3.3	15.7
		2040	21.2	0.1	0.3	1.8	3.3	15.7
the Study Period, cras	siles.	2041						
		2042						
		2043						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062 2063						
Distribution of Crash	nes for Entire Escilitu							
			Fetima	ted Numb	er of Crash	es During	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	A	B	C	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0		0.0	0.0	0.0
•	Right-angle crashes:		0.3	0.0		0.0	0.1	0.2
	Rear-end crashes:		10.1	0.1	0.2	0.9	1.8	7.2
	Sideswipe crashes:		3.5	0.0		0.2	0.4	2.8
	Other multiple-vehicle	crashes:	0.4	0.0		0.0	0.1	0.3
	Total multiple-vehicl		14.4	0.1	0.2	1.3	2.3	10.4
Single vehicle	Crashes with animal:		0.1	0.0		0.0	0.0	0.1
	Crashes with fixed ob	ject:	4.9	0.0	0.1	0.4	0.7	3.8
	Crashes with other ob		0.8	0.0		0.0	0.0	0.7
	Crashes with parked		0.1	0.0	0.0	0.0	0.0	0.1
	Other single-vehicle c	rashes	0.9	0.0	0.0	0.1	0.2	0.6
	Total single-vehicle		6.9	0.0		0.5	0.9	5.3
	Total crash		21.2	0.1		1.8	3.3	15.7

		Out	put Summ	ary				
General Information								
Project description:	I-270 NB from MD 12	1 to MD 109) - NB 5 Coi	ncept Futu	re (2040) Bi	uild		
Analyst:	LW	Date:	1/5/2017		Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	tion							
Freeway segments	Segment crash data a	available?		No	First year o	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	ment crash data available?			First year o	of crash dat	a:	
	Project-level crash da		?	No		of crash dat		
Ramp terminals	Segment crash data a		_	No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year c	of crash dat	a:	
Estimated Crash Sta						_	_	
Crashes for Entire F			Total	K	Α	В	С	PDO
	es during Study Period, cras		21.3	0.2		1.9	3.4	15.6
	eq. during Study Period, cras		21.3	0.2	0.3	1.9	3.4	15.6
Crashes by Facility	•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, c		4	21.3	0.2		1.9	3.4	15.6
Ramp segments, cras		0	0.0	0.0		0.0	0.0	0.0
Crossroad ramp termi		0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire F		Year	Total	K	Α	В	С	PDO
Estimated number of		2040	21.3	0.2	0.3	1.9	3.4	15.6
the Study Period, cras	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046 2047						
		2047						
		2048						
		2049						
		2050						
		2051						
		2053						
		2054						
		2055						
		2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Crasi	hes for Entire Facility							
Crash Type	Crash Type Cat	egory			er of Crash			
.	7.	-90.7	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.1	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.3	0.0		0.0	0.1	0.2
	Rear-end crashes:		10.0	0.1	0.2	1.0	1.8	7.0
	Sideswipe crashes:		3.4	0.0		0.2	0.4	2.7
	Other multiple-vehicle		0.4	0.0	0.0	0.0	0.1	0.2
	Total multiple-vehicl	e crashes:	14.2	0.1	0.2	1.3	2.4	10.1
Single vehicle	Crashes with animal:		0.1	0.0		0.0	0.0	0.1
	Crashes with fixed ob		5.2	0.0	0.1	0.4	0.7	4.0
	Crashes with other ob		0.9	0.0		0.0	0.1	0.8
	Crashes with parked		0.1	0.0		0.0	0.0	0.1
	Other single-vehicle c		0.9	0.0		0.1	0.2	0.6
	Total single-vehicle		7.2	0.0		0.5	1.0	5.5
	Total crash	IES.	21.3	0.2	0.3	1.9	3.4	15.6

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB at MD 118 Ir	nterchange	(NB 7) - Fu	ture (2040)	No-Build			
Analyst:	LW	Date:	1/4/2017	· · · · · · · · · · · · · · · · · · ·	Area type:		Urban	
First year of analysis:	2040							
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a			No	,	of crash dat		
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta								
Crashes for Entire Fa	-		Total	K	Α	В	С	PDO
Estimated number of crashe	es during Study Period, cras	hes:	6.8	0.0		0.6	1.2	4.9
	eq. during Study Period, cras	shes/yr:	6.8	0.0	0.1	0.6	1.2	4.9
Crashes by Facility (•	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, cr		1		0.0		0.6	1.2	4.9
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp termi		0	0.0	0.0		0.0	0.0	0.0
Crashes for Entire Fa		Year	Total	K	Α	В	С	PDO
Estimated number of		2040	6.8	0.0	0.1	0.6	1.2	4.9
the Study Period, cras	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053						
		2054						
		2055 2056						
		2056						
		2057						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Crast	nes for Entire Facility		1		1			
			Estima	ted Numb	er of Crash	es During	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	Α	В	C	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
•	Right-angle crashes:		0.1	0.0	0.0	0.0	0.0	0.1
	Rear-end crashes:		3.7	0.0	0.1	0.3	0.7	2.6
	Sideswipe crashes:		1.2	0.0	0.0	0.1	0.2	1.0
	Other multiple-vehicle	crashes:	0.1	0.0	0.0	0.0	0.0	0.1
	Total multiple-vehicl	e crashes:	5.1	0.0	0.1	0.5	0.9	3.7
Single vehicle	Crashes with animal:		0.0	0.0	0.0	0.0	0.0	0.0
Ĭ	Crashes with fixed ob	ject:	1.2	0.0	0.0	0.1	0.2	0.9
	Crashes with other ob		0.2	0.0	0.0	0.0	0.0	0.2
	Crashes with parked v	•	0.0	0.0		0.0	0.0	0.0
	Other single-vehicle c		0.2	0.0	0.0	0.0	0.1	0.1
	Total single-vehicle		1.7	0.0		0.2	0.3	1.2
	Total crash		6.8	0.0	0.1	0.6	1.2	4.9

		Out	tput Summ	ary				
General Information								
Project description:	I-270 NB at MD 118 Ir	nterchange	- NB 7 Con	cept Future	e (2040) Bu	ild		
Analyst:	LW	V Date: 1/4/2017 Area type: Urban						
First year of analysis:	2040	* '						
Last year of analysis:	2040							
Crash Data Descript	ion							
Freeway segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp segments	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Ramp terminals	Segment crash data a	vailable?		No	First year of	of crash dat	a:	
	Project-level crash da	ta available	?	No	Last year o	of crash dat	a:	
Estimated Crash Sta	tistics							
Crashes for Entire F	acility		Total	K	Α	В	C	PDO
Estimated number of crashe	es during Study Period, cras	hes:	6.4	0.0	0.1	0.6	1.1	4.5
	eq. during Study Period, cras	shes/yr:	6.4	0.0	0.1	0.6	1.1	4.5
Crashes by Facility (Component	Nbr. Sites	Total	K	Α	В	С	PDO
Freeway segments, ci		1		0.0		0.6	1.1	4.5
Ramp segments, cras		0		0.0		0.0	0.0	0.0
Crossroad ramp termi		0		0.0		0.0	0.0	0.0
Crashes for Entire F	• •	Year	Total	K	Α	В	С	PDO
Estimated number of	•	2040	6.4	0.0	0.1	0.6	1.1	4.5
the Study Period, cras	shes:	2041						
		2042						
		2043						
		2044						
		2045						
		2046						
		2047						
		2048						
		2049						
		2050						
		2051						
		2052						
		2053 2054						
		2055 2056						
		2057						
		2058						
		2059						
		2060						
		2061						
		2062						
		2063						
Distribution of Crast	nes for Entire Facility	•						
Crook Turns	Crook Time Cat	ogom:	Estima	ted Numb	er of Crash	es During	the Study	Period
Crash Type	Crash Type Cat	egory	Total	K	Α	В	С	PDO
Multiple vehicle	Head-on crashes:		0.0	0.0	0.0	0.0	0.0	0.0
	Right-angle crashes:		0.1	0.0	0.0	0.0	0.0	0.1
	Rear-end crashes:		3.5	0.0	0.1	0.3	0.6	2.4
	Sideswipe crashes:		1.1	0.0		0.1	0.2	0.9
	Other multiple-vehicle	crashes:	0.1	0.0	0.0	0.0	0.0	0.1
	Total multiple-vehicl	e crashes:	4.8	0.0	0.1	0.4	0.8	3.4
Single vehicle	Crashes with animal:		0.0	0.0	0.0	0.0	0.0	0.0
	Crashes with fixed ob	ject:	1.2	0.0	0.0	0.1	0.2	0.8
	Crashes with other ob	•	0.2	0.0		0.0	0.0	0.2
	Crashes with parked v	/ehicle:	0.0	0.0		0.0	0.0	0.0
	Other single-vehicle c		0.2	0.0	0.0	0.0	0.1	0.1
	Total single-vehicle		1.6	0.0		0.2	0.3	1.1
	Total crash	nes:	6.4	0.0	0.1	0.6	1.1	4.5

Submitted to:

Appendix I

ATM Supplemental Materials

Submitted by:

Appendix I

1 - ATM White Paper

Submitted by:

Appendix I is divided into two sections of supplemental materials regarding Active Traffic Management (ATM):

- ATM White Paper, which summarizes the methodology, input data and cost benefit analysis for various ATM concepts along I-270; and
- 2. ATM Operational Scenarios, which consists of figures depicting the proposed display patterns for dynamic speed limit signs (regulatory and advisory) and dynamic message signs for queue warning.

1. ATM WHITE PAPER

Summary

This memorandum summarizes the methodology, input data and the results of the cost benefit analysis (CBA) for various Active Traffic Management (ATM) concepts along I-270. This analysis is separate from the benefit-cost analysis that was performed for the entire program of improvements which is described in Appendix J. SHA's Benefit-Cost Analysis Tool was utilized to conduct the CBA. Major benefits of the ATM concepts include improved safety (i.e., reduced number of traffic crashes) and the associated reduction in non-recurring delay resulting in improved mobility and reliability.

Based on the results of the CBA, the CGI Team has included the following ATM strategies described in Table I-1 in the proposed program of improvements.

Table I-1. Anticipated ATM Strategies

Segment (MP)	Direction	Strategies	Benefit- Cost Ratio
Spurs (0-3)	NB	Dynamic speed limits (single sign on mast arm over roadway), queue warning via DMS, and CCTV on this assembly. Nominal ½-mile spacing.	6.0
Spurs (0-3)	SB	Dynamic speed limits (single sign on mast arm over roadway), queue warning via DMS, and CCTV on this assembly. Nominal ½-mile spacing.	6.0
Local / Express (3-12)	NB	Dynamic speed limits (signs on mast arms, with on sign over the local and another over the express roadway), queue warning via DMS, and CCTV on this assembly. Nominal ½-mile spacing. Local and express roadway will be managed as separate roadways (e.g., different speed limits may be displayed for each).	5.7
Local / Express (3-12)	SB	Dynamic speed limits (signs on mast arms, with on sign over the local and another over the express roadway), queue warning via DMS, and CCTV on this assembly. Nominal ½-mile spacing. Local and express roadway will be managed as separate roadways (e.g., different speed limits may be displayed for each).	9.0
N/A	N/A	Software and Central Hardware	Note

Note: The cost of the ATM software and central hardware is included in the BCA for the individual segment

Scenarios

A total of 20 separate CBA were conducted to determine the effectiveness of the proposed ATM concepts at different road segments. The combination is made up of 4 Active Traffic Management scenarios, applied to three potential segments. For two of the segments, a separate analysis was done for southbound and northbound directions. For the northern segment, only a southbound ATM application is proposed. The study area was divided into 5 different road segments as shown in Table I-2.

These specific segments were identified for more in-depth analysis in accordance with the FHWA *Active Traffic Management Feasibility and Screening Guide* (FHWA-HOP-14-019). The specific step involves identifying major segments that will likely benefit from deploying ATM. Specifically, these segments were identified for further analysis based on a review of the crash histograms. In essence, the selected segments have the highest number of crashes and most ATM strategies (e.g., dynamic speed limits, dynamic lane assignment,

Table I-2. ATM Road Segments

Road Segment	Mile Post
Beltway Spurs Northbound	0 to 3.0
Beltway Spurs Southbound	0 to 3.0
Local/Express Lanes Northbound	3.0 to 12.0
Local/Express Lanes Southbound	3.0 to 12.0
Northern Segment Southbound	22.0 to 31.0

queue warning) focus on improving safety. Moreover, a near majority of crashes along I-270 are rear-end, while the majority of "probable cause" for crashes are "followed too closely" and "too fast for conditions." These are conditions that practically beg for the implementation of dynamic speed limits and queue warning.

Four ATM concepts were developed for analysis as summarized in Table I-3 below.

Table I-3. ATM Concepts

ATM Concept	Description
1a	Dynamic speed limits and queue warning via mast arm. ½ mile spacing, with DMS for queue warning. Mast arms with dynamic speed limit signs – one sign over the local and one over the express lanes – co-located on same pole.
1b	Same as 1a, with CCTV on each pole / mast arm assembly.
2a	Dynamic speed limits only via post mount signs at ½-mile spacing. No DMS (i.e., queue warning.) Note – Using only pole mounts for dynamic speed limits for the local / express configuration may not be appropriate and could cause confusion when different speed limits are displayed between the local and express)
2b	Same as 2A, with CCTV on each pole / mast arm.

It is noted that the decision was made early on not to analyze dynamic lane assignment. It would undoubtedly further enhance safety. The key concern with dynamic lane assignment was the need – and associated cost – for installing full matrix DMS (nominally 5' x 5') over each lane, thereby requiring full gantries over the roadways. Another concern was the need for additional software (such as a Decision Support System) and the greater need for operator interaction in controlling dynamic lane assignment, all coupled with the goal of minimizing the need for integration with the CHART system. On the other hand, the operation of dynamic speed limits and queue warning can be automated to a great extent.

Basic Assumptions

The period of CBA analysis is set at 15 years. Base cost of the estimates is 2016 dollars. All cost and benefits are escalated by an annual escalation factor of 2.30% as suggested by the SHA Benefit-Cost Analysis Tool. The discount rate used to determine the present value is 2.94% (source: FHWA TIFIA Interest rate, updated 9/11/2015).

Capital and O&M Cost

Project Cost: An American Society of Professional Estimators (ASPE) Level One Estimate (referred to as an "Order of Magnitude" Estimate) was developed for each scenario, applied to each segment in each direction. Therefore, a total of 20 estimates were developed.

Data sources for these estimates were:

- SHA Bid Tab database
- VDOT 2 Year Bid Tab Averages
- R.S. Means Construction Cost Database
- FHWA RITA ITS Cost Database
- Estimator Experience

Project costs were developed with the following assumptions:

- No Right of Way is required
- Mast arms use butterfly structure with single cast in drilled hole foundation
- Utility relocation conducted by utility owner but compensated through project
- VSL assumed to be Daktronics 5220 or similar
- DMS assumed to by Skyline Large LiftFace or similar
- Controller assumed to be NEMA 2070 with NEMA size 7 cabinet
- Power/telecommunications backbone available at all locations and pull from backbone to node approximately
 15 feet
- CCTV assumed to be Cohu Helois 3930HD or similar with pole mount

The following typical markups/overheads were applied to the neat construction cost as shown in Table I-4.

Table I-4. Typical Markups/Overheads

Cost Item	% to Neat Construction Cost
Preliminary engineering	2%
Final Design	8%
Utility Relocation	0.5%
Mobilization	5%
Maintenance of Traffic	2.5%
Construction management	8%
Contingency	25%
Public Education of Outreach	A lump sum of \$350,000

Operation and Maintenance Cost: During the 15-year O&M period, the operation cost for the ATM system is assumed to be 3% of the construction cost. Some ATM equipment will require replacement during the 15-year O&M period. The renewal frequency of the major equipment is provided in Table I-5.

Based upon these inputs, assumptions and methodology, the project costs and total life cycle cost estimates were calculated as shown in Table I-6. These cost estimates are preliminary and do not reflect final pricing for construction.

Table I-5. Equipment Renewal Frequency

Equipment	Renewal Frequency
VSL Sign	15 years
Overhead Detector on Mast Arm	8 years
Controller	10 years
CCTV	10 years
Central Software	8 years

Reduction in Traffic Crashes

As previously noted, a major benefit from deploying ATM is crash reduction. The CGI Team evaluated benefits from ATM installations involving dynamic speed limits and queue warning (as well as lane assignment in many instances). This evaluation included US applications and European applications. In general, the benefits from European applications of ATM are greater than those in the US. This is likely due to the existence of automated speed enforcement and better driver discipline.

For the CBA, a decision was made to be conservative in estimating the projected reduction in crashes, and also to assume that ramp metering would also be implemented as part of the I-270 effort (as also exists in the recent US applications of ATM). With a range of crash reductions from ATM in the US between 8.5% (in Washington State) and 21% (in Portland, which does not include dynamic lane assignment), we determined that an estimated 10% reduction in crashes was more than feasible for I-270 as well as very conservative.

For the scenarios that do not include DMS for queue warning – an approach that is not recommended by the CGI Team – we reduced the crash reduction factor by half. Table I-7 summarizes the crash reduction factors used in the analysis.

3 years of actual crash data were provided by SHA. Crash data by type by road segment are provided in Table I-8. The CBA convert the historic no-build crash data into monetary value with the following conversion. Cost of accident is obtained from the Association for the Advancement of Automotive Medicine – Pedestrian and Pedalcyclist Injury Costs in the US by Age and Injury Severity in 2000. The year 2000 dollar is adjusted with CPI inflation from the Bureau of Labor Statistics. The costs per accident type are provided in Table I-9.

Table I-6. Project Costs and Total Life Cycle Cost Estimates

Scenario	Segment	Direction	Project Cost (2016\$)	Total Life-cycle Cost ¹ (2016\$)
1A	Spurs	NB	\$2,744,860	\$3,652,210
1A	Spurs	SB	\$2,744,860	\$3,652,210
1B	Spurs	NB	\$2,767,510	\$3,690,492
1B	Spurs	SB	\$2,767,510	\$3,690,492
2A	Spurs	NB	\$2,391,520	\$3,289,007
2A	Spurs	SB	\$2,391,520	\$3,289,007
2A	Spurs	NB	\$2,459,470	\$3,403,854
2B	Spurs	SB	\$2,414,170	\$3,327,289
1A	Express/Local	NB	\$8,140,090	\$9,882,042
1A	Express/Local	SB	\$8,140,090	\$9,882,042
1B	Express/Local	NB	\$8,343,940	\$10,226,582
1B	Express/Local	SB	\$8,343,940	\$10,226,582
2A	Express/Local	NB	\$5,000,800	\$6,655,122
2A	Express/Local	SB	\$5,000,800	\$6,655,122
2B	Express/Local	NB	\$5,204,650	\$6,999,662
2B	Express/Local	SB	\$5,204,650	\$6,999,662
1A	Northern	SB	\$5,571,580	\$6,917,835
1B	Northern	SB	\$5,775,430	\$7,262,375
2A	Northern	SB	\$4,511,560	\$5,828,225
2B	Northern	SB	\$4,715,410	\$6,172,766

Table I-7. Crash Reduction Factors

ATM Concept	Crash Reduction
1a – dynamic speed limits with queue warning	10%
1b – same as 1a with CCTV	10%
2a – speed limits with no queue warning	5%
2b – same as 2a with CCTV	5%

Table I-8. Crash Data by Road Segment

Year	Туре	Spur SB	Spur NB	Express/Local SB	Express/Local NB	Northern SB
2011	Property	0	56	0	195	57
	Injury	0	30	0	109	30
	Fatal	0	0	0	3	1

¹ Total life-cycle cost includes project cost, routine maintenance cost and equipment renewal cost for the 15-year analysis period.

Year	Туре	Spur SB	Spur NB	Express/Local SB	Express/Local NB	Northern SB
	Property	18	36	80	125	85
2012	Injury	10	14	42	99	30
	Fatal	0	0	0	0	3
2013	Property	67	0	183	40	79
	Injury	32	0	102	30	27
	Fatal	0	0	3	0	0

Table I-9. Cost per Accident Type

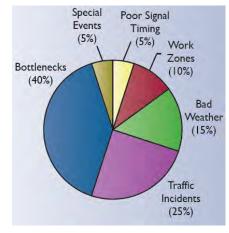
Accident Type	Cost per Accident Type
Property Damage Only	\$9,177
Injury	\$81,355
Fatal	\$1,453,861

Reduction in Non-Recurring Traffic Delay

Total traffic delay – both recurring and non-recurring – was determined using 2015 real traffic data from INRIX (as available in the RITIS system). Percent of vehicle distribution is based on actual data of each individual road segment. For segments that do not have percent

information, the defaults of 90% passenger car and 10% commercial (truck) are used. Total traffic delay for the segments is provided in Table I-10.

Table I-10. Total Delay by Road Segment


Road Segment	2015 No-Build Annual Delay (hrs)
Beltway Spurs Northbound	482, 322
Beltway Spurs Southbound	489,147
Local/Express Lanes Northbound	1,096,053
Local/Express Lanes Southbound	201,820
Northern Segment Southbound	373,011

The basic assumption was that if crashes are reduced by X%, then the non-recurring congestion will also be reduced by X%. As noted above, available delay data from RITIS only provides total delays. The general rule of thumb in the US is that only 40% of congestion is recurring, and that the rest is non-recurrent, with about 50% due to crashes and weather (see pie chart from FHWA below). We were

unable to find any MD-specific numbers in this regard.

If we assume that 50% + of delays on I-270 are due to non-recurrent congestion, then the reduction in the associated delay costs due to ATM should be approximately half the percentage value for crash reduction.

Another concept developed was to include full CCTV coverage of the ATM segments, thereby improving incident detection, verification and response times. Based on information from a recent CHART evaluation, it was determined that full coverage of CCTV can reduce overall incident response times by 2 minutes per incident so that the times are closer to those found for I-495. This equates to 20% reduction in incident response time, and given the "4:1 rule" that is so frequently used for incident management (1 minute of reduced incident management time = reduction of 4 minutes of congestion), we increased the reduction factors for total delay costs for the scenarios incorporating CCTV. The resulting factors for reductions in delay from ATM are summarized in Table I-11.

The annual traffic growth rate of 1% (default value of the SHA CBA model) was applied to the no-build annual delay scenario. Cost per vehicle hour delay is assumed to be \$31.54 and \$45.40 for passenger car and truck respectively (Source: 2014 CHART Benefit Analysis).

Table I-11. Delay Reduction Factors

ATM Concept	Delay Reduction
1a – dynamic speed limits with queue warning	5%
1b – same as 1a with CCTV	8%
2a – speed limits with no queue warning	2.5%
2b – same as 2a with CCTV	5%

Results

The monetary value of the project cost, life-cycle cost and benefits were input to the SHA Cost-Benefit Analysis Tool with an analysis period of 15 years. The benefit-cost ratio of the 20 scenarios range from 1.3 to 9.0. The results are summarized in Table I-12 below.

Table I-12. Benefit-Cost Results

Concept	ATM Scenario	Road Segment	Present Value of Delay Savings ('000)	Present Value of Safety Savings ('000)	Present Value of Total Savings ('000)	Present Value of Costs ('000)	Overall Benefit-Cost Ratio
1	1A	Spurs NB	\$12,624	\$2,000	\$14,624	\$3,670	4.0
2	1A	Spurs SB	\$12,804	\$1,897	\$14,702	\$3,670	4.0
3	1B	Spurs NB	\$20,198	\$2,000	\$22,198	\$3,708	6.0
4	1B	Spurs SB	\$20,487	\$1,897	\$22,384	\$3,708	6.0
5	2A	Spurs NB	\$6,312	\$1,000	\$7,312	\$3,465	2.1
6	2A	Spurs SB	\$6,402	\$949	\$7,351	\$3,465	2.1
7	2B	Spurs NB	\$12,624	\$1,000	\$13,624	\$3,585	3.8
8	2B	Spurs SB	\$12,804	\$949	\$13,753	\$3,505	3.9
9	1A	Express/Local NB	\$28,691	\$12,218	\$40,909	\$9,928	4.1
10	1A	Express/Local SB	\$52,713	\$8,359	\$61,072	\$9,928	6.2
11	1B	Express/Local NB	\$45,905	\$12,218	\$58,124	\$10,273	5.7
12	1B	Express/Local SB	\$84,341	\$8,359	\$92,700	\$10,273	9.0
13	2A	Express/Local NB	\$14,345	\$6,109	\$20,455	\$6,695	3.1
14	2A	Express/Local SB	\$26,357	\$4,179	\$30,536	\$6,695	4.6
15	2B	Express/Local NB	\$28,691	\$6,109	\$34,800	\$7,040	4.9
16	2B	Express/Local SB	\$52,713	\$4,179	\$56,893	\$7,040	8.1
17	1A	Northern SB	\$9,765	\$6,745	\$16,511	\$6,953	2.4
18	1B	Northern SB	\$15,624	\$6,745	\$22,370	\$7,298	3.1
19	2A	Northern SB	\$4,883	\$3,373	\$8,255	\$6,182	1.3
20	2B	Northern SB	\$9,765	\$3,373	\$13,138	\$6,543	2.0

Appendix I

2 - ATM Operational Scenarios

Submitted by:

2. ATM OPERATIONAL SCENARIOS

ATM OPERATIONAL SCENARIOS DYNAMIC SPEED LIMITS (DSL) -REGULATORY OPTION

Cooperate	Dlon	Detterm
Scenario	Plan	Pattern
Free Flow	Under normal conditions DSL signs will display the normal posted speed limit (55 mph)	SPEED LIMIT 55 SPEED
Recurrent Congestion	To manage congestion DSL signs will display reduced speeds upstream of congestion in a step pattern	SPEED LIMIT 45 SPEED LIMIT 40 SPEED LIMIT 55 Direction of Travel
Lane Restriction	Reduce speed upstream of lane blockage in a step pattern	SPEED LIMIT 45 SPEED LIMIT 45 SPEED LIMIT 45 Direction of Travel
Weather Conditions (Icy/Slippery)	Icy and slippery conditions may necessitate reduction of speeds, even if expressway flow is less than capacity	SPEED LIMIT 45 SPEED LIMIT 45 SPEED LIMIT 45 SPEED LIMIT 45
Complete Closure	In the event of complete closure of all traffic lanes, DSL signs will display the normal posted speed limit	See Free Flow
Non-Recurrent Congestion	Non-recurrent congestion will follow the same traffic pattern as recurrent congestion	See Recurrent Congestion

ATM OPERATIONAL SCENARIOS DYNAMIC SPEED LIMITS (DSL) -ADVISORY OPTION

Scenario	Plan	Pattern
Free Flow	Under normal conditions DSL signs will display the normal posted speed limit (55 mph)	55 MPH 55 MPH 55 MPH
Recurrent Congestion	To manage congestion DSL signs will display reduced speeds upstream of congestion in a step pattern	55 MPH 40 MPH 55 MPH Direction of Travel
Lane Restriction	Reduce speed upstream of lane blockage in a step pattern	55 MPH 45 MPH 55 MPH Direction of Travel
Weather Conditions (Icy/Slippery)	Icy and slippery conditions may necessitate reduction of speeds, even if expressway flow is less than capacity	45 MPH Direction of Travel
Complete Closure	In the event of complete closure of all traffic lanes, DSL signs will display the normal posted speed limit	See Free Flow
Non-Recurrent Congestion	Non-recurrent congestion will follow the same traffic pattern as recurrent congestion	See Recurrent Congestion

ATM OPERATIONAL SCENARIOS QUEUE WARNING

Scenario	Plan	Pattern
Free Flow	Under normal conditions the DMS will be left blank or display a text message indicating the travel time to a specific exit or interchange	OR TRAVEL TIME MESSAGE
Recurrent Congestion - Peak Hour	Far upstream from the congestion area the DMS will display a queue warning. Closer to the congestion area a reduce speed warning will be displayed.	LOCAL LANES CONGESTION 1 MILE CONGESTION REDUCE SPEED
Lane Restriction	In general the DMS signs will display lane closure warnings upstream of the closure. The DMS may display a more specific message depending on the type of lane restriction (work zone, accident, debris).	LOCAL LANES RIGHT LANE CLOSED 1 MILE MOVE LEFT
Weather Conditions (Icy/Slippery)	Icy and slippery conditions may necessitate reduction of speeds, even if expressway flow is less than capacity	WINTER CONDITIONS REDUCE SPEED
Complete Closure	In the event of complete closure of all traffic lanes, DMS will be left blank beyond the closure	
Non-Recurrent Congestion	During non-recurrent congestion DMS signs can display the recurrent congestion display seen above or an alternative display seen here	LOCAL LANES STOPPED TRAFFIC AHEAD OR EXPRESS LANES CRASH AT EXIT 10 USE CAUTION

Submitted to:

Appendix J

Benefit-Cost Analysis

Submitted by:

Appendix J: Benefit-Cost Analysis

SHA's "Benefit-Cost Analysis Template (v 1.3)" was used to perform a lifecycle analysis of the CGI Team's program of improvements for I-270. The spreadsheet is designed for computing and comparing benefits and costs of a project. It is used as part of the Congestion Management Studies effort to evaluate projects.

This memorandum describes each data entry tab of the spreadsheet and discusses the methods and assumptions used in performing the analysis for the CGI Team's program of improvements. Output from every tab of the spreadsheet may be found at the end of this memorandum and the Excel file is included with the electronic appendices.

INTRODUCTION

The tool has multiple tabs that receive input from the user to perform calculations. Each tab is described below:

- Initial Input This section allows the user to input basic project information and other related parameters.
- Delay This section allows the user to enter network level delay information for the existing and proposed improvements.
- Safety Data This tab allows the user to enter existing crashes by crash type and the anticipated reduction in crashes as a result of the improvements.
- Cost This tab allows the user to enter cost information for the project over its life span.
- Reliability The part of the tool computes the dollar amount saved as a result of the improvements leading to increased reliability.
- Summary This tab provides a summary of all the costs and benefits computed based on inputs in the Delay, Safety Data, Cost, and Reliability sections for the no-build and build scenarios. It also shows the Benefit-Cost ratio for no-build conditions, and the operational improvements, safety improvements, and overall improvement Benefit-Cost ratio for the project.

Other tabs such as CMFs, Crash Data, and Example – Crash Data are provided for the user to document source data, but were not used in this analysis. All documentation is contained in this memorandum.

INITIAL INPUT TAB

The Initial Input tab allows the user to input project-related information and cost parameters. These values are used in calculating the overall benefit-cost of the project. The following table shows each value and the default value in the template. Some values were changed to better reflect conditions on I-270 or to update economic statistics, so the table also shows the value used in this analysis and any explanation as to why default value was changed.

Table 1 Initial Input Values

TITLE	DEFAULT VALUE	VALUE USED FOR I-270 ANALYSIS	EXPLANATION
Project	-	I-270 Innovative Congestion Management	-
Project Opening Year	-	2020	For the purposes of the analysis, 2020 was assumed to be the first full year all improvements would be complete and open to traffic.
Project Life Span (Years)	20	20	This is the total life span of the project.

TITLE	DEFAULT VALUE	VALUE USED FOR I-270 ANALYSIS	EXPLANATION
Hours of AM and PM Peak	3	3	The number of hours during AM and PM period where congested traffic conditions are expected.
Heavy Vehicle Percentage (%)	10%	7%	Percentage of heavy vehicles (FHWA Class 4 and above) within the project area. The default value was changed, because according to Page 2 of the December 2015 "Modeling Calibration Methodologies" memorandum, heavy vehicle percentages ranged from 6% to 8% for the majority of roadways within the study area of the VISSIM model provided by SHA.
Annual Traffic Growth Factor (%)	1%	1.75%	Anticipated traffic growth factor (expressed as a percentage) per year within the project area. According to the Governor's press release on July 18, 2016, I-270 near the future Watkins Mill interchange carries 166,000 vehicles a day and is estimated to grow to 235,000 vehicles a day by 2035. Assuming the existing traffic volume is from 2015, the compounded growth rate is 1.75%. It is reasonable to assume the entire corridor will experience this level of growth in the future. See http://governor-larry-hogan-announces-229-6-million-plan-to-reduce-congestion-along-i-270-corridor/ for the press release.
Annual Growth in Heavy Vehicle Percentage (%)	2%	2%	Anticipated heavy vehicle growth factor (expressed as a percentage) per year within the project area.
Working Days per Year	/50 /5		Total number of working days per year.
Average Vehicle Occupancy	1.2	1.2	Average number of people per vehicle at a given time.
Auto Congestion Cost Per Hour (\$)	\$31.54	\$31.54	The average cost incurred by an automobile for an hour of delay due to congestion. The value was taken from the 2014 CHART Benefit Analysis.
Truck Congestion Cost Per Hour (\$)	\$65.60	\$65.60	The average cost incurred by a truck for an hour of delay due to congestion. It is the sum of the driver rate (\$20.20) and the cargo rate (\$45.40), for a total of \$65.60. The value was taken from the 2014 CHART Benefit Analysis.
Reliability Measurement	-	Mean-variance Approach	The methodology used to determine reliability savings. The Mean-variance Approach uses the mean-variance approach to evaluate reliability as a function of the mean and standard deviation of travel time from multiple simulation runs and the reliability ratios for autos and trucks. It was selected since the travel time results from five simulation runs were available for each scenario.
Reliability Ratio - Auto	0.75	0.75	The value of reliability as a fraction of auto congestion cost. The SHRP2 Reliability Project L35 results recommend a value of 0.75 for automobiles.

TITLE	DEFAULT VALUE	VALUE USED FOR I-270 ANALYSIS	EXPLANATION
Reliability Ratio – Heavy Vehicles	2.0	2.0	The value of reliability as a fraction of HV congestion cost. The SHRP2 Reliability Project L35 results recommend a value of 2.0 for heavy vehicles.
Annual Depreciation in Travel Time Reliability (%)	3	3	The percentage reduction in travel time reliability due to annual growth in traffic volumes.
Fuel Savings per Hour of Delay Savings	\$0.72 per hour	\$0.72 per hour	Average savings in fuel cost per hour of delay savings. The value was taken from the 2014 CHART Benefit Analysis.
Salvage Value	10%	10%	Estimated value of an asset at the end of its "useful life."
Annual Inflation Rate	2.30%	2.08%	Annual increase in the general level of prices for goods and services. The default value is the Bureau of Labor Statistics inflation rate average from 2004 to 2014. The revised value uses the average from 2005 to 2015.
Annual Discount Rate	2.94%	3.13%	The amount of interest paid as a percentage of the balance at the end of the annual period. The value is the FHWA's TIFIA interest rate, which is updated daily. The revised value was updated to reflect current conditions.

DELAY TAB

On the Delay tab, the average network delay for five simulation runs were entered for each scenario – Existing AM, Existing PM, Existing Build AM, Existing Build PM, 2040 No Build AM, 2040 No Build PM, 2040 Build AM, and 2040 Build PM. Table 2 shows the values that were entered.

It is important to note that the VISSIM models did not capture all of the reduction in delay that will be realized when the CGI Team's program of improvements is implemented. The values shown in the table below only represent the reduction in recurring congestion due to the roadway improvements and adaptive ramp meters. The ATM improvements were not modeled in VISSIM, so the reduction in nonrecurring congestion due to improved incident management and reduction in crashes was not captured. In addition, any reductions ATM has on recurring congestion was not modeled. Finally, while the virtual weigh station improvement was modeled in the VISSIM build scenarios, the files provided by SHA did not model the existing weigh stations. The increased delay due to heavy vehicles entering and exiting the weigh stations was not captured in the no build models.

The actual reduction in delay that will be realized when the program of improvements is implemented will be greater than what is shown.

Table 2 Delay Data Input

EXISTING NETWORK DELAY (HOURS)		EXISTING BUILD NETWORK DELAY (HOURS)		2040 NO BUILD NETWORK DELAY (HOURS)		2040 BUILD NETWORK DELAY (HOURS)	
AM	PM	AM	AM PM		AM PM		PM
6085.2	6053.4	3548.9	5201.4	10236.3	9604.9	6830.1	7898.6

SAFETY DATA TAB

The Safety Data tab allows users to enter historic crash data and the anticipated reduction in crashes after the improvements are implemented. The crash data can be entered by crash type – fatal, injury, property damage only, and pedestrian crashes (not applicable to this analysis). The reduction in crashes is applied to each crash type and the benefits are monetized by associating a cost to each crash type.

The methodology for determining the reduction in crashes due to the improvements differed for each type of improvement – roadway improvements, adaptive ramp metering, and ATM. To determine the safety benefit for the entire project, the individual safety benefit for each type of improvement was determined using the Safety Data tab. The individual safety benefits were then added together to determine the overall safety benefit. This section discusses the Safety Data inputs for roadway improvements, adaptive ramp metering, and ATM. Refer to Section 3 and Appendix H for discussion on the methodologies used to determine the crash reductions for each type of improvement.

Accident Cost Data: The data used to associate a cost to an accident type is originally from a 2012 report from the National Safety Council entitled "Estimating the Costs of Unintentional Injuries." The costs for each accident type were adjusted to 2016 dollars using the Bureau of Labor Statistics' CPI Inflation Calculator. The calculator uses the average Consumer Price Index for a given calendar year to adjust prices and costs from one year to another. As a result, the 2012 costs were multiplied by 1.051 to obtain 2016 costs. The 2016 costs are shown in the following table.

Table 3 Accident Cost Data

CRASH TYPE	COST PER CRASH TYPE (2016 DOLLARS)
Fatal	\$1,482,215
Injury	\$82,941
Property Damage Only	\$9,356

Safety Benefits of Roadway Improvements: As discussed in Section 3, the Highway Safety Manual (HSM) and Enhanced Interchange Safety Analysis Tool (ISATe) were used to estimate the safety benefits of each targeted roadway improvement. For each roadway improvement, a crash frequency was predicted based on the conditions without the improvement (existing conditions) and with the improvement implemented. In order to properly compare existing conditions and improvement conditions, the predicted crash frequencies for both cases were calculated within the limits of the improvement concept. So each roadway improvement is associated with a predicted number of crashes per year without the improvement and with the improvement. The table below shows the total number of predicted crashes for each targeted roadway concept, without and with the improvement implemented.

Table 4 Total Number of Predicted Crashes for Each Concept, Without and With Improvements

ROADWAY CONCEPT	TOTAL NUMBER OF CRASHES PER YEAR WITHOUT IMPROVEMENT	TOTAL NUMBER OF CRASHES PER YEAR WITH IMPROVEMENT
SB 1A	24.01	23.93
SB 1B	24.01	23.64
SB 2	16.62	16.66
SB 5A	14.49	13.88
SB 6	9.66	7.27
SB 7	25.87	14.30
SB 8	22.02	16.57
SB 10	19.32	16.52
SB 12	137.33	130.26
NB 1	127.50	118.94

NB 2A	20.07	17.66
NB 2B	12.92	13.84
NB 3A	18.92	19.87
NB 3B	13.94	12.40
NB 4	67.51	66.00
NB 5	16.71	16.85
NB 7	5.53	5.25
Total	576.42	533.85

The analysis shows there would be 42.57 fewer crashes along the I-270 segments where the improvements are implemented.

The analysis also predicted the number crashes by severity for each roadway concept (again, with and without the improvement implemented). The severity categories are:

- K at least one fatality
- A at least one incapacitating injury
- B at least one evident but non-capacitating injury
- C at least one possible injury
- O no injury; property damage only

The table below shows the number of crashes per category without and with the improvements implemented.

Table 5 Crashes by Category, Without and With Improvements

	TOTAL NUMBER OF CRASHES PER YEAR	K CRASHES PER YEAR	A CRASHES PER YEAR	B CRASHES PER YEAR	C CRASHES PER YEAR	O CRASHES PER YEAR
Without Improvements	576.42	3.23	9.11	54.13	122.85	387.10
With Improvements	533.85	3.15	8.09	49.26	108.89	364.46

In order to calculate the safety benefit of implementing the roadway improvements, the crashes were categorized according to the crash type categories in the B-C Tool. The crash types were categorized in the following manner:

- K categorized as "Fatal"
- A, B, and C categorized as "Injury"
- categorized as "Property Damage Only"

The newly categorized crashes without improvements were used as "Historic Crash Data (Existing Conditions)" in the B-C Tool.

In order to use the Tool to analyze the reduction in crashes, the categorized crashes with improvements were converted into crash modification factors (CMF) for each category. A crash modification factor is a multiplicative factor used to calculate the expected number of crashes after implementing an improvement.

The table below shows how the CMFs for the improvements were calculated for each category. It is the percentage difference in crashes without and with improvements, subtracted from 1. Note that this is not the actual method used to calculate CMFs in accordance with the Highway Safety Manual. These calculations were performed in order to adapt the

predictive results that were obtained through detailed analysis (as discussed in Section 3 and Appendix H) to the standard B-C Tool spreadsheet. By adapting the results to the B-C Tool, the safety benefits of the roadway improvements could be incorporated into the analysis.

Table 6 CMF Calculations

	CRASHES WITHOUT IMPROVEMENTS / HISTORIC CRASH DATA (EXISTING CONDITIONS)	CRASHES WITH IMPROVEMENTS	CMF Calculation	CMF
Fatal	3.23	3.15	$1 - \frac{3.23 - 3.15}{3.23}$	0.98
Injury	186.09	166.24	$1 - \frac{186.09 - 166.24}{186.09}$	0.89
Property Damage Only	387.10	364.46	$1 - \frac{387.10 - 364.46}{387.10}$	0.94

The CMFs were entered in the "Safety Analysis Results" section in the B-C Tool.

Safety Benefits of Adaptive Ramp Metering: As discussed in Section 3 the HSM does not address ramp metering, so the CGI Team assumed a 10% reduction in crashes of all severities along southbound I-270 for the segments where adaptive ramp metering will be deployed. This is a conservative estimate considering many locations have experienced a larger reduction in crashes after implementing ramp metering.

The following crashes for each category were entered as "Historic Crash Data (Existing Conditions)" and will be reduced by 10% due to deployment of adaptive ramp metering.

- Fatal 2 crashes
- Injury 81 crashes
- Property Damage Only 155 crashes
- Total 238 crashes

Safety Benefits of ATM: As with adaptive ramp metering and discussed in Section 3, the HSM does not address ATM. The CGI Team assumed a 10% reduction in crashes of all severities along the segments where ATM will be deployed.

The following crashes for each category were entered as "Historic Crash Data (Existing Conditions)" and will be reduced by 10% due to deployment of adaptive ramp metering.

- Fatal 2 crashes
- Injury 150 crashes
- Property Damage Only 260 crashes
- Total 412 crashes

COST TAB

The following table shows the values that were used in performing cost calculations. The B-C Tool has default values for costs, and if values were changed an explanation is provided.

Table 7 Project Cost Values

TITLE	DEFAULT VALUE	VALUE USED FOR I-270 ANALYSIS	EXPLANATION
Concept Cost	-	\$100,000,000	
No-Build Operations and Maintenance Cost	15%	15%	
Percent of Planning, Engineering and ROW costs as a percent of Construction Cost	30%	0%	The improvements will not require any additional right-of-way and all planning and engineering costs are included in the \$100,000,000 concept cost.
Operation Cost (Project Life Span)	10%	10%	

Rehabilitation

The following paragraphs describe the anticipated lifespan of project elements that will not last the full 20-year life of the project. Cost estimates for rehabilitating or replacing the elements are also provided and were incorporated into "Rehabilitation" costs of the Cost tab.

Roadway Pavement: Most of the proposed roadway concepts utilize existing shoulders as travel lanes. However, while these shoulders are sufficient to support full-time traffic loading over the short term, they are not sufficient to support traffic over the assumed life of the adjacent mainline pavement. In order to maintain the shoulders in good condition, an intermediate resurfacing will be required during Year 7 of the project lifespan. The resurfacing will cost about \$3,803,000 total (2016 dollars), which includes percentages for maintaining traffic during work and a contingency. This will be in addition to SHA's programmed roadway (mainline and shoulders) resurfacing/maintenance. The escalated cost used in the analysis is \$4,769,500 (2027 dollars).

Adaptive Ramp Metering: The ramp meter controllers and software will need to be replaced at Year 10. The estimated cost to replace all controllers is \$36,000 (assuming \$2,000 per controller and 18 total controllers). Each ramp metering location will have four overhead detectors. The detectors will need to be replaced every eight years at \$8,000 per detector for a total cost of \$576,000. All other elements of adaptive ramp metering system are anticipated to last the full 20-year life of the project.

ATM: Some ATM equipment will require replacement during the project lifespan. The replacement frequency, replacement cost per unit, estimated total number of units to replace, and total cost of replacement per replacement cycle is shown in the table below. It is expected that the DMS will last 20 years, the full life of the project.

Table 8 ATM Component Replacement Costs

COMPONENT	REPLACEMENT FREQUENCY (YEARS)	COST PER UNIT	TOTAL NUMBER OF UNITS TO REPLACE	TOTAL COST OF REPLACEMENT PER REPLACEMENT CYCLE
Variable Speed Limit Sign	15	\$10,000	63	\$630,000
Overhead Detector	8	\$8,000	63	\$504,000
Controller and Central Software	10	\$12,000	63	\$756,000
CCTV	10	\$15,000	34	\$510,000

The estimation of total units to replace does not account for possible duplication of detectors or controllers that are used with the adaptive ramp metering, leading to a conservative analysis.

Virtual Weigh Stations: The weigh-in-motion sensors and software will need to be replaced after 10 years at a cost of \$20,000 (assuming \$5,000 per lane and four lanes).

The costs to replace the technology equipment were not escalated to future year values. It is reasonable to assume the price of components will remain fairly constant, if not decrease, as technology evolves in the future. The roadway rehabilitation prices were escalated because the price of materials used to resurface the pavement depend on the price of commodities which fluctuate and generally increase from year to year.

RELIABILITY TAB

The Reliability tab calculates the dollar amount saved as a result of the improvements leading to increased reliability. The calculations are the based on the Strategic Highway Research Program 2 (SHRP 2) Project L35, "Guidebook on Placing a Value on Time Reliability." The computations are shown below:

User Cost= A*mean travel time + B* standard deviation of travel time

where, User Cost= Time Cost + Reliability Cost

A= Value of travel time= auto and truck congestion costs per hour

B= Value of Reliability= 0.75* Auto congestion cost per hour + 2.0* Truck congestion cost per hour

The reliability ratios of 0.75 and 2.0 are based on the SHRP 2 Reliability Project L35 results.

The travel time results from five simulation runs were entered for the Existing AM, Existing PM, Existing Build AM, and Existing Build PM scenarios. Note that the tab does not perform reliability calculations using future year data.

Table 9 Network Travel Time Data Entered in the Reliability Tab

RUN	EXISTING NETWORK	FRAVEL TIME (HOURS)	EXISTING BUILD NETWORK TRAVEL TIME (HOURS)			
KUN	AM	PM	AM	PM		
1	14,604.3	14,933.6	12,740.9	14,228.7		
2	13,967.2	14,766.2	11,519.5	14,036.6		
3	14,017.8	14,976.1	11,896.7	14,309.1		
4	14,522.8	14,813.4	12,191.8	14,147.1		
5	14,072.4	14,994.5	12,176.3	14,164.8		

In addition to calculating the User Cost for each scenario, the Reliability tab calculates Reliability Savings, which is given by:

Reliability Savings - Time Cost savings - Time Cost savings

Time cost= Value of Reliability*standard deviation of travel time

Since Reliability Savings is a positive number as shown in Table 10, the proposed improvement is substantial enough to improve reliability within the project area.

Table 10 Reliability Tab Input (Blue) and Calculations (Red)

Computation of Reliability Savings

Computation of reliability is based on Mean- Variance approach, given by,

User Cost= A*mean travel time + B* standard deviation of travel time

where, User Cost = Time Cost + Reliability Cost

A= Value of travel time (\$/min) = Auto/ Truck congestion cost per hour

B= Value of reliability (\$/min) = 0.75 * Auto congestion cost per hour or 2 * Truck congestion per hour

Default reliability ratio of 0.75 and 2.0 for auto and trucks, respectively, are based on SHRP 2 Reliability Project L 35 Results

Reliability Savings - User cost savings - Time Cost savings

	Concept-1										
		Existing Network TT (Hour) Concept Network TT (Ho		•							
Run	AM	PM	User Cost	t (\$/Hour)	AM	PM	User Cost	(\$/Hour)	User Cost Savings (\$/Hour)	Time Cost Savings (\$/Hour)	Reliability Savings (\$/Year in 1000's)
	(Hour)	(Hour)	AM	PM	(Hour)	(Hour)	AM	PM	(\$) Hour	(\$)11001)	(\$) Tear III 1000 3)
1	14604.3	14933.56			12740.93	14228.69					
2	13967.22	14766.2			11519.47	14036.59					
3	14017.77	14976.09			11896.72	14309.07					
4	14522.81	14813.37			12191.85	14147.14					
5	14072.4	14994.5			12176.26	14164.8					
6			492389.1	508524.9			424627.8	484104.2	\$92,182.0	\$89,931.3	\$2,025.6
7			492369.1	308324.9			424027.8	404104.2	332,102.0	\$69,931.3	\$2,023.0
8											
9											
10											
Mean	14236.9	14896.7			12105.0	14177.3					
Std Dev	301.9	101.5			448.1	101.1					

SUMMARY TAB

The Summary tab shows a summary of all the costs and benefits computed based on user inputs for the no-build and build scenarios. Table 11 shows the no-build B-C analysis results. Table 12 shows that the CGI Team's program of improvements has an Operations Benefit-Cost Ratio of 18.8 and a Safety Benefit-Cost Ratio of 0.8. Taken together, the Overall Benefit-Cost Ratio is 19.6. Over the life of the project, the program of improvements will save over \$2.5 billion in delay costs and almost \$46 million in fuel costs.

As stated previously, this analysis is conservative. The VISSIM models only captured the reduction in recurring congestion due to the roadway improvements and adaptive ramp metering. No non-recurring congestion was modeled, so no benefits associated with reducing non-recurring congestion were captured in the analysis. In addition, none of the ATM improvements were modeled in VISSIM, so any reduction ATM has on recurring congestion was not captured. Finally, the benefits of the virtual weigh station improvement were not included in the analysis.

The actual benefits that will be realized when the program of improvements is implemented will be greater than what is shown in the results.

Table 11 No-Build B-C Analysis Results

No	o-Build Analy	sis
No-Build Disbenefits ('000)	No-Build Costs ('000)	No-Build Benefit Cost Ratio
-\$2,030,958.1	\$15.0	-135,354.8

Table 12 Program of Improvements B-C Analysis Results

		Build Analysis														
- 1	Cumilative Delay Cost Savings ('000)	Cumilative Fuel Cost Savings ('000)		Safety Savings	Total Savings ('000)	Present Value of Operation Savings ('000)	Present Value of Safety Savings ('000)	Present Value of Total Savings ('000)	Present Value of Net Costs ('000)	Operations Benefit-Cost Ratio	Safety Benefit-Cost Ratio	Overall Benefit- Cost Ratio				
	\$2,532,213.9	\$45,926.2	\$30,803.5	\$117,540.2	\$2,726,483.8	\$2,088,744.1	\$94,235.5	\$2,182,979.5	\$111,224.3	18.8	0.8	19.6				

OUTPUT

The following pages show input and output from the B-C Tool. The tool is also included electronically.

Default Values		Notes
Project	I-270 Innovative Congestion Management	-
Project Opening Year	2020	-
Project Life Span (Years)	20	-
Hours of AM and PM Peak	3	-
Heavy Vehicle Percentage	7	Per the Dec. 2015 "Modeling Calibration Methodologies" memo
Annual Traffic Growth Factor (%)	1.75	Per the July 18, 2016 Governor's press release.
Annual Growth in Heavy Vehicle Percentage (%)	2.0	-
Working Days Per Year	250	-
Average Vehicle Occupancy	1.2	-
Auto Congestion Cost Per Hour (\$)	31.54	(a)
Truck Congestion Cost Per Hour (\$)	65.60	(a)
Reliability Measurement	Mean-variance Approach	Note: An option must be selected from drop down menu to left
Reliability Ratio- AUTO	0.75	(b), only required if using Mean-variance Approa
Reliability Ratio- Heavy Vehicles	2.0	(b), only required if using Mean-variance Approa
Reliability Ratio- All Vehicles	N/A	(b), only required if using Reliability Ratio Multiplier
Annual Deprciation in Travel Time Reliability (%)	3	Assumption
Fuel savings per hour of delay savings (\$)	0.72	(a)
Salvage Value (%)	10.00%	Assumption
Annual Inflation Rate (%)	2.08%	(c)
Annual Discount rate (%)	3.13%	(d)
2014 CHART Benefit Analysis SHRP 2 Reliability Project L 35		

Note: The general rule applicable throughout the spreadsheet is to fill out all the light blue cells, while all the light red cells are automated.

			Delay							
Concept #	A Court Provide			Base Yea	r Results			Future Yea	r Results	
	# Location	Concept Description		ork Delay (Hours)	Build Networ	k Delay (Hours)	Existing Netwo	ork Delay (Hours)	Build Networ	k Delay (Hours)
			AM	PM	AM	PM	AM	PM	AM	PM
1	I-270	Program of Improvements - SB 1, SB2, SB 5A, SB 6, SB 7, SB 8, SB 10, SB 12, NB 1, NB 2, NB 3, NB 4, NB 5, NB 7, adaptive ramp metering, ATM, Virtual Weigh Stations	6085.2	6053.4	3548.9	5201.4	10236.3	9604.9	6830.1	7898.6

	Accident Cost Data			
Accident Type	Cost per Accident Type (2012 Dollars) (a)	Cost per Accident Type (2016 Dollars) (b)		
Fatal	\$1,410,000	\$1,482,215		
Injury	\$78,900	\$82,941		
Property Damage Only	\$8,900	\$9,356		
Pedestrian Crashes (c)	\$46,654	\$49,043		

(a) National Safety Council, "Estimating the Costs of Unintentional Injuries, 2012"
(b) Bureau of Labor Statistics-CP Inflation Calculator
(C) Association for the Advancement of Automotive Medicine-Pedestrian and Pedalcyclist Injury Costs in
the US by Age and Injury Severify (in 2000 Dollars)

CMF/Percent Reduction in Crashes
Provide resources and alternative values researched in a separate sheet. Multiple CMFs
may need to be combined for a single concept, see Crash Data worksheet for combining

				R	oadway In	provemer	nts		
		Historic C	rash Data	(Existing	Condition	s)	Safety Analysis Results		
Accident Type	Year-1	Year-2	Year-3	Year-4	Year-5	Total	CMF (as a two digit decimal)	Percentage Reduction in Crashes (all crash types)	
Fatal	3					3	0.98		
Injury	186					186	0.89		
Property Damage Only	387					387	0.94		
Pedestrian Crashes	0					0			
Total	576	0	0	0	0	576		rash type (Column M) or as an overall percentage N). DO NOT fill both columns.	

				Α	daptive Ra	mp Meter	ing	
		Historic C	rash Data	(Existing	Condition	ıs)	Sa	fety Analysis Results
Accident Type	Year-1	Year-2	Year-3	Year-4	Year-5	Total	CMF (as a two digit	Percentage Reduction in Crashes (all crash
	rear-1	rear-2	rear-s	rear-4	rear-5	Total	decimal)	types)
Fatal	2					2		
Injury	81					81		400/
Property Damage Only	155					155		10%
Pedestrian Crashes	0					0		
Total	238	0	0	0	0	238		rash type (Column M) or as an overall percentage N). DO NOT fill both columns.

				۸۵	tive Traffic	Managen	nent .						
	Historic Crash Data (Existing Conditions) Safety Analysis Results												
Accident Type	Year-1	Year-2	Year-3	Year-4	Year-5	Total	CMF (as a two digit decimal)	Percentage Reduction in Crashes (all crash types)					
Fatal	2					2							
Injury	150					150		10%					
Property Damage Only	260					260		10%					
Pedestrian Crashes	0					0							
Total	412	0	0	0	0	412		rash type (Column M) or as an overall percentage N). DO NOT fill both columns.					

Concept Description	Concept Cost (1,000's)
Program of Improvements - SB 1, SB2,	
SB 5A, SB 6, SB 7, SB 8, SB 10, SB 12, NB	
1, NB 2, NB 3, NB 4, NB 5, NB 7,	\$100,000.0
adaptive ramp metering, ATM, Virtual	
Weigh Stations	

No-Build Operations and Maintenance Cost	Percent of Planning, Engineering and ROW costs as a percent of Construction Cost	Operation Cost (Project Life Span)
15%	0%	10%

Note: If additional details on cost, or costs by year, are available, then provide data below (switch to Normal View for guidance). Otherwise above tables will automatically populate cost fields below

	CONCEPT-1	DIRECT PROJECT COS	GTS (in thousands o	of dollars)		
	INITIAL COSTS (1'000's)		SUBSEC	QUENT COSTS (1000's)	TOTAL COSTS (in	1000's of dollars)
Year	Project					
	Planning+Engineering+ROW (a)	Construction	1	Maintenance	Constant Dollars	Present Valu
		Construction	Period			
1	\$0.0	\$100,000.0			\$100,000.0	\$1
2	\$0.0		1		\$0.0	
3	\$0.0				\$0.0	
4	\$0.0		•		\$0.0	
5	\$0.0		Note: If only one	cost value is provided, enter in	\$0.0	
6	\$0.0			ear 1 to the left	\$0.0	
7	\$0.0				\$0.0	
8	\$0.0				\$0.0	
9	\$0.0				\$0.0	
	· ·					
10	\$0.0				\$0.0	
		Project O	i -	B. L. Liller	Canadana Dallana	Dunnant Valu
2021			Operation \$500.0	Rehabiltation	Constant Dollars \$500.0	Present Valu
2021	-		\$500.0		\$500.0 \$510.4	
2022			\$521.0		\$521.0	
2023			\$531.9		\$531.9	
2025			\$542.9		\$542.9	
2026			\$554.2		\$554.2	
2027			\$565.7	\$4,769.5	\$5,335.2	
2028			\$577.5	\$1,080.0	\$1,657.5	
2029			\$589.5		\$589.5	
2030			\$601.8	\$1,322.0	\$1,923.8	
2031			\$614.3		\$614.3	
2032			\$627.1		\$627.1	
2033			\$640.1		\$640.1	
2034			\$653.4		\$653.4	
2035			\$667.0	\$630.0	\$1,297.0	
2036	4		\$680.9	\$1,080.0	\$1,760.9	
2037	4		\$695.1		\$695.1	
2038	+		\$709.5 \$724.3		\$709.5 \$724.3	
2039	-		\$724.3 \$739.3		\$724.3 \$739.3	
2040	\$0 \$0		\$139.5	\$8,882	3/39.3	

Note: This sheet only needs to be filled out when the mean-variance approach is used to calculate reliability savings.

Computation of Reliability Savings
Computation of reliability is based on Mean- Variance approach, given by,

User Cost= A*mean travel time + B* standard deviation of travel time

where, User Cost= Time Cost + Reliability Cost

A= Value of travel time (\$/min) = Auto/ Truck congestion cost per hour

B= Value of reliability (\$/min) = 0.75 * Auto congestion cost per hour or 2 * Truck congestion per hour

Default reliability ratio of 0.75 and 2.0 for auto and trucks, respectively, are based on SHRP 2 Reliability Project L 35 Results

Reliability Savings= User cost savings - Time Cost savings

							Concept-1					
		Existing N	etwork TT (Ho	ur)		Concept	Network TT (Ho	urs)				
Run	AM PM		User Cost (\$/Hour)		AM PM		User Cost	: (\$/Hour)	User Cost Savings (\$/Hour)	Time Cost Savings (\$/Hour)	Reliability Savings (\$/Year in 1000's)	
	(Hour)	(Hour)	AM	PM	(Hour)	(Hour)	AM	PM	(47.100.7	(φ) 110011	(4, 100 1000.3)	
1	14604.3	14933.56			12740.93	14228.69						
2	13967.22	14766.2			11519.47	14036.59						
3	14017.77	14976.09			11896.72	14309.07	1			600.034.3	ća 025 c	
4	14522.81	14813.37			12191.85	14147.14			602.402.0			
5	14072.4	14994.5			12176.26	14164.8						
6			492389.1	508524.9			424627.8	484104.2				
7			492369.1	506524.9			424027.0	404104.2	\$92,182.0	\$89,931.3	\$2,025.6	
8												
9												
10												
Mean	14236.9	14896.7			12105.0	14177.3	.3					
Std Dev	301.9	101.5			448.1	101.1						

								Summ	ary									
		Location	Concept Description	No-Build Analysis			Build Analysis											
Co	ncept #			No-Build Disbenefits ('000)	No-Build Costs ('000)	Ronofit Cost	Cumilative Delay Cost Savings ('000)	Cost Savings		Safety	Total Savings	Present Value of Operation Savings ('000)	Present Value of Safety Savings ('000)	Present Value of Total Savings ('000)		Operations Benefit-Cost Ratio	Safety Benefit-Cost Ratio	Overall Benefit- Cost Ratio
	1	1-270	Program of Improvements - SB 1, SB2, SB 5A, SB 6, SB 7, SB 8, SB 10, SB 12, NB 1, NB 2, NB 3, NB 4, NB 5, NB 7, adaptive ramp metering, ATM, Virtual Weigh Stations	-\$1 871 53 <i>4</i> 5	\$15.0	-124,729.9	\$2,532,213.9	\$45,926.2	\$30,803.5	\$117,540.2	\$2,726,483.8	\$2,088,744.1	\$94,235.5	\$2,182,979.5	\$111,224.3	18.8	0.8	3 19.6

								NO-BU	ILD							
Year	n			Network Delay		Annual Delay Savings ('000)	Auto Cost Savings ('000)	Freight Cost Savings ('000)	Fuel savings per hour of delay savings (\$)	Fuel Cost Savings ('000)	Reliability Savings ('000)	Present Value of Operation Savings ('000)	Safety Savings ('000)	Present Value of Safety Savings	Total Savings ('000)	Present Value of Total Savings ('000)
		Auto	Truck	Auto	Truck				Savings (2)					('000)		
2021	1	5758.3	433.4	5728.2	431.2	-159.3	-\$5,607.8	-\$731.6	\$0.7	-\$114.7	\$0.0	-\$6,322.6	\$0.0	\$0.0	-\$6,454.1	-\$6,322.6
2022	2	5946.4	447.6	5888.4	443.2	-440.2	-\$15,494.6	-\$2,021.4	\$0.7	-\$317.1	\$0.0	-\$17,113.7	\$0.0	\$0.0	-\$17,833.1	-\$17,113.7
2023	3	6134.4	461.7	6048.6	455.3	-721.1	-\$25,381.4	-\$3,311.2	\$0.7	-\$519.5	\$0.0	-\$27,462.6	\$0.0	\$0.0	-\$29,212.1	-\$27,462.6
2024	4	6322.5	475.9	6208.8	467.3	-1,002.0	-\$35,268.1	-\$4,601.1	\$0.7	-\$722.0	\$0.0	-\$37,382.6	\$0.0	\$0.0	-\$40,591.2	-\$37,382.6
2025	5	6510.6	490.0	6369.0	479.4	-1,282.9	-\$45,154.9	-\$5,890.9	\$0.7	-\$924.6	\$0.0	-\$46,887.0	\$0.0	\$0.0	-\$51,970.4	-\$46,887.0
2026	6	6698.7	504.2	6529.3	491.5	-1,563.7	-\$55,041.7	-\$7,180.7	\$0.7	-\$1,127.3	\$0.0	-\$55,988.7	\$0.0	\$0.0	-\$63,349.7	-\$55,988.7
2027	7	6886.7	518.4	6689.5	503.5	-1,844.6	-\$64,928.5	-\$8,470.5	\$0.7	-\$1,330.1	\$0.0	-\$64,700.1	\$0.0	\$0.0	-\$74,729.1	-\$64,700.1
2028	8	7074.8	532.5	6849.7	515.6	-2,125.5	-\$74,815.2	-\$9,760.4	\$0.7	-\$1,532.9	\$0.0	-\$73,033.3	\$0.0	\$0.0	-\$86,108.5	-\$73,033.3
2029	9	7262.9	546.7	7009.9	527.6	-2,406.4	-\$84,702.0	-\$11,050.2	\$0.7	-\$1,735.9	\$0.0	-\$81,000.1	\$0.0	\$0.0	-\$97,488.0	-\$81,000.1
2030	10	7451.0	560.8	7170.2	539.7	-2,687.3	-\$94,588.8	-\$12,340.0	\$0.7	-\$1,938.9	\$0.0	-\$88,611.9	\$0.0	\$0.0	-\$108,867.7	-\$88,611.9
2031	11	7639.0	575.0	7330.4	551.7	-2,968.2	-\$104,475.5	-\$13,629.8	\$0.7	-\$2,142.0	\$0.0	-\$95,880.1	\$0.0	\$0.0	-\$120,247.4	-\$95,880.1
2032	12	7827.1	589.1	7490.6	563.8	-3,249.1	-\$114,362.3	-\$14,919.7	\$0.7	-\$2,345.2	\$0.0	-\$102,815.2	\$0.0	\$0.0	-\$131,627.1	-\$102,815.2
2033	13	8015.2	603.3	7650.8	575.9	-3,529.9	-\$124,249.1	-\$16,209.5	\$0.7	-\$2,548.4	\$0.0	-\$109,428.1	\$0.0	\$0.0	-\$143,007.0	-\$109,428.1
2034	14	8203.3	617.5	7811.0	587.9	-3,810.8	-\$134,135.9	-\$17,499.3	\$0.7	-\$2,751.8	\$0.0	-\$115,728.8	\$0.0	\$0.0	-\$154,387.0	-\$115,728.8
2035	15	8391.3	631.6	7971.3	600.0	-4,091.7	-\$144,022.6	-\$18,789.1	\$0.7	-\$2,955.2	\$0.0	-\$121,727.4	\$0.0	\$0.0	-\$165,767.0	-\$121,727.4
2036	16	8579.4	645.8	8131.5	612.0	-4,372.6	-\$153,909.4	-\$20,079.0	\$0.7	-\$3,158.8	\$0.0	-\$127,433.5	\$0.0	\$0.0	-\$177,147.1	-\$127,433.5
2037	17	8767.5	659.9	8291.7	624.1	-4,653.5	-\$163,796.2	-\$21,368.8	\$0.7	-\$3,362.4	\$0.0	-\$132,856.6	\$0.0	\$0.0	-\$188,527.3	-\$132,856.6
2038	18	8955.6	674.1	8451.9	636.2	-4,934.4	-\$173,683.0	-\$22,658.6	\$0.7	-\$3,566.1	\$0.0	-\$138,005.8	\$0.0	\$0.0	-\$199,907.6	-\$138,005.8
2039	19	9143.6	688.2	8612.2	648.2	-5,215.3	-\$183,569.7	-\$23,948.4	\$0.7	-\$3,769.8	\$0.0	-\$142,890.2	\$0.0	\$0.0	-\$211,288.0	-\$142,890.2
2040	20	9519.8	716.5	8932.6	672.3	-5,777.0	-\$203,343.3	-\$26,528.1	\$0.7	-\$4,176.8	\$0.0	-\$155,057.2	\$0.0	\$0.0	-\$234,048.2	-\$155,057.2
Sum	-	151088.1	11372.2	145165.5	10926.4	-\$56,835.4	-\$2,000,530.0	-\$260,988.3	-	-\$41,039.4	\$0.0	-\$1,740,325.5	\$0.0	\$0.0	-\$2,302,557.7	-\$1,740,325.5

				NO-BUILD Sa	fety Savings				
Year	Concept-1	Savings	Present Value	Concept-2	Savings	Present Value	Concept-3	Savings	Present Value
Existing	\$23,843,753	-	-	\$11,132,831	-		\$17,838,140	-	
2021	\$24,261,018	-\$417,266	-\$425,945	\$11,327,656	-\$194,825	-\$198,877	\$18,150,307	-\$312,167	-\$318,661
2022	\$24,685,586	-\$841,833	-\$877,218	\$11,525,890	-\$393,059	-\$409,580	\$18,467,938	-\$629,798	-\$656,270
2023	\$25,117,584	-\$1,273,831	-\$1,354,983	\$11,727,593	-\$594,762	-\$632,652	\$18,791,127	-\$952,987	-\$1,013,699
2024	\$25,557,142	-\$1,713,389	-\$1,860,453	\$11,932,825	-\$799,994	-\$868,660	\$19,119,971	-\$1,281,831	-\$1,391,854
2025	\$26,004,392	-\$2,160,639	-\$2,394,890	\$12,141,650	-\$1,008,819	-\$1,118,192	\$19,454,571	-\$1,616,431	-\$1,791,680
2026	\$26,459,469	-\$2,615,716	-\$2,959,610	\$12,354,129	-\$1,221,298	-\$1,381,865	\$19,795,026	-\$1,956,886	-\$2,214,162
2027	\$26,922,509	-\$3,078,757	-\$3,555,985	\$12,570,326	-\$1,437,495	-\$1,660,317	\$20,141,439	-\$2,303,299	-\$2,660,326
2028	\$27,393,653	-\$3,549,900	-\$4,185,443	\$12,790,307	-\$1,657,476	-\$1,954,216	\$20,493,914	-\$2,655,774	-\$3,131,240
2029	\$27,873,042	-\$4,029,289	-\$4,849,471	\$13,014,137	-\$1,881,306	-\$2,264,255	\$20,852,558	-\$3,014,418	-\$3,628,017
2030	\$28,360,820	-\$4,517,068	-\$5,549,619	\$13,241,884	-\$2,109,053	-\$2,591,160	\$21,217,477	-\$3,379,337	-\$4,151,817
2031	\$28,857,135	-\$5,013,382	-\$6,287,501	\$13,473,617	-\$2,340,786	-\$2,935,682	\$21,588,783	-\$3,750,643	-\$4,703,845
2032	\$29,362,135	-\$5,518,382	-\$7,064,797	\$13,709,406	-\$2,576,575	-\$3,298,608	\$21,966,587	-\$4,128,447	-\$5,285,361
2033	\$29,875,972	-\$6,032,219	-\$7,883,257	\$13,949,320	-\$2,816,489	-\$3,680,753	\$22,351,002	-\$4,512,862	-\$5,897,673
2034	\$30,398,801	-\$6,555,049	-\$8,744,705	\$14,193,433	-\$3,060,602	-\$4,082,970	\$22,742,145	-\$4,904,005	-\$6,542,145
2035	\$30,930,780	-\$7,087,028	-\$9,651,039	\$14,441,819	-\$3,308,988	-\$4,506,144	\$23,140,132	-\$5,301,992	-\$7,220,196
2036	\$31,472,069	-\$7,628,316	-\$10,604,233	\$14,694,550	-\$3,561,719	-\$4,951,198	\$23,545,085	-\$5,706,945	-\$7,933,307
2037	\$32,022,830	-\$8,179,078	-\$11,606,348	\$14,951,705	-\$3,818,874	-\$5,419,093	\$23,957,124	-\$6,118,984	-\$8,683,015
2038	\$32,583,230	-\$8,739,477	-\$12,659,523	\$15,213,360	-\$4,080,529	-\$5,910,829	\$24,376,373	-\$6,538,233	-\$9,470,923
2039	\$33,153,436	-\$9,309,684	-\$13,765,991	\$15,479,594	-\$4,346,763	-\$6,427,447	\$24,802,960	-\$6,964,820	-\$10,298,701
2040	\$33,733,621	-\$9,889,869	-\$14,928,073	\$15,750,487	-\$4,617,656	-\$6,970,032	\$25,237,012	-\$7,398,872	-\$11,168,085
Total in ('000)	-	-\$98,150.17	-\$131,209.09	\$268,483.69	-\$45,827.07	-\$61,262.53	\$430,191.53	-\$73,428.73	-\$98,160.98

										C	oncept-1									
Year	n			Network Delay ndition, Hours)		Future Year Network Delay (Build Condition, Hours)			Annual Delay Savings	Auto Cost Savings ('000)	Freight Cost Savings ('000)	Fuel savings per hour of delay	Fuel Cost Savings	Reliability Savings ('000)	Present Value of Operation	Safety Savings	Present Value of Safety	Total Savings ('000)	Present Value of Total Savings	
		Auto	/ Truck	Auto	PM Truck	Auto	M Truck	Auto Pñ	// Truck	('000)			savings (\$)	('000')		Savings ('000)	('000)	Savings ('000)		(000)
2021	1	5758.3	433.4	5728.2	431.2	3358.3	252.8	4922.0	370.5	2.585.6	\$91.010.9	\$11.873.2	\$0.7	\$1.862.0	\$2.025.6	\$104,596,2	\$4,959.2	\$4.858.1	\$111.731.0	\$109,454,4
2022	2	5946.4	447.6	5888.4	443.2	3508.0	264.0	5043.2	379.6	2,648.1	\$93,208.7	\$12,160.0	\$0.7	\$1,907.4	\$1,964.9	\$104,834,4	\$5,046,0	\$4,842,4	\$114,286.8	\$109,676.8
2023	3	6134.4	461.7	6048.6	455.3	3657.6	275.3	5164.4	388.7	2.710.5	\$95,406,4	\$12,446.7	\$0.7	\$1,952.8	\$1,905.9	\$105.021.2	\$5,134,3	\$4,826,8	\$116.846.0	\$109.848.0
2024	4	6322.5	475.9	6208.8	467.3	3807.3	286.6	5285.5	397.8	2,773.0	\$97,604.1	\$12,733.4	\$0.7	\$1,998.2	\$1,848.7	\$105,158.5	\$5,224.1	\$4,811.2	\$119,408.6	\$109,969.6
2025	5	6510.6	490.0	6369.0	479.4	3957.0	297.8	5406.7	407.0	2,835.4	\$99,801.9	\$13,020.1	\$0.7	\$2,043.6	\$1,793.3	\$105,248.1	\$5,315.5	\$4,795.6	\$121,974.4	\$110,043.7
2026	6	6698.7	504.2	6529.3	491.5	4106.7	309.1	5527.9	416.1	2,897.8	\$101,999.6	\$13,306.8	\$0.7	\$2,089.0	\$1,739.5	\$105,292.0	\$5,408.5	\$4,780.1	\$124,543.5	\$110,072.1
2027	7	6886.7	518.4	6689.5	503.5	4256.4	320.4	5649.1	425.2	2,960.3	\$104,197.3	\$13,593.5	\$0.7	\$2,134.5	\$1,687.3	\$105,291.7	\$5,503.2	\$4,764.6	\$127,115.9	\$110,056.4
2028	8	7074.8	532.5	6849.7	515.6	4406.1	331.6	5770.3	434.3	3,022.7	\$106,395.1	\$13,880.3	\$0.7	\$2,180.0	\$1,636.7	\$105,249.1	\$5,599.5	\$4,749.2	\$129,691.5	\$109,998.4
2029	9	7262.9	546.7	7009.9	527.6	4555.8	342.9	5891.5	443.4	3,085.1	\$108,592.8	\$14,167.0	\$0.7	\$2,225.5	\$1,587.6	\$105,165.8	\$5,697.5	\$4,733.9	\$132,270.3	\$109,899.7
2030	10	7451.0	560.8	7170.2	539.7	4705.5	354.2	6012.7	452.6	3,147.6	\$110,790.6	\$14,453.7	\$0.7	\$2,271.0	\$1,539.9	\$105,043.4	\$5,797.2	\$4,718.6	\$134,852.4	\$109,762.0
2031	11	7639.0	575.0	7330.4	551.7	4855.1	365.4	6133.8	461.7	3,210.0	\$112,988.3	\$14,740.4	\$0.7	\$2,316.5	\$1,493.8	\$104,883.5	\$5,898.7	\$4,703.3	\$137,437.6	\$109,586.8
2032	12	7827.1	589.1	7490.6	563.8	5004.8	376.7	6255.0	470.8	3,272.5	\$115,186.0	\$15,027.1	\$0.7	\$2,362.1	\$1,448.9	\$104,687.6	\$6,001.9	\$4,688.1	\$140,026.0	\$109,375.7
2033	13	8015.2	603.3	7650.8	575.9	5154.5	388.0	6376.2	479.9	3,334.9	\$117,383.8	\$15,313.8	\$0.7	\$2,407.6	\$1,405.5	\$104,457.1	\$6,106.9	\$4,673.0	\$142,617.6	\$109,130.1
2034	14	8203.3	617.5	7811.0	587.9	5304.2	399.2	6497.4	489.1	3,397.3	\$119,581.5	\$15,600.6	\$0.7	\$2,453.2	\$1,363.3	\$104,193.6	\$6,213.8	\$4,657.9	\$145,212.4	\$108,851.5
2035	15	8391.3	631.6	7971.3	600.0	5453.9	410.5	6618.6	498.2	3,459.8	\$121,779.2	\$15,887.3	\$0.7	\$2,498.8	\$1,322.4	\$103,898.4	\$6,322.5	\$4,642.8	\$147,810.3	\$108,541.2
2036	16	8579.4	645.8	8131.5	612.0	5603.6	421.8	6739.8	507.3	3,522.2	\$123,977.0	\$16,174.0	\$0.7	\$2,544.4	\$1,282.7	\$103,572.9	\$6,433.2	\$4,627.8	\$150,411.3	\$108,200.7
2037	17	8767.5	659.9	8291.7	624.1	5753.3	433.0	6861.0	516.4	3,584.6	\$126,174.7	\$16,460.7	\$0.7	\$2,590.1	\$1,244.3	\$103,218.3	\$6,545.7	\$4,612.8	\$153,015.5	\$107,831.1
2038	18	8955.6	674.1	8451.9	636.2	5903.0	444.3	6982.2	525.5	3,647.1	\$128,372.5	\$16,747.4	\$0.7	\$2,635.8	\$1,206.9	\$102,836.0	\$6,660.3	\$4,597.9	\$155,622.8	\$107,433.9
2039	19	9143.6	688.2	8612.2	648.2	6052.6	455.6	7103.3	534.7	3,709.5	\$130,570.2	\$17,034.1	\$0.7	\$2,681.4	\$1,170.7	\$102,427.2	\$6,776.9	\$4,583.1	\$158,233.3	\$107,010.3
2040	20	9519.8	716.5	8932.6	672.3	6352.0	478.1	7345.7	552.9	3,834.4	\$134,965.7	\$17,607.6	\$0.7		\$1,135.6	\$103,668.9	\$6,895.4	\$4,568.2	\$163,376.6	\$108,237.2
Sum	-	151,088.1	11,372.2	145,165.5	10,926.4	95,755.7	7,207.4	121,586.3	9,151.7	63,638.4	\$ 2,239,986.2	\$ 292,227.7	-	\$ 45,926.2	\$ 30,803.5	\$ 2,088,744.1	\$117,540.2	\$ 94,235.5	\$ 2,726,483.8	\$ 2,182,979.5

Active Traffic Management													
Year	n		Existi	ng Conditi	on Crashe	!S		With	Proposed I	mproveme	nt	Crash Savings	
rear	n	Fatal	Injury	PDO	Ped	Costs	Fatal	Injury	PDO	Ped	Costs	(1000's)	
2021	1	2.0	152.6	264.6	0.0	\$18,150,307.5	1.8	137.4	238.1	0.0	\$16,335,276.7	\$1,815.0	
2022	2	2.1	155.3	269.2	0.0	\$18,467,937.8	1.9	139.8	242.3	0.0	\$16,621,144.0	\$1,846.8	
2023	3	2.1	158.0	273.9	0.0	\$18,791,126.7	1.9	142.2	246.5	0.0	\$16,912,014.1	\$1,879.1	
2024	4	2.1	160.8	278.7	0.0	\$19,119,971.5	1.9	144.7	250.8	0.0	\$17,207,974.3	\$1,912.0	
2025	5	2.2	163.6	283.6	0.0	\$19,454,571.0	2.0	147.2	255.2	0.0	\$17,509,113.9	\$1,945.5	
2026	6	2.2	166.5	288.5	0.0	\$19,795,026.0	2.0	149.8	259.7	0.0	\$17,815,523.4	\$1,979.5	
2027	7	2.3	169.4	293.6	0.0	\$20,141,438.9	2.0	152.4	264.2	0.0	\$18,127,295.0	\$2,014.1	
2028	8	2.3	172.3	298.7	0.0	\$20,493,914.1	2.1	155.1	268.8	0.0	\$18,444,522.7	\$2,049.4	
2029	9	2.3	175.3	303.9	0.0	\$20,852,557.6	2.1	157.8	273.5	0.0	\$18,767,301.8	\$2,085.3	
2030	10	2.4	178.4	309.3	0.0	\$21,217,477.3	2.1	160.6	278.3	0.0	\$19,095,729.6	\$2,121.7	
2031	11	2.4	181.5	314.7	0.0	\$21,588,783.2	2.2	163.4	283.2	0.0	\$19,429,904.9	\$2,158.9	
2032	12	2.5	184.7	320.2	0.0	\$21,966,586.9	2.2	166.2	288.2	0.0	\$19,769,928.2	\$2,196.7	
2033	13	2.5	187.9	325.8	0.0	\$22,351,002.2	2.3	169.2	293.2	0.0	\$20,115,902.0	\$2,235.1	
2034	14	2.5	191.2	331.5	0.0	\$22,742,144.7	2.3	172.1	298.3	0.0	\$20,467,930.2	\$2,274.2	
2035	15	2.6	194.6	337.3	0.0	\$23,140,132.2	2.3	175.1	303.6	0.0	\$20,826,119.0	\$2,314.0	
2036	16	2.6	198.0	343.2	0.0	\$23,545,084.6	2.4	178.2	308.9	0.0	\$21,190,576.1	\$2,354.5	
2037	17	2.7	201.5	349.2	0.0	\$23,957,123.5	2.4	181.3	314.3	0.0	\$21,561,411.2	\$2,395.7	
2038	18	2.7	205.0	355.3	0.0	\$24,376,373.2	2.5	184.5	319.8	0.0	\$21,938,735.9	\$2,437.6	
2039	19	2.8	208.6	361.5	0.0	\$24,802,959.7	2.5	187.7	325.4	0.0	\$22,322,663.8	\$2,480.3	
2040	20	2.8	212.2	367.8	0.0	\$25,237,011.5	2.5	191.0	331.1	0.0	\$22,713,310.4	\$2,523.7	
Total	-	48.2	3617.5	6270.3	0.0	\$430,191,530.1	43.4	3255.7	5643.2	0.0	\$387,172,377.1	\$43,019.2	

Adaptive Ramp Metering													
V			Exist	ting Conditi	ion Crashes			With P	roposed I	mprover	nent	Crash Savings	
Year	n	Fatal	Injury	PDO	Ped	Costs	Fatal	Injury	PDO	Ped	Costs	(1000's)	
2021	1	2.0	82.4	157.7	0.0	\$11,327,655.5	1.8	74.2	141.9	0.0	\$10,194,890.0	\$1,132.8	
2022	2	2.1	83.9	160.5	0.0	\$11,525,889.5	1.9	75.5	144.4	0.0	\$10,373,300.6	\$1,152.6	
2023	3	2.1	85.3	163.3	0.0	\$11,727,592.6	1.9	76.8	147.0	0.0	\$10,554,833.3	\$1,172.8	
2024	4	2.1	86.8	166.1	0.0	\$11,932,825.5	1.9	78.1	149.5	0.0	\$10,739,542.9	\$1,193.3	
2025	5	2.2	88.3	169.0	0.0	\$12,141,649.9	2.0	79.5	152.1	0.0	\$10,927,484.9	\$1,214.2	
2026	6	2.2	89.9	172.0	0.0	\$12,354,128.8	2.0	80.9	154.8	0.0	\$11,118,715.9	\$1,235.4	
2027	7	2.3	91.5	175.0	0.0	\$12,570,326.0	2.0	82.3	157.5	0.0	\$11,313,293.4	\$1,257.0	
2028	8	2.3	93.1	178.1	0.0	\$12,790,306.7	2.1	83.8	160.3	0.0	\$11,511,276.1	\$1,279.0	
2029	9	2.3	94.7	181.2	0.0	\$13,014,137.1	2.1	85.2	163.1	0.0	\$11,712,723.4	\$1,301.4	
2030	10	2.4	96.3	184.4	0.0	\$13,241,884.5	2.1	86.7	165.9	0.0	\$11,917,696.0	\$1,324.2	
2031	11	2.4	98.0	187.6	0.0	\$13,473,617.5	2.2	88.2	168.8	0.0	\$12,126,255.7	\$1,347.4	
2032	12	2.5	99.7	190.9	0.0	\$13,709,405.8	2.2	89.8	171.8	0.0	\$12,338,465.2	\$1,370.9	
2033	13	2.5	101.5	194.2	0.0	\$13,949,320.4	2.3	91.3	174.8	0.0	\$12,554,388.3	\$1,394.9	
2034	14	2.5	103.3	197.6	0.0	\$14,193,433.5	2.3	92.9	177.9	0.0	\$12,774,090.1	\$1,419.3	
2035	15	2.6	105.1	201.1	0.0	\$14,441,818.6	2.3	94.6	181.0	0.0	\$12,997,636.7	\$1,444.2	
2036	16	2.6	106.9	204.6	0.0	\$14,694,550.4	2.4	96.2	184.1	0.0	\$13,225,095.4	\$1,469.5	
2037	17	2.7	108.8	208.2	0.0	\$14,951,705.0	2.4	97.9	187.4	0.0	\$13,456,534.5	\$1,495.2	
2038	18	2.7	110.7	211.8	0.0	\$15,213,359.9	2.5	99.6	190.6	0.0	\$13,692,023.9	\$1,521.3	
2039	19	2.8	112.6	215.5	0.0	\$15,479,593.7	2.5	101.4	194.0	0.0	\$13,931,634.3	\$1,548.0	
2040	20	2.8	114.6	219.3	0.0	\$15,750,486.6	2.5	103.1	197.4	0.0	\$14,175,437.9	\$1,575.0	
Total	-	48.2	1953.4	3738.0		\$268,483,687.3	43.4	1758.1	3364.2	0.0	\$241,635,318.6	\$26,848.4	

Roadway Improvements													
Vacu			Existi	ng Conditi	on Crashe	S		With	Proposed I	mproveme	nt	Crash Savings	
Year	n	Fatal	Injury	PDO	Ped	Costs	Fatal	Injury	PDO	Ped	Costs	(1000's)	
2021	1	3.3	189.3	393.9	0.0	\$24,261,018.4	3.2	169.1	370.8	0.0	\$22,249,648.9	\$2,011.4	
2022	2	3.3	192.7	400.8	0.0	\$24,685,586.2	3.3	172.1	377.3	0.0	\$22,639,017.8	\$2,046.6	
2023	3	3.4	196.0	407.8	0.0	\$25,117,584.0	3.3	175.1	383.9	0.0	\$23,035,200.6	\$2,082.4	
2024	4	3.5	199.5	414.9	0.0	\$25,557,141.7	3.4	178.2	390.6	0.0	\$23,438,316.6	\$2,118.8	
2025	5	3.5	203.0	422.2	0.0	\$26,004,391.7	3.4	181.3	397.5	0.0	\$23,848,487.2	\$2,155.9	
2026	6	3.6	206.5	429.6	0.0	\$26,459,468.5	3.5	184.5	404.4	0.0	\$24,265,835.7	\$2,193.6	
2027	7	3.6	210.1	437.1	0.0	\$26,922,509.2	3.6	187.7	411.5	0.0	\$24,690,487.8	\$2,232.0	
2028	8	3.7	213.8	444.7	0.0	\$27,393,653.2	3.6	191.0	418.7	0.0	\$25,122,571.4	\$2,271.1	
2029	9	3.8	217.5	452.5	0.0	\$27,873,042.1	3.7	194.3	426.0	0.0	\$25,562,216.3	\$2,310.8	
2030	10	3.8	221.3	460.4	0.0	\$28,360,820.3	3.7	197.7	433.5	0.0	\$26,009,555.1	\$2,351.3	
2031	11	3.9	225.2	468.5	0.0	\$28,857,134.7	3.8	201.2	441.1	0.0	\$26,464,722.4	\$2,392.4	
2032	12	4.0	229.2	476.7	0.0	\$29,362,134.5	3.9	204.7	448.8	0.0	\$26,927,855.0	\$2,434.3	
2033	13	4.0	233.2	485.0	0.0	\$29,875,971.9	3.9	208.3	456.7	0.0	\$27,399,092.5	\$2,476.9	
2034	14	4.1	237.2	493.5	0.0	\$30,398,801.4	4.0	211.9	464.7	0.0	\$27,878,576.6	\$2,520.2	
2035	15	4.2	241.4	502.2	0.0	\$30,930,780.4	4.1	215.7	472.8	0.0	\$28,366,451.7	\$2,564.3	
2036	16	4.3	245.6	510.9	0.0	\$31,472,069.1	4.2	219.4	481.1	0.0	\$28,862,864.6	\$2,609.2	
2037	17	4.3	249.9	519.9	0.0	\$32,022,830.3	4.2	223.3	489.5	0.0	\$29,367,964.7	\$2,654.9	
2038	18	4.4	254.3	529.0	0.0	\$32,583,229.8	4.3	227.2	498.0	0.0	\$29,881,904.1	\$2,701.3	
2039	19	4.5	258.7	538.2	0.0	\$33,153,436.3	4.4	231.1	506.8	0.0	\$30,404,837.4	\$2,748.6	
2040	20	4.6	263.3	547.7	0.0	\$33,733,621.5	4.5	235.2	515.6	0.0	\$30,936,922.1	\$2,796.7	
Total	-	77.9	4487.8	9335.5	0.0	\$575,025,225.4	76.0	4009.1	8789.5	0.0	\$527,352,528.3	\$47,672.7	